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Abstract

With the exponential growth in computing power and progress in speech recognition technology, spoken dialog
systems (SDSs) with which a user interacts through natural speech has been widely used in human-computer
interaction. However, error-prone automatic speech recognition (ASR) results usually lead to inappropriate semantic
interpretation so that miscommunication happens easily. This paper presents an approach to error-aware dialog state
(DS) detection for robust miscommunication handling in an SDS. Non-understanding (Non-U) and misunderstanding
(Mis-U) are considered for miscommunication handling in this study. First, understanding evidence (UE), derived from
the recognition confidence, is adopted for Non-U detection followed by Non-U recovery. For Mis-U with the
recognized sentence containing uncertain recognized words, the partial sentences obtained by removing
potentially misrecognized words from the input utterance are organized, based on regular expressions, as a tree
structure to tolerate the deletion or rejection of keywords resulting from misrecognition for Mis-U DS modeling.
Latent semantic analysis is then employed to consider the verified words and their n-grams for DS detection,
including Mis-U and predefined Base DSs. Historical information-based n-grams are employed to find the most
likely DS for the SDS. Several experiments were performed with a dialog corpus for the restaurant reservation
task. The experimental results show that the proposed approach achieved a promising performance for Non-U
recovery and Mis-U repair as well as a satisfactory task success rate for the dialogs using the proposed method.

Keywords: Error-aware dialog act, Miscommunication, Spoken dialog systems

1 Introduction

In recent years, voice-driven human-computer interaction
has benefited greatly from steady improvements in the
underlying speech technologies, such as speech recognition,
speech synthesis, natural language understanding, and ma-
chine learning [1]. Spoken dialog systems (SDSs) are sup-
posed to enable an efficient and intuitive communication
between humans and computers [2], and help users achieve
the goal which they want to accomplish by using spoken
languages. This could be done by mapping the spoken ut-
terance to the semantic meaning of the recognized word se-
quence using the automatic speech recognition (ASR)
technology. Then spoken language understanding (SLU)
maps the semantic meaning of the recognized word string
to the user’s semantic slots and a list of values [3]. The
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semantic slots and their corresponding values are main-
tained by a dialog state (DS) tracking component over dia-
log turns, and change gradually over the process of the
dialog.

Dialog state tracking (DST) is one of the key sub-tasks
of dialog management, which updates the dialog states at
each moment on a dialog conversation [4]. Because the er-
rors from ASR and SLU are generally encountered, DST
task facing the errors may lead to misunderstanding of the
user’s intention. In previous studies, several methods have
been proposed to deal with the problems on ASR and
SLU errors for performance improvement. Some typical
examples of the proposed approaches include handcrafted
rule-based methods [5, 6], Bayesian networks [7, 8], dis-
criminative models [9], and long short-term memory
neural networks [10]. As the dialog system, one of the
prominent human-computer interaction research areas,
has been applied to a wide range of domains from simple
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goal-oriented applications to complex conversational sys-
tems, a common testbed or evaluation measure for this
task is highly desirable. To provide a common testbed for
the DST task, a series of the Dialog State Tracking Chal-
lenge (DSTC1~4) has been successfully organized and
completed in the past years. This challenge task series has
spurred significant work on dialog state tracking, yielding
both numerous new techniques as well as a standard set
of evaluation metrics [4].

At the early stages, SDSs often used handcrafted rules for
DS tracking with corresponding confidence scores [5, 11].
Such SDSs did not require data to implement and provide
an accessible method to incorporate the dialog domain
knowledge [12]. In a human-machine dialog, uncertainty
resulting from errors in speech recognition and ambiguities
inherent in natural language may arise. Even though many
approaches have been developed to address the problem of
robust speech recognition in recent years, the accuracy of
speech recognition systems degrades severely when the sys-
tems operate in an adverse environment. Inevitably, the
SDS will encounter errors from ASR which thus result in
miscommunication with the users [1, 2, 13].

Miscommunication handling is an important issue in
the design of an SDS. In a dialog system, two types of
miscommunication, non-understanding (Non-U) and
misunderstanding (Mis-U) [14, 15], are generally en-
countered. Mis-U results from mismatched intentions
between the speaker and listener, whereas Non-U occurs
if the listener fails to obtain any interpretation or is not
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sufficiently confident to acquire an interpretation. In an
SDS, Non-U results from the rejection of some key-
words which will be filled in the semantic slots, and thus
a response is required to request the user to rephrase
the query in order to complete the semantic slots for
intention understanding. On the other hand, for Mis-U,
the sentence contains the recognized keywords which
have been accepted and filled in the semantic slots but
then are noticed as errors by the user in a later stage.
Therefore, the user corrects the errors in the next dialog
turn. Figure 1 shows an example for the occurrence of a
Mis-U, in which the term “beef noodles” is misrecog-
nized as “hot pot noodles.” In the next dialog turn, the
user tries to correct the content of the semantic slots so
that the system can repair the misrecognized user’s
intention. Accordingly, the aim in designing a robust
SDS is to make it error-aware of the recognized word se-
quence from ASR for Non-U recovery and Mis-U repair
in order to achieve the real goal of a dialog.
Traditionally, the research community has focused on
building an SDS for user intention detection and dialog
management (DM). In spoken language understanding
(SLU), dialog states (DSs) are the basic functional units
[16] that describe the dialog behaviors in human-
computer or human-human communication [17]. The
features used to represent an utterance for DS detection
include parts-of-speech (POSs) [18], semantic roles [19,
20], prosody [21, 22], and keywords [23]. With semantic
analysis, statistical dialog management models, such as
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Fig. 1 An example for the occurrence of a Mis-U and the correction made by the user in the next dialog turn
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weighted finite-state transducers (WFSTs) [24], Markov
decision processes (MDPs) [25, 26], and partially observ-
able MDPs (POMDPs) [8, 13], were proposed for stable
dialog flow control, especially in goal-oriented SDSs.
However, noisy speech, spontaneous speech with
disfluencies [27, 28], or pronunciation variations [29]
crucially affect the performance of SLU and DM.
Intention detection based on only one-phase dialog re-
sponse is not sufficiently robust for error-prone SDSs.
On the other hand, error recovery with only repeated re-
quests would also annoy the user and cost more turns
significantly.

Handling of miscommunication and uncertainty in a
dialog is not merely an individual task [30]. During the
handling process, the system and the user share their in-
dividual knowledge and beliefs to establish what has
been identified. Representative systems including Hig-
gins (KTH) [30] and Let’s Go! Public system (CMU) [31]
endeavored to overcome potential dialog errors. Gener-
ally, the handling process consists of early and late
error-handling stages. In early stage, confidence score
obtained by ASR [30] based on intra-sentential [32] and
inter-sentential information [33] is used to verify each
recognized word and generate candidate sentences for
further processing, such as asking the user to rephrase
the query for Non-U recovery. Late stage performs re-
pair actions against Mis-U issue. In addition, recent re-
search has involved evaluating the understanding
evidence (UE) for outcome analysis of the recognized
words. Clark and Schaefer [34] listed five main types of
positive UEs, such as continued attention and initiation
of the relevant next contribution as shown in Table 1.
These UE types are graded roughly from the weakest to
the strongest. In Skantze’s work [30], predefined UE
types based on the ASR confidence score were employed
to verify each word of the recognized word string.

This paper proposes a framework to model the dialog
interaction process between a developed SDS and the
users, as shown in Fig. 2. In the training phase, a simu-
lated dialog environment for the restaurant reservation
task was constructed for dialog corpus collection. The

Table 1 The five types of understanding evidence (UE) [30, 34]

Type
Continued attention

Description

The hearer shows continued attention and
remains satisfied with speaker’s presentation.

The hearer starts in on the next contribution
that would be relevant at a level as high as
the current one.

Initiation of the relevant
next contribution

Acknowledgement The hearer says “uh huh,” “l see," or nods.

Demonstration The hearer demonstrates all or part of what

he has understood.

Display The hearer displays verbatim all or part of

speaker’s presentation.
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UE of each recognized word in the sentence from ASR
output was firstly estimated. The UE, derived from the
recognition confidence, is adopted for Non-U detection.
As the input utterance is detected as Non-U, the system
will request the user to rephrase the query for Non-U
recovery. On the other hand, if the sentence contains
the recognized keywords which have been accepted and
filled in the semantic slots in previous dialog turn but
then are noticed as errors by the user in the current
turn, a Mis-U issue occurs. A set of Mis-U DSs is ex-
tracted using the partial sentences obtained by removing
potentially misrecognized words from the input utter-
ances. The partial sentences are organized, based on
regular expressions, as a tree structure to tolerate the
deletion or rejection of keywords resulting from misrec-
ognition for Mis-U DS modeling. Based on the collected
partial sentences, 28 Mis-U DSs are derived in this
study. For the query with Mis-U, the system will correct
the intention of the user’s query based on the repair re-
sponse from the user.

Besides miscommunication cases, 37 Base DSs are de-
fined in this study. For DS modeling, including Mis-U
DSs and Base DSs, the linguistic features combined with
word-level n-grams and syntactic rules parsed by the
Stanford parser were extracted. Based on these features,
a linguistic feature-by-DS (LFDS) matrix was built to de-
scribe the relationship between features and DSs. This
study employed POMDP-based dialog state tracker as
the dialog controller which monitors the probability dis-
tributions over the states in a Markov process. In the
test phase, the user provided a query to the SDS. The
UE of each word from the ASR output was estimated
and used to determine whether to replace the rejected/
uncertain word with the term “Filler.” Next, linguistic
features were extracted and sent to the LFDS matrix for
DS detection. Then this study employed the POMDP-
based DS detector to generate the response sentence. Fi-
nally, the response sentence was synthesized to give the
speech output to the user.

The innovations of this paper are summarized as follows.
First, few research focused on the error-aware issue which
is the major problem in speech applications in recent years.
Error handling, consisting of Non-U recovery and Mis-U
repair, in spoken dialog applications is crucial for successful
interaction. Second, we consider all error-tolerant sentence
patterns based on partial sentence expansion to cover the
recognition uncertainty resulting from an error-prone ASR.
Finally, we organize these sentence patterns as an LEDS
matrix to consider the relationship between the user utter-
ance and the DSs. A POMDP-based dialog manager is then
employed for dialog management.

The remainder of this paper is organized as follows. Sec-
tion II describes the corpus collection and annotation.
Section III introduces miscommunication handling for
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Fig. 2 The framework of the proposed spoken dialogue system

Non-U and Mis-U. Section IV describes the dialog state
detection framework. Section V shows the experimental
results and discussion. Finally, Section VI draws some
discussion and conclusions, and suggestions for the fu-
ture work.

2 Task corpus collection and annotation

For data analysis and system evaluation, we constructed
a simulated SDS for collecting a query corpus for the
task of food and restaurant information around the Na-
tional Cheng Kung University (NCKU) campus. Figure 3
shows a Wizard-of-Oz (WoZ) framework for collecting
the dialog data. Based on the keyword-spotting frame-
work, the quantitative analysis on word verification was
performed to estimate the UE of each recognized word. A

partial sentence generation mechanism, trained from the
recognized word sequences, was proposed to generate
possible combinations to model the insertion and deletion
errors obtained from an imperfect speech recognizer.

The dialog corpus was collected in three different
ways—WoZ, web search, and human-system interaction.
The WoZ method [30] was conducted for the collection
of spoken dialogs. In the WoZ method, a human “wizard”
mimics the functions of a system, either entirely or in part
without the need for building a fully functional product.
In web search, the restaurant information around National
Cheng Kung University (NCKU) campus was obtained
from the internet, including blogs, Google Map, and bul-
letin board systems, such as telnet://ptt.cc. We collected
the sentences and then recorded the corresponding
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Fig. 3 The WoZ framework for miscommunication corpus collection
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utterances. In human-system interaction, we traced the di-
alog processes, which were the essential materials for ma-
chine learning of a dialog manager. During the
interaction, the unsuccessful dialog data were also ob-
served, which resulted from imperfect ASR results.
Through manual labeling, the corpus was collected
by 7 males and 4 females and finally we obtained 118
dialogs consisting of 1980 sentences totally. Stanford
parser [35] was adopted to extract 682 syntactic rules.
The collected queries with 432 keywords were obtained
and classified into 26 semantic classes (SCs), including
system service, restaurant address, food information,
and greeting/ending, for semantic complexity reduc-
tion. For example, the sentences “JLF L /NEA & 4 A
4iMs” (“Does Bei-Nan-Shan sell beef noodles?”) and “—
B IR E B AS”  (“Does  San-Shan-Chio-Fu  sell
roast-pork rice?”) were transformed into “%BE1T B K
flE”  (“Does Restaurant Name sell Food”) and
regarded as an argument of the DS “Query for Info
(Name; Food).” Table 2 shows the predefined 37 Base
DSs with the format comprising a predicate and op-
tional argument derived based on the collected corpus.
For the representation of a DS, the topic is within the
parenthesis and the other words represent the predi-
cate. Different occurrence frequencies refer to the vari-
ations in user behaviors. The three most frequently
used DSs are “Appreciate,” “Query for Restaurant Given
(Food),” and “Goodbye”. The DS “Query for Restaurant
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Given (Food)” shows that many people like to query the
restaurant information; the others indicate that the
users generally used “Appreciate,” “Thank you,” and
“Goodbye” to end the dialog.

3 Miscommunication handling for Non-U and Mis-U
3.1 UE type determination

A Mandarin speech recognizer, using hidden Markov
model toolkit (HTK) [36, 37], was implemented to con-
struct the keyword recognizer and the possible outcomes
were analyzed for miscommunication handling. A 39-
dimensional feature vector consisting of 12-dimensional
Mel-frequency cepstral coefficients (MFCCs) and one-
dimensional log energy and their delta and acceleration
features were adopted as acoustic features.

Based on the tied tri-phone sets extended from In-
ternational Phonetic Alphabets (IPAs) [38], totally 602
models, each with 16 Gaussian mixtures, were con-
structed. SRILM [39] toolkit was used to obtain the
related language model consisting of 234 uni-grams,
670 bi-grams, and 560 tri-grams. Combining with the
language models, the constructed ASR system achieved
an average word accuracy of 87.6% for the experiments
in this study.

For Non-U and Mis-U detection, the proposed ap-
proach utilized the predefined UE types [30] to verify all
the candidates in a recognized word sequence. The z-

Table 2 The predefined 37 Base DSs with predicate and optional arguments

No. DS No. DS

1 System service consulting 20 Query for info (premium)

2 Query for restaurant (type) 21 Query for info (name; premium)
3 Query for restaurant (food) 22 Query for info (service)

4 Query for restaurant (type; evaluation) 23 Query for info (name; service)

5 Query for restaurant (food; evaluation) 24 Query for info (address)

6 Query for restaurant (address) 25 Query for info (name; address)
7 Query for restaurant (address; type) 26 Query for info (type)

8 Query for restaurant (address; food) 27 Query for info (name; type)

9 Query for restaurant (address; business hour) 28 Query for info (food)

10 Query for restaurant (address; service) 29 Query for info (name; food)

1 Query for restaurant (address; premium) 30 Query for info (price)

12 Query for restaurant (business hour) 31 Query for info (food; price)

13 Query for restaurant(service) 32 Query for info (name; food; price)
14 Query for restaurant (premium) 33 Appreciate

15 Query for info (name) 34 Good-bye

16 Query for info (phone) 35 Greeting

17 Query for info (name; phone) 36 Yes

18 Query for info (business hour) 37 No

19 Query for info (name; business hour)
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score [40] was further employed to normalize each can-
didate word’s score, defined as follows.

fw)-p(w)

where flw) is the recognition score of the word w, u(w)
is the mean recognition score of all instances of the
word w in the corpus, and o(w) is the standard deviation
of all instances of the word w in the corpus. The quan-
tity z represents the distance between the raw score and
the population mean normalized by standard deviation.
The quantity z is negative when the raw score is below
the mean, positive when above.

The type of UE is determined by comparing the nor-
malized recognition score of w using thresholds 8; and
0, defined in Eq. (2).

Accept , if z(w) > 6,
UE(w) = Uncertain , if ; < z(w)<6, (2)
Reject , if z(w) < 6,

where 6, is defined as two standard deviations below the
mean u(w) and 6, is the mean value u(w). Figure 4
shows the mapping between the distributions of the
verified words’ scores and the UE types.

3.2 Non-U recovery

As Non-U results from the rejection of some keywords
which will be filled in the semantic slots, when the aver-
age z-score of the keywords of an input utterance is
below threshold 6;, the SDS will identify the input utter-
ance as Non-U and thus ask the user to rephrase the
query in order to complete the semantic slots for
intention understanding. For example, in this task, the
SDS could respond to the user with the sentence “FJ A
RIS R —MS” (“Please say that again”) or “FRHEA N
PRERATE” (“T do not understand what you say”) to ask
the user to rephrase the query for Non-U recovery.
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3.3 Generation of partial sentences for Mis-U DS modeling
Even though misrecognized words may appear in any
position of a given utterance, the partial fragments of
the utterance passing the verification may have useful in-
formation for partial intention detection. Motivated by
the idea, we attempt to extract the partial information
from these parts to recover errors for DS modeling and
detection. The idea is based on the words with UE types
categorized as “Uncertain”. Two types of sentences with
uncertain recognition confidence or recognition errors
are used to characterize the DSs using partial informa-
tion of the recognized sentence.

(i) Sentences with potential recognition errors: The
sentences with some content words detected as
“Uncertain” are used to construct the partial
sentence trees for characterizing the DSs with
error-tolerant ability.

(ii) Sentences containing the words for repairing the
semantic slots which may be incorrectly accepted in
previous dialog turn: These sentences are used to
model the DSs with repair ability.

In this study, we assume a sentence can be represented
as a word sequence containing at least one functional
word (FW) and other optional words (OWs). FWs repre-
sent the predefined semantic classes or keywords, and
OWs are optional and could be omitted, e.g., “J (le)”
and “M (ba)”

S = OWl, OWz, veey OWI,FW, OW/+2, ceey OWNO+NF
(3)
PS; = OW*(FW ow*)" (4)

where NO is the number of OWs and NF is the number
of FWs. In Eq. (4), “” is the Kleene star and “+” is the
Kleene plus in a regular expression [41]. FW includes cer-
tain semantic classes to characterize a DS. These frag-
ments are extracted from the recognized word sequence
and used to simulate the imperfect recognition output. A
tree structure, named partial sentence tree (PST) as shown
in Fig. 5, is constructed by removing possible errors in the
recognized sentence for a certain DS [42].

The basic idea of a PST is to replace unreliable word
hypotheses with “Filler.” In the PST, the word with
“Reject” type was replaced with “Filler”; the word with
“Uncertain” type could be either retained or replaced
with “Filler”; and the word with “Accept” type will be
retained in the PST without replacement. As a result,
the constructed PST can cover the partial sentences con-
taining all combinations of potential recognition errors.
In a PST, a path from the root node to a leaf node repre-
sents a partial sentence. In Fig. 5, the misrecognized
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Fig. 5 An example for error-tolerant sentence generation based on partial sentence expansion

sentence “I wood like eat hot pot noodles today” was
converted into the partial sentence pattern “I wood like
eat Food today” after semantic class substitution. As the
word “wood” is misrecognized and is replaced with
“Filler,” eight partial sentences are generated to represent
the corresponding DS, such as “I eat Food today” or “I
like eat Food today.”

As all the partial sentences for each DS have been col-
lected, 28 Mis-U dialog states are generalized. These
partial sentences are used to train the DS detector for
Mis-U DS detection.

4 Dialog state detection
As Bohus described in [43], a misunderstanding occurs
if the response of the system mismatches the user
intention. In this situation, the user may deliver an utter-
ance with a correction, which is syntactically/semantic-
ally different from an ordinary response. These
sentences may include short sentences or sub-phrases
which imply “re-mention” or “negation,” such as “F&li|
W25 /R (1 just said/asked)” and “FeAN &/ (I did
not say/ask).” In Clark’s study [14], when misunder-
standing happens, people prefer to deliver a direct
phrase for correction. That is, the repair sentences fre-
quently focus on the misunderstood semantic slots.
Most phrases for the correction can only be mapped to
the desired DS that contains only one argument. Based
on these observations, historical information is crucial to
improve the performance of a dialog system [40, 44].
Figure 6 shows the block diagram of the proposed SDS.
An input utterance is decoded into a word sequence W
from an ASR. In miscommunication handling, each

recognized word in W is assigned a UE type based on the
z-score. When the average z-score of the input utterance
is smaller than a threshold value 6, the input utterance is
identified as Non-U. Otherwise, the recognized word se-
quence is used for dialog state detection. In this study,
Mis-U DSs can be further divided into two categories:
Error-tolerant DS and Repair DS. Error-tolerant DSs are
defined as the DSs in which some content words in the in-
put utterance are verified as “Uncertain,” and therefore,
the recognized word sequence is represented by the PST
to cover the potential errors. On the other hand, Repair
DSs are used to represent the sentences which are trying
to repair the semantic slots which had been incorrectly ac-
cepted in previous dialog turn. When the SDS identifies
the input utterance as Repair DS, the SDS will extract the
content words of the new input to repair the incorrect se-
mantic slots.

Because the confidence measures are not entirely reli-
able and the user’s language usage is often unexpected,
PST generation is utilized to expand the word sequence
W to several partial sentences in order to cover potential
recognition errors. Due to different language usages for
a query, the collected partial sentences for each prede-
fined DS is further clustered into several variant DSs
based on the k-means clustering algorithm using the lin-
guistic features of the partial sentences in the PST, in-
cluding word n-grams and syntactic rules obtained from
the Stanford parser.

This paper proposes a dialog state detection ap-
proach to the detection of Base DSs and Mis-U DSs
given the query utterance U and the dialog historical
information DS,,.
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DS* = argmax P(DSc|U,DSy) (5)
DSc€Qps

where DS’ represents the detected DS; Qpg represents
the set of DSs, including Base DSs and Mis-U DSs; and
DSc is the C-th DS in the DS set. Given a word se-
quence W =1,,....Wwa decoded from the given utterance
U, Eq. (5) is rewritten and derived based on Bayes’ the-
ory as follows.

DS* = argmaxy _P(DSc, WU, DS)

DSceQps
= argmax P(DSc,W|U,DSy)

DSceQps, WeQy
= argmax P(DSc|W,U,DSy)P(W [U,DSy)
DSceQps, WeQy

(6)

Suppose that both W and U deliver the same informa-
tion and the recognition result is independent of DSy,
the formula can be further rewritten as Eq. (7).

DS*~ argmax
DSceQps, WeQw
P(W|DSc)P(DSc)

P(W')

P(DSc|W )P(DSc|DSy)P(W|U)

P(DSc|DSy)P(W [U)

(7)

Here, P(DS¢) and P(W) have the same probability dis-
tribution for all DSs and thus can be ignored. Finally,

= argmax _
DSceQps, WeQy

the most likely DS* is determined according to the fol-
lowing equation:

DS* ~ argmax P(W|DSc )P(DSc| DSy)P(W|U)

DSceQps, Wey

(8)

where the probability P(W|DS¢) is defined as the DS
matching probability of the C-th DS with respect to the
input word sequence W, the probability P(DS¢|DS})
represents the conditional probability of the dialog
historical information; and the recognition likelihood
P(W|U) is obtained from the ASR.

4.1 Feature extraction and language information matrix
construction
In feature extraction, the n-grams and syntactic rules ex-
tracted by the Stanford parser are extracted as the linguis-
tic features. These features comprise a 1464-dimensional
n-gram feature vector and a 681-dimensional syntactic
rule feature vector for each utterance. An example for
the features of the query “Does this restaurant sell
noodles? (i ZX & A HANE?)” is given in Fig. 7.
Besides, Stanford parser based on probabilistic con-
text free grammar (PCFG) is utilized to extract the
syntactic rules.

Figure 8 shows the constructed matrix [45] for error-
tolerant DS detection. The co-occurrence relation
between the linguistic features and each of the DSs are



Wu et al. EURASIP Journal on Audio, Speech, and Music Processing (2017) 2017:9 Page 9 of 17
p
The features of the query “Does this restaurant sell noodles?
(EREWEA EHNE?)”
f;  does fis  does-this-restaurant
f,  this fi;  does-this-sell
wuri  f restaurant W fis  does-this-noodles

fa o sell fi1o  this-restaurant-sell

fs  noodles foo  this-restaurant-noodles

fs  does-this f>;  restaurant-sell-noodles

f,  does-restaurant f>,  Root-SINV

fs  does-sell fr3 SINV-VP

fo  does-noodles fos  VP-VBZ-does

wei fio  this-restaurant Syntactic f>s  SINV-NP

fi  this-sell Rule fo6  NP-DT-this

f1,  this-noodles f>  NP-NN-restaurant

fi13  restaurant-sell fos NP-NN-sell

fi1s  restaurant-noodles fro NP-NNS-noodles

fi1s  sell-noodles
| Fig. 7 A feature example for the query “Does this restaurant sell noodles? (ig X4 i1 & 415 7)"
estimated to construct a linguistic feature-by-DS (LFDS) B = (1=€m)P(f,,|DS,) (10)

matrix @ as shown in Eq. (9).

D51 DS2 DSN
S ¢1,1 ¢1,2 ¢1,N
D — f_z ¢2,1 2% ¢2,N 9)
Tl $us Buo Brin

where each row is one of the linguistic features; each
column represents a DS; ¢,,,, implies the importance of
the m-th feature f,, with respect to the n-th DS and is
defined as follows.

The term P(f,,|DS,) indicates the importance of f,, to
DS,, and is calculated as follows.

C(f,,, DS,
P(f,,|DS,) = M(f—)

> C(frDSn)

(11)

where C(f,,, DS,,) is the number of co-occurrences of f,,, and
DS,, in the corpus, and (1 - ¢,,) is an entropy-based measure
for authenticity of f,,, from the corpus and is regarded as a
weight to C(f,,, DS,). €, is obtained by Eq. (12).

| would like to eat
beef noodles today

DSy

Syl

Sp;*”
Doy -+ Phiky

Query for Restaurant (Food)

Diiky v+ Pl

L

UE Type

Query for info (Food)

M
Pk, - Dhky

Determination
I wud like eat hot
pot noodles today

r A
! Understanding Evidence | PSi = eat Food today

| Accept || PS,,, = | like eat Food today
i BUncertain i :

| MReject !

Fig. 8 An example of constructing the linguistic feature-by-DS (LFDS) matrix based on UE type

* F={W,, SR}
Fie1 = {Wiu1s SRyip}
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N
&y = — IO]éN Nc(fmaDSVl) lOg Nc(fm?DSVl)
N C(f,.05,) Y Clf,DS,)
p=1 p=1
(12)

4.2 Sentence clustering and linguistic feature transformation
During a dialog, users may deliver different utterances
even when querying the same information. There would
be various types of sentences belonging to the same dia-
log state. Different utterances which deliver the same
query information can be used to enhance the flexibility
for DS detection. The k-means clustering algorithm was
employed to cluster the query sentences. For each DS,
first, we manually select k unique sentences as the cen-
troids of the sentence clusters. This algorithm partitions
the sentences by maximizing the following function.

k* = arg max Z,il Zs Similarity(S;, Sk)
keK - i

(13)

Si=[81, 8.0 (14)
where S; represents the binary feature vector of the i-th
sentence; 0 equals 1 if the m-th f,, belongs to the i-th
sentence S; otherwise it is set to 0. The cosine similarity
measure was used.

Similarity(S;, Sk) = Si-Si

= el (15)
1[Il

The optimal number of clusters is empirically deter-
mined by using a cross-validation scheme. Through the
clustering process, each state can be modeled by a set of
sentence clusters DS, = {SnA’l,Sn’z, s Sw,kn}: where S, ¢,
represents the k,-th sentence cluster in DS,,. The exam-
ples of the sentence patterns are shown in Table 3.

The latent semantic analysis (LSA)-based technique
[45, 46] with entropy-based weighting scheme is
employed to model the importance between features
and DSs. In LSA, singular value decomposition (SVD)
is performed to decompose the @2 into the prod-

mxN
uct of the three matrices, T,,«,, Sy«,, and T, x with

Table 3 Examples of sentence patterns

Sentence DS
patterns

fi. b 6 fs o fo

Sentences

Do you provide its address information

Gt A PR AL R il B AHIES)

Then please give me its address

Query for info
(address)

fs, f5 f15 fis -7 Query for info

information (address)
RS & e I 2R

where is it fu fs fro Query for info
(EAEMB AT (address)
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r=min(m, N). The truncated SVD models most of the
significant underlying properties between linguistic fea-
tures and DSs. This transformation yields a space with
fewer dimensions of the row vectors, which is represented
as a DS characteristic matrix (DCM), (foff], where o< r.
4.3 Probability estimation

Given a sentence or word sequence W, it can be repre-
sented as a feature vector.

+Om)

where §,, is the quantity of the m-th linguistic feature
obtained from W. The DS matching probability
P(W|DS, ) is thus rewritten as

FwE(é\l, 52,... (16)

P(W|DS;)~P(Fy,|DS;) (17)

As each DS contains several sentence clusters, i.e.,
DS, = {Sn1,Sn2s s Sni, }» Eq. (17) is modified as

P(Fy|DS,) = ] miésP(F\;V |Snk,)P(Snk,|DSy)
n,Kn
(18)

The equation can be expressed in Fig. 9. The term S,
stands for the k,,-th cluster in the #-th DS; P(Sn,k,, |DS,,) is
a weighting factor estimated using Eq. (19), where C (S ,,‘,kn)
represents the number of sentences belonging to S, ..

ps,) = (St

C(Sun)

P (S, (19)

The cosine measure is employed to estimate the value
OfP(F\V|Sn,kW).

Sentence Clusters

Dialog States

Linguistic Features

Fig. 9 Graphical representation of Eq. (17)
A\
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Fy -Suk,

(20)

For estimating the dialog historical information, let
DS, denote the detected DS at the current turn (time
t), and the historical state information be represented
as DSy ={DS;1, DS;5,..., DS1}. In this study, we as-
sume that DS, depends only on the previous correct
DS confirmed by the speaker. A bi-gram model was
employed to compute the probability P(DS,DSg).
Combining with the word verification score as well as
the probability P(W|U), the most likely DS* can be
obtained.

4.4 POMDP-based dialog manager

Formally, a POMDP [47] is defined as a tuple {S, A, T, R,
O, Z, k, bg} where S is a set of states indicating the user’s
behavior; A is a set of system’s actions; T is the transition
probability P(s,|s,_1,a,_1); R stands for the reward r(s;
va;_1); O is a set of observations the system can obtain
from users; Z defines an observation probability P(o,|s,,
a;_1); k is a geometric discount factor where 0 <1 <1; by
is an initial belief state b, (S).

The POMDP operates as follows. At each time step,
a distribution over states is maintained by a belief
function “b” with initial belief state b,. We adopt b(s)
to indicate the probability of being in a specific state
s. Based on b, the system takes an action a € A, re-
ceives a reward r(s, ), and transfers to a new unob-
served state s’, where s’ depends only on s and a.
Then the system receives an observation o” € O
which is dependent on s” and a.

According to MDP assumptions, the latest state s,
is dependent on the last state s, ; and system action
a, ;. However, in POMDD, s, is not only dependent on
s;.1 and a,; but also the past user action. The new
observation allows the belief state » to be updated as
follows:

V()= P(s/|ol,a7b)
= k~P(0/|sl7 a) ZP(S/|S, a)b(s)

seS

(21)

Similar to MDP, a value function V'(b) is defined over
states for optimal strategy selection according to the
terms mentioned above and heuristic reward values:

Vi(b) =

max Zr(s, a)b(s) + yZp (0’|s’7 a)p (s’|s, a) b(s)V(b, (s’>>

(22)
Referring to [48], Eq. (22) can be approximated by
linear programming. The system will take action
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which leads to maximize V(b) over the latest belief
distribution.

In summary, the POMDP with error handling oper-
ates as follows. At each time step, a distribution over
states is maintained by a belief function “»” with ini-
tial belief state b,. We adopt b(s) to indicate the
probability of being in a specific state s. Based on b,
if system observes an error, it executes an error-
handling action a € A,,,, receives a reward r(s, a),
and transfers to a specific state s’ = Error state for
next observation from the user; Otherwise, the sys-
tem takes an action a € A, receives a reward r(s, a),
and transfers to a new unobserved state s’. Then sys-
tem receives an observation o° € O which is
dependent on s’ and a. Figure 10 illustrates the dia-
gram of POMDP-based DS detection with error
handling.

5 Experimental results and discussion

This work first addressed a simulated dialog corpus
with text and read speech for the analysis of miscom-
munication phenomena. UE type determination was
performed for Non-U and Mis-U detection followed
by partial sentence generation. The Base DSs, Mis-U
DSs, and Non-U were used to evaluate the proposed
approaches. The fivefold cross-validation method was
adopted; that is, 80% of the data were randomly se-
lected and used for training, and the remaining 20%
were used for testing.

5.1 Experiment on sentence clusters and LSA dimensionality
Generally, the sentence cluster number and the di-
mensionality in LSA are determined by the prediction
risk. The most commonly used criterion which ap-
plies linear estimators for regression was employed.
All the known analytical model selection criteria can
be written as a function of the empirical risk penal-
ized by the measure of the model complexity. In this
paper, the generalized cross-validation method [49]
was adopted as follows.

r(p) = (1-p)~

where p =h,/n; r is a monotonically increasing func-
tion of the ratio p with degrees of freedom /; and
the training sample size n. After sentence clustering,
a total of 494 clusters were obtained and used as an
alternative approach to statistically characterize the
sentence patterns. In determining the dimensionality
of the reduced LSA space, the number of dimen-
sions of the original feature vectors was 2145. This
LSA transformation mapped the feature dimensions
to the axes with large variations in the reduced LSA
space. As shown in Eq. (23), the coverage rate

(23)
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T=t T=t+1

Fig. 10 Diagram of POMDP-based dialog state tracking with error handling
.

R )

N \ 4 /
A A A
o o

T=t+2

defined as the ratio of the cumulative variances of
the selected features and the total features were
considered as a statistical evaluation criterion. An
alternative confidence level, ranging from 0.7 to
0.9, is often used. In this paper, the selection cri-
teria involve the computational complexity and the
coverage rate of the training corpus. A large num-
ber of features generally results in inconsistency in
modeling the state distribution. In determining
computational efficiency, a reduced dimension of
1716 at a coverage rate of 80% was selected to con-
struct the DCM and was applied in the following
experiments.

5.2 Experiments on LSA-based DS detection

Table 4 lists the evaluation results for the detection of
Base DSs and Mis-U DSs. In Table 4, the baseline system
for DS detection in this paper is based on keyword

Table 4 Comparison of DS detection performances for the
proposed approach using the verification data, the proposed
approach with/without sentence clustering, and manual
transcription

Average Detection Rate (%)
Keyword PA —-SC+VD PA-SC PA+SC Manual

spotting transcription
Base DS 50.16 65.30 7539 83.95 94.57
Mis-U DS 51.96 72.59 80.68 8146 92.69

PA — SC + VD proposed approach without sentence clustering using the
verification data, PA — SC proposed approach without sentence clustering,
PA + SC proposed approach with sentence clustering

spotting. For comparisons, the DS detection perfor-
mances for keyword spotting using the proposed ap-
proach with verification data, the proposed approach
with/without sentence pattern clustering, and manual
transcription are listed in Table 4. The experimental
results show that the proposed approach achieved the
detection rates of 83.95 and 81.46% for Base DS and
Mis-U DS, respectively.

Figure 11 illustrates the detection performance for
each individual DS (DS 1~37) using (1) keyword
spotting, (2) the proposed approach using the verifi-
cation data, and the proposed approach (3) without/
(4) with sentence clustering. Clearly, joint estimation
of LSA-based mapping between linguistic features and
DSs as well as sentence clustering outperformed the
individual approach and the traditional keyword-
spotting method. Furthermore, the proposed approach
can still show encouraging results, given the demand
for sentence-based recognition of speech in variant
dialog behaviors.

In this study, a linguistic feature-by-DS (LEDS)
matrix was constructed to describe the relationship
between the DSs and the user utterances. The linguis-
tic features along with the word-level n-grams and
syntactic rules were used to construct the LFDS
matrix. As keyword spotting has been a technique for
extracting targeted words in continuous speech se-
quence for years, and has also been verified as an ef-
ficient and effective method in SDSs [50], this study
used the keyword spotting-based system [51] as the
baseline to evaluate the proposed methods based on
word-level models.
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\

24 25 26 27 28 29
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™ The proposed approach without sentence clustering
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Fig. 11 Detection performance for each individual DS. a DS 1~19 and b DS 20~37 using (1) keyword spotting, (2) the proposed approach using
the verification data, and the proposed approach (3) without/(4) with sentence clustering

30 31 32 33 34 35 36 37

Figure 12 shows the error analysis on the detec-
tion of Base DSs and Mis-U DSs. For Mis-U DS, in
addition to the task domain keywords, such as
“beef-noodles” or “Chang-Rong Road,” the key sub-
phrases, such as “FRMIMIZ5R/F” (‘I just said/
asked”), “BALF/M” (“I did not say/ask),” were
also considered. These sub-phrases and their corre-
sponding syntactic rules are beneficial to the detec-
tion of Mis-U DSs. Therefore, the number of mis-
detections on Mis-U DSs was lower than that on
Base DSs.

5.3 Practical evaluation of dialog management

Following Young’s study [33], because of unreliable
speech recognition, the conversation states can never be
definitely known in a state-controlled process. The
POMDP-based mechanism for dialog management with
the proposed DS detection approach was constructed to
evaluate the feasibility. The observation is defined as the
score from DS detection.

P (o/ s, a) =P(DSy|DSy , a) (24)

where 4 is the system action, s is the state, and o is the
observation which is dependent on s” and a. If a DS re-
fers to Eq. (21) is rewritten as follows.

P(DS,|DSy/,a)=P(DSy|DSy) (25)

However, if the DS refers to an error-handling action,
the observation follows Eq. (24) because a reply from a
user is a causal action based on system confirmation.
Some rewards and their values, including (correct_-
by_sys, +20), (wrong_by_sys, -30), (terminate, +50),
(welcome_out_of_starting run, -100), (task_complete,
-15), (err_handle_correct_by_wizard, +20), (err_han-
dle_wrong_by_wizard, -20), (expected_from_wizard,
-100), and (unexpected_from_wizard, +100) were heur-
istically defined.

A set of the most commonly used response types
(RTs), including “Accept,” “Explicit Confirmation,” “Ask
Repeat,” “Notify,” “Re-prompt,” “Ask_for_Different_-
Way,” and “Replace” were adopted [52]. The response
types (RTs) for Non-U recovery and Mis-U repair were
generated by the following algorithm:
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If ERROR = Non-U then
If UE (KWi) = R then
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DSi1 then

2 RT = Explicit Confirmation
3 Else
RT = Ask Repeat or Notify or Re-prompt
4 iElse If ERROR = Mis-U then
5 If Mis-U DSt = Mis-U DSv.1 or Mis-U DS =

RT = ASK_in_diff Way

6 pred(DSi1) then
RT = Give Alter
Else
RT=Accept

To enhance the naturalness in the response of a di-
alog, more than one sentence template is provided for
each response type. That is, the recovery or repair re-
sponse was generated randomly by one response type
template. From lines one to three, a Non-U recovery
is provided for each condition. When the UE type of
the i-th keyword KW; is detected as “Reject,” the “Ex-
plicit Confirmation” is provided. If a rejection occurs,
one of the three RTs is provided, namely “Please re-
peat the utterance,” “I do not know the keyword re-
garding the food,” and “Please say the food again.”
From lines four to seven, a Mis-U repair aims to cor-
rect the undesirable values using new values or filling
new slots.

Else If pred (Mis-U DS) = pred(Mis-U DSt1) or pred(Mis-U DSy) =

The handling criterion follows three conditions. For
Mis-U, if the detected Mis-U DS at the current turn is
the same as Mis-U DS, ; or Base DS, ; in the previous
turn, indicating that the predicates and arguments of
Mis-U DS, are all identical to that of the Mis-U DS,
and Base DS, ;, this implies that the user provided the
same sentence, but the system continually misunder-
stood. The system should reply with ASK_in_diff Way,
namely, “Please repeat the utterance in a different way.”
or “Could you please speak concisely?” If the two values
KW* and KW' are received at the tth and the (¢ + d)-
th turns, respectively, and belong to the same i-th slot,
substitution is applied based on their UEs; otherwise,
Give Alter is employed for another confirmation. For

14

Error Frequency
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N
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10
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N

2 3 4

M Base DS
® Mis-U DS
Fig. 12 Error frequency on the detection of Base and Mis-U DSs
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line seven, DSs with different predicates indicate that
the task should be completed. Therefore, the system
regards this situation as Accept, which denotes another
normal task execution.

Figure 13 shows the evaluation results and the com-
parison of the average task success rates for 20 simulated
dialogs with three dialog strategies, ST1, ST2, and ST3,
defined as follows.

(1)ST1: Slot filling using keywords. The system
provides responses according to the recognized
keywords from the user.

(2)ST2: POMDP + Baseline LSA + normal actions.
Responses are based on POMDP by observing the
Base DSs.

(3)ST3: POMDP + LSA with error awareness +
handling strategy. Responses with error handling are
based on POMDP by observing the DSs with error
awareness from LSA.

Based on different recognition rate of ASRs, the number
of turns required to complete the task will be different.
Table 5 shows the comparisons of the average task success
rates, average turn number, and average time spent for the
20 simulated dialogs with three dialog strategies.

The criterion of the average task success rate is de-
fined as “Task; is executed correctly”, where Task; repre-
sents the j-th task in the i-th dialog and is dependent on
two situations:

(1) The task is successfully completed according to the
DS in the same dialog session.

(2) The task is initially completed inaccurately, but then
repaired with error handling, where these
procedures are in the same sub-dialog.

The criterion of average task success rate is defined as
follows:

= % 92.4
s
o 9
I

85
& 80.7
n 80
3
Q 75
3
L
@
= 65
© 60 58.9
g 55
>
< 5o

ST1 sT2 sT3

Dialog Strategy

Fig. 13 Evaluation results and comparison of the average task
success rates for 20 dialogs with three dialog strategies (ST1~ST3)
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Table 5 Experimental results for different dialog strategies

Strategy Average task success Average number of turns
rate (%) (average time spent)
ST 589 17.68 (4544 s)
ST2 80.7 1247 (3205 s)
ST3 924 13.73 (3529 9)
1 J ,
Count (Task} is completed successfully)
=1 j=1
RSuccess = 77
Count (Task})
i=1 j=1

(26)

For ST1, the dialog manager employed the ASR results
directly. Therefore, those with misrecognition lead to in-
correct slot fillings. For ST2, LSA alleviates the degraded
ASR results and leads to robust DS detection. Further-
more, a dialog manager with more reasonable POMDP
transitions achieved significantly superior results com-
pared to that of ST1. Finally, ST3 with error handling
obtained the best performance. In Table 5, the baseline
system for dialog strategy decision is ST1 in which the
dialog manager employed the ASR results directly. The
experiments demonstrate that the proposed approaches
not only improved dialog state detection rate but also
handled potential dialog errors.

We have shown an error-tolerant framework for de-
tecting DS from the developed corpus with 1980 utter-
ances in 118 dialogs and 37 defined Base DSs. While it
could be argued that the performance depends on the
user queries and the simulated environment, further
thought is that more training data and real observations
are needed to improve the detection performance. In
addition, as shown by the effects in the evaluation of
mis-detection error analysis, the behavior of dialog turns
as well as historical information plays important roles in
this task. However, for simplifying the computation, the
bi-grams was considered in the work. For investigating
the performance of an SDS, a dialog management strat-
egy and a robust model for inter-sentential analysis are
also needed.

6 Conclusions

This work examined robust DS detection based on error
awareness for miscommunication handling. The pro-
posed approach aims to model the dialog behavior and
detect the miscommunication situations by estimating
the probabilities of DS matching and inter-sentential
error correction. Mis-U awareness aims to avoid poten-
tial risk, such as out-of-condition dialog scenarios. The
methods for sentence clustering and error-tolerant sen-
tence generation could be applied to improve the
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detection performance. LSA-based DS modeling with
error awareness is also beneficial for DS detection. In
the experiments, the average detection rates for slot fill-
ing using keywords were 58.9 and 80.7% for POMDP +
Baseline LSA + normal actions. The proposed POMDP
+ LSA with error awareness + handling strategy
achieved 92.4% task completion rate.

Experimental results reveal that the error-aware mech-
anism is robust in detecting a DS of interest in compari-
son with the traditional keyword-spotting scheme. These
results also indicate that the proposed framework signifi-
cantly improved the degraded performance of DS detec-
tion resulting from the error-prone speech recognizer.
Besides, accented or noisy speech frequently appears in
spoken language and results in poor ASR accuracy for
the dialog system. From the evaluation point of view, an
ASR with fair/poor recognition performance happens to
be suitable to evaluate the ability of the proposed error-
aware dialog act detection method. In the future, we will
try to use a stronger ASR system (e.g., using the deep
neural networks) to evaluate the usefulness of the pro-
posed approach.
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