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Abstract

Various musical descriptors have been developed for Cover Song Identification (CSI). However, different descriptors
are based on various assumptions, designed for representing distinct characteristics of music, and often differ in scale
and noise level. Therefore, a single similarity function combined with a specific descriptor is generally not able to
describe the similarity between songs comprehensively and reliably. In this paper, we propose a two-layer similarity
fusion model for CSI, which combines the information carried by different descriptors and similarity functions
organically and incorporates the advantages of both early fusion and late fusion. In particular, in the early fusion, the
similarities obtained by the same descriptor and different similarity functions are integrated with the Similarity
Network Fusion (SNF) technique. Then, in the late fusion, the learning method selected by sparse group LASSO
algorithm is applied on each early fused similarity to obtain the probability that the corresponding song pair belongs
to the reference/cover pair. Lastly, the final fused similarity is achieved by averaging all the obtained probabilities.
Extensive experimental results on the music collection that is composed of samples provided by the
SecondHandSongs (SHS) verify that the proposed scheme outperforms state-of-the-art fusion based CSI schemes in
terms of identification accuracy and classification efficiency.

Keywords: Cover Song Identification (CSI), Music Information Retrieval (MIR), Early fusion, Late fusion, Two-layer
similarity fusion

1 Introduction
The explosion of musical data makes us face new chal-
lenges unthinkable two decades ago. For example, how to
retrieve different versions, performance, or renditions of
a previously recorded musical composition has become a
challenging problem [1]. Cover Song Identification (CSI)
can help in this regard. Its potential applications include
music right and licenses management and music cre-
ation aid. It has become an active research field in Music
Information Retrieval (MIR) over the past decades.
Since the cover version may be obtained in different

ways (such as remastering, instrumental, mashup, live
performance, acoustic, demo, remix, quotation, medley,
and standard [2]), it may differ from the original in tim-
bre, tempo, timing, structure, key, harmonization, lyrics
and language, and/or noise [3]. What remains almost
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invariable among the various cover versions are harmonic
progressions and melody evolution, which form the basis
of the most existing CSI descriptor extraction algorithms.
Among these descriptors, the Chroma (also called Pitch
Class Profiles (PCP)) [4] and its variations [5–13] are
the most widely-used descriptors for describing harmonic
progressions. In [9], the beat-synchronous chroma for two
tracks were cross-correlated, from the results of which the
sharp peaks indicating good local alignment were looked
for to determine the distance between them. It performed
the best in the audio CSI task contest of the 2006 Music
Information Retrieval Evaluation eXchange (MIREX) [14].
The Harmonic PCP (HPCP) descriptor proposed in [15]
shares the common properties of PCP, but since it is
only based on the peaks of the spectrum within a cer-
tain frequency band, it reduces the influence of noisy
spectral components further. It also takes the presence of
harmonic frequencies into account and is tuning indepen-
dent. The CSI scheme based onHPCP andQmax similarity
measure [5, 16] achieved the highest identification accu-
racy in the 2009 MIREX audio CSI task contest. In [10],
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the lower pitch-frequency cepstral coefficients were dis-
carded and the remaining coefficients were projected onto
chroma bins to obtain the Chroma DCT-Reduced log
Pitch descriptor. This descriptor achieved a high degree of
timbre invariance and, hence, outperformed conventional
PCP in the context of music matching and retrieval appli-
cations. In [13], to describe the similarity of singing voice
between cover versions of popular songs, two concepts
from psychoacoustics (time-varying loudness contour and
critical band) were combined with conventional PCP
descriptors organically to obtain Cochlear PCP (CPCP).
Besides harmonic progression, melody evolution can also
be used for the CSI task, for example, in [17–19], the main
melody (denoted as MLD in this paper) was extracted
for cover song retrieval. Recently, timbre-based descrip-
tors are studied for the CSI task [12, 20]. In [12], a
new descriptor, Modified Perceptual Linear Prediction
Lifted Cepstrum (MPLPLC), was obtained by modifying
the Perceptual Linear Prediction (PLP) model in auto-
matic speech recognition field through introducing new
research achievements in psychophysics and taking the
difference between speech and music into consideration
to make it suitable for music signal analysis. In addition,
different kinds of similarity functions, such as Cross-
Correlation (CC) [9], Dynamic Time Warping (DTW)
[11], Qmax [5], and Dmax [21], have been proposed for
measuring the similarity between descriptors.
However, since different descriptors are based on vari-

ous assumptions, designed for representing distinct char-
acteristics of music, and often differ in scale and noise
level, it is impossible to characterize all songs of differ-
ent genres with the same descriptor comprehensively, nor
it is possible to use only one similarity function to mea-
sure the similarity between descriptors reliably. To solve
this problem, some researchers began to study descriptor
or similarity fusion models for the CSI task [22–26] (see
Section 2). In this paper, we propose a two-layer similar-
ity fusion model for the CSI task aiming at enhancing the
identification accuracy and classification efficiency fur-
ther. The main contributions of this paper include (i) our
model, combining the advantages of two musical descrip-
tors and two similarity functions, generates more compre-
hensive and reliable similarity description between songs.
(ii) The sparse group LASSO algorithm [27] is included in
the proposed model to select the most suitable learning
method for the late fusion stage to ensure the fusion effi-
ciency and reduce the computational complexity as well.
(iii) By incorporating the advantages of early fusion and
late fusion organically, the proposed model outperforms
state-of-the-art fusion-based CSI schemes in identifica-
tion accuracy and classification efficiency. (iv) Through
projecting the ordinary similarity to probability-based
similarity in late fusion, the proposedmodel is flexible and
generic enough to include more musical descriptors and

similarity functions. (v) Extensive experiments have been
conducted on a music collection that is composed of 3364
samples provided by SecondHandSong (SHS)1 to verify
the efficiency of the proposed model in comparison with
other CSI schemes with or without similarity fusion.

2 Information fusion for CSI
Information fusion consists of combining information
originating from several sources in order to improve
decision making [28]. This technique is rather com-
monly adopted in content-based MIR field. For instance,
in [29], different descriptors were combined to improve
genre classification accuracy. For the CSI task, informa-
tion fusion should be a suitable idea because it is easier
to capture the tonal similarity between tracks by differ-
ent kinds of descriptors and similarity functions. In fact,
some recent studies have suggested that version detec-
tion can be improved through the combination of dif-
ferent descriptors [30] or different similarity functions
[24–26, 31, 32]. Generally, the information fusion in the
CSI field can be performed in four levels: feature, descrip-
tor, similarity, and decision.
The feature-level fusion is the simplest way of fusion. In

[30], frames from the samemoment in time were taken for
both chroma and melody, and then, they were combined
by creating a tuple of note or chord. Finally, to reduce
the number of tuples, four different representations were
proposed with different alphabet sizes. However, fusion at
this level may not get desired results in practice because
(i) independent analysis of different features often lead
to inconsistent conclusion that are hard to integrate (for
example, two tracks may be judged as the reference/cover
pair by one feature and the reference/non-cover pair by
another feature) and (ii) preselecting a set of features leads
to biased analysis. So, in [30], the improvement achieved
by the fusion scheme is limited in contrast to that achieved
by chord-based representations.
The descriptor-level fusion is the strategy that com-

bines different descriptors into one descriptor vector. The
simplest way is to concatenate or merge descriptors. In
[30], the chord descriptor and the melody descriptor were
fused by concatenating or merging them. The problems
resulted from this kind of fusion include the follow-
ing: First, when performing descriptor binding of differ-
ent nature/domains, normalization techniques should be
applied first to standardize all descriptor values in the
same range, which has been a great challenge for the
machine learning community [33]. Second, concatenation
or merging may result in the “curse of dimensionality”
problem, which means the dimension of the descriptor
space increases in such a way that the available train-
ing instances become indistinguishable and not enough
for allowing the definition of a good decision hyperplane
[33]. Third, concatenation or merging further dilutes the



Chen et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2017) 2017:12 Page 3 of 15

already low signal-to-noise ratio in each descriptor. So,
as shown in [30], this kind of fusion may not result in
satisfactory results.
The similarity level fusion is based on the strategy

known as mixture of experts. The similarity between two
tracks is obtained by calculating individual pairwise dis-
tance for each descriptor and then combining them into
a final pairwise distance value. Several similarity level
fusion schemes have been proposed for the CSI task. In
[22], the main melody and accompaniment of the music
were extracted first. Then, the maximum value of the
similarities based on main melody, accompaniment, and
mixture signal separately was taken as the final similar-
ity. In [24], the task of detecting cover versions was posed
as a classification problem. The similarities based on dif-
ferent descriptors and corresponding similarity functions
were concatenated as a feature vector, which was then
used to train a classifier for determining whether the
corresponding two tracks belong to the reference/cover
or reference/non-cover pair. Since only chroma descrip-
tors were considered, the fused similarity only accounted
for the same musical facet, the harmony. To solve this
problem, in [25], the similarities based on three related
yet different descriptors (harmony, melody, and bass line)
were fused with the power of a standard classification
approach similar to [24]. In [31], the fusion of different
similarities was achieved by projecting all similarities in a
multi-dimensional space, where the dimensionality of this
space was the number of similarities considered. In [26],
the similarities based on different descriptors and corre-
sponding similarity functions were obtained first. Then,
the Similarity Network Fusion (SNF) technique [34] was
used to fuse the similarity communities based on each
similarity. Finally, the track-by-track similarities in the
fused similarity network were adopted for version identi-
fication. Due to the merits of SNF technique, this fusion
scheme could reduce the noise existing in each similarity
network and integrate the common as well as comple-
mentary information caught by different descriptors and
corresponding similarity measures.
Finally, the fourth strategy for fusion is known as

decision-level fusion. The CSI scheme proposed in [35]
belongs to this kind of fusion. First, the similarities based
on different descriptors were adopted to train the clas-
sifier. Then, the decision made by each classifier was
integrated with standard rank aggregation. This fused
scheme achieved an increase of up to 23.5% identification
accuracy compared to single classifiers.
According to the stage at which the fusion is performed,

the above fusion schemes can be classified into early
fusion and late fusion. Early fusion happens before the
classification step. The feature-level, the descriptor-level,
and the similarity-level fusions belong to early fusion. The
main advantage of early fusion is that all the features can

be “seen” by the classifier and only one learning phase is
required [36]. However, the performance of early fusion
will be greatly affected by including features of little con-
tribution. On the other hand, the late fusion approach
operates at the decision level [37]. When compared to
early fusion, late fusion is easier to perform, but it can-
not learn the correlation among features. Usually another
learning procedure is needed to combine these classifi-
cation outputs. To avoid the over-fitting problem, simple
mean, which can yield better or at least comparable results
as those training another classifier for fusion, can be
adopted [36].
In this work, we propose a two-level fusion model,

which integrates the advantages of both early fusion and
late fusion organically, for the CSI task. Concretely, in
the early fusion, the similarities based on a specific musi-
cal descriptor (HPCP [15] or MLD [38]) by two different
similarity functions (Qmax [5] and Dmax [21]) are fused
with the SNF technique. In the late fusion, one optimal
classifier, which is selected by the sparse group LASSO
technique [27], is performed on each early fused sim-
ilarity to obtain the probability that the corresponding
tracks belong to the reference/cover pair. Then, the mean
value of these probabilities are obtained as the final fused
similarity.

3 Proposed CSI scheme
The block diagram of the proposed scheme is shown in
Fig. 1.

3.1 Similarity calculation: Qmax and Dmax
The Qmax [16] similarity measure tries to calculate
the length of the longest time segment in which two
sequences fi and fj exhibit similar patterns. First, a Cross
Recurrence Plot (CRP), denoted as c, is generated by set-
ting its element cp,q to “1” when there exists recurrence
between fi(p) and fj(q) and “0” otherwise. More details
about the CRP calculation can be found in [5]. In the
CRP, the length of the diagonal pattern of “1” indicates
the degree of similarity between these two sequences.
However, as shown in [32], due to the possible alignment
constraints in the Qmax (see Fig. 2a), it fails to identify the
cover versions when the CRP includes such phenomenon
as shown in Fig. 3a, where there is serious short disruption
of diagonal. This phenomenon may be resulted from the
skip of some chords or part of the melody when perform-
ing the cover version. To solve this problem, we modified
the Qmax by changing the possible alignment constraints
from Fig. 2a, b to obtain a newmeasure, called Dmax [21].
As shown in Fig. 3b, c, for the case shown in Fig. 3a, the
Dmax performs better than the Qmax.
In the Qmax and Dmax measures, first, a cumulative

matrix (denoted as o and ô, respectively) is generated
based on c with Eqs. (1) and (2), respectively.
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Fig. 1 Block diagram of the proposed CSI scheme

op,q =

⎧
⎪⎪⎨

⎪⎪⎩

max{op−1,q−1, op−2,q−1, op−1,q−2} + 1, if cp,q = 1
max{0, op−1,q−1 − γ (cp−1,q−1),
op−2,q−1 − γ (cp−2,q−1),
op−1,q−2 − γ (cp−1,q−2)}, if cp,q = 0

(1)

ôp,q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{ôp−1,q−1, ôp−2,q−1 + cp−1,q,
ôp−1,q−2 + cp,q−1,
ôp−3,q−1 + cp−2,q + cp−1,q,
ôp−1,q−3 + cp,q−2 + cp,q−1} + 1, if cp,q = 1
max{0, ôp−1,q−1 − γ (cp−1,q−1),
ôp−2,q−1 + cp−1,q − γ (cp−2,q−1),
ôp−1,q−2 + cp,q−1 − γ (cp−1,q−2),
ôp−3,q−1 + cp−2,q + cp−1,q − γ (cp−3,q−1),
ôp−1,q−3 + cp,q−2 + cp,q−1 − γ (cp−1,q−3)}, if cp,q = 0

(2)

In both Eqs. (1) and (2), γ is calculated with Eq. (3).

γ (z) =
{

γo, if z = 1
γe, if z = 0 (3)

where γo and γe are the penalty for a disruption onset and
a disruption extension, respectively.

Then, the normalized Qmax distance and Dmax dis-
tance, denoted as dQ(i, j) and dD(i, j), can be respectively
calculated with Eqs. (4) and (5).

dQ(i, j) = √
Nj/max(op,q) (4)

dD(i, j) = √
Nj/max(ôp,q) (5)

where Nj is the length of fj.
Suppose the track collection is composed of N tracks

and f(k)i , k = 1, · · · ,K is the k-th kind of descriptor of
i-th track. For f(k)i and f(k)j , their similarities based on
the Qmax function and Dmax function are denoted as
d(k)
Q (i, j) and d(k)

D (i, j), respectively.

3.2 Early fusion: SNF
The early fusion is realized by the SNF technique [34].
With any music descriptor, the track similarity networks
based on Qmax and Dmax are represented as graphs
GQ

(
V ,EQ

)
and GD (V ,ED), respectively. The vertices V

correspond to the track collection, and the edges EQ
(or ED) are weighted by similarity based on Qmax (or
Dmax). To compute the fused similarity matrix from the
Qmax and Dmax matrices, the full kernels (denoted as

Fig. 2 Possible alignment constraints in the a Qmax and b Dmax
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Fig. 3 a The CRP for the song “Addicted to Love” as performed by Tina Turner and Robert Palmer and the corresponding cumulative matrix
obtained by the b Qmax and c Dmax

PQ and PD) and the sparse kernels (denoted as QQ and
QD) are defined on the vertex set V (see Eqs. (6)–(9)),
respectively.

PQ(i, j) =
{ dQ(i,j)

2
∑

k �=i dQ(i,k) , j �= i
1/2, j = i

(6)

PD(i, j) =
{ dD(i,j)

2
∑

k �=i dD(i,k) , j �= i
1/2, j = i

(7)

LetNi,Q (orNi,D) represent a set of i-th track’s neighbors
including itself in GQ (or GD). For the given graph GQ (or
GD), the K Nearest Neighbors (KNN) is used to measure
local affinity as Eq. (8) (or Eq. (9)).

QQ(i, j) =
{ dQ(i,j)

∑
k∈Ni,Q dQ(i,k) , j ∈ Ni,Q

0, otherwise
(8)

QD(i, j) =
{ dD(i,j)∑

k∈Ni,D dD(i,k) , j ∈ Ni,D

0, otherwise
(9)

LetPQ,t=0 = PQ be the initial status matrix at t = 0. The
similarity matrix based on Qmax measure is iteratively
updated with Eq. (10). After each iteration, normalization
(Eq. (8)) is performed on PQ,t+1. PD,t+1 is obtained by the
same way.

PQ,t+1 = QQ × (
PD,t

) × (
QQ

)T (10)

After t steps, the overall status matrix, denoted as P, is
obtained with Eq. (11).

P = (
PQ,t + PD,t

)
/2 (11)

For the k-th descriptor, f(k), the corresponding fused
similarity network is denoted asG(k)(V ,E(k)). The weights
of each edge in G(k)(V ,E(k)) are concatenated to generate
the k-th early fused similarity vector, denoted as X(k) =
[X(k)

1 , · · · ,X(k)
N2 ]T .

3.3 Late fusion and group LASSO algorithm
First, for each descriptor, different learning methods,
denoted as U = {U1, · · · ,UM}, are performed on the
early fused similarities X(k)

n , n = 1, · · · ,N2. For X(k)
n ,

the probability that it belongs to the reference/cover
pair obtained by different learning methods are concate-
nated together to obtain X̂(k)

n =[ X̂(k)
1n , · · · , X̂(k)

Mn]. Then,
X̂(k)
n , n = 1, · · · ,N2 combined with their labels (ref-

erence/cover or reference/non-cover) are used to train
the group LASSO [27] algorithm to select the most effi-
cient learning method for X(k). It should be noted that
for HPCP or MLD descriptor, the early fused similari-
ties are used to train almost all learning methods pro-
vided byWeka with default parameters, respectively. Only
BayesNet (BN), NaiveBayesUpdateable (NBU), RBFNet-
work (RBFN), DecisionTable (DT), and J48 methods yield
good results. So, the group LASSO algorithm is then
applied to the results obtained by each of these five
learning methods to select the most efficient one for
each descriptor. For each kind of descriptor, the proba-
bility obtained by each learning method is regarded as
one group. Finally, assuming that for early fused similar-
ities X(HPCP)

n and X(MLD)
n , the corresponding probability-

based similarities obtained by the most efficient learning
method are X̃(HPCP)

n and X̃(MLD)
n , respectively; the final

fused similarity is obtained by taking the mean of X̃(HPCP)
n

and X̃(MLD)
n .
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As shown in [39], the idea of group LASSO is to incor-
porate amixed-norm regularization on logistic regression.
It solves the optimization problem shown in Eq. (12).

β̂λ = argmin
β ,α

∑

i
log

(
1 + exp

(
−yi

(
βTxi + α

)))

+ λ

G∑

g=1
‖βIg‖2

(12)

where xi is the ith training sample, yi is the ground truth
label ({0, 1}), and α is the intercept. ‖ · ‖2 refers to the
�2 norm. β is composed of G predefined non-overlapping
groups, and Ig is the index set of the gth group. Param-
eter λ controls the level of sparsity of the resulting
model.
To select the most efficient learning method for the

early fused similarities, the results of each learning meth-
ods (the probabilities that the similarities belong to the
reference/cover pairs) are concatenated together to form
the vector xi in Eq. (12). Then, for a fixed λ, Eq. (12)
is solved to get β̂λ. The learning method correspond-
ing to the largest β̂λ value is considered as the most
efficient one.

4 Experiments
All the descriptors, similarity functions, and learning
methods adopted in this work are listed in Table 1.

4.1 Datasets
The dataset, denoted as DB3364, is composed of tracks
included in the test set of the SHS dataset. There are 1212
original tracks and 2152 cover versions. All the audio files
are obtained by songs on our own. The average number of
tracks in each cover set is 2.76, ranging from 2 to 172. Fur-
thermore, DB3364 is split into one training set, denoted as

Table 1 The descriptors, similarity functions, and learning
methods used

Abbreviations Descriptions

Descriptors HPCP Harmonic Pitch Class Profiles [15]

CPCP Cochlear Pitch Class Profiles [13]

MLD Melody [19]

BSC Beat-Synchronous Chroma [9]

Similarity functions Dmax The Dmax similarity measure [21]

Qmax The Qmax similarity measure [5]

Learning methods BN BayesNet

RBFN RBFNetwork

J48 J48

DT DecisionTable

NBU NaiveBayesUpdateable

Table 2 Cover song datasets used

Datasets Num of tracks Num of
cover sets

Ave. num of tracks in
each cover set

DB801 801 273 2.93

DB799 799 283 2.82

DB802 802 279 2.87

DB962 962 377 2.55

DB801, and three testing sets, denoted as DB799, DB802,
and DB962, respectively. These datasets are not overlap-
ping, and their specific information is listed in Table 2.
It should be noted that we did not use the descriptors
provided by the SHS dataset directly. The HPCP, MLD,
CPCP, and Beat Synchronous Chroma (BSC) descriptors
were extracted from the audio with the algorithms shown
in [13, 15, 19], and [9], respectively.

4.2 Evaluation measures
With the final similarity obtained by each CSI scheme,
an ordered list of results for each given query can be
obtained. Then, the identification accuracy can be eval-
uated using standard information retrieval metrics, the
mean of average precision (MAP)[5], Mean averaged
reciprocal rank (MaRR)[40], total number of covers iden-
tified in top 10 (TOP10), and mean rank (MR) of first
correctly identified cover.
In addition, the final fused similarities are adopted to

train a classifier (BayesNet classifier provided by Weka3
with default parameters), which can then be used to
estimate whether any two tracks belong to the refer-
ence/cover pair or not. Assume the obtained confusion
matrix is as Table 3, where class A and class B denote the
reference/non-cover and reference/cover class, respec-
tively. Then, three different parameters, True Negative
Rate (TNR), Classification Accuracy (CA), and Average
Classification Accuracy (ACA), are calculated according
to Eqs. (13)–(15) to measure the classification efficiency.
The ACA is adopted to avoid that the evaluation of clas-
sification results are biased towards the majority class
(the reference/non-cover class in this work). Since 10-fold
cross-validation protocol is adopted, all reported results
are in terms of mean TNR, mean CA, and mean ACA.

TNR = TN/(FN + TN) (13)

Table 3 Confusion matrix

Predicted

Class A Class B

Real Class A TP FP

Class B FN TN
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CA = (TP + TN)/(TP + FP + FN + TN) (14)

ACA = (TN/(FP + TN) + TP/(TP + FN))/2 (15)

4.3 Experimental results
To illustrate how the proposed model behaves in easy
and hard conditions, we manually choose concrete cover
sets where one descriptor performs better than the other
and where both descriptors perform well. The infor-
mation of the tracks included in this study is listed in
Table 4. The six tracks are used both as the queries and
the targets. The corresponding 6 × 6 distance matrices
obtained by HPCP-Dmax, HPCP-Qmax, 1L-HPCP-QD
(early fusion based on HPCP descriptor), MLD-Dmax,
MLD-Qmax, 1L-MLD-QD (early fusion based on MLD
descriptor), 2L-HPCP-Best1 (two-layer fusion when the
BayesNet classifier is only applied on HPCP-QD similar-
ity), 2L-MLD-Best1 (two layer fusion when the BayesNet
classifier is only applied on MLD-QD similarity), and 2L-
Best1 (two-layer fusion when the BayesNet classifier is
applied on both HPCP-QD and MLD-QD similarities)
are shown in Fig. 4a–i, respectively. The cells corre-
sponding to the query/cover pairs are marked with blue
boxes.
The experimental results shown in Fig. 4 demonstrate

that (i) by comparing the results shown in Fig. 4a, b, d, e,
we can see that the HPCP descriptor works better than
the MLD descriptor for No. 1 cover set, the MLD descrip-
tor performs better than the HPCP descriptor for No.
3 cover set, and both HPCP and MLD descriptors per-
form well on No. 2 cover set. The tracks in the No. 1
cover set are two different versions of “Something Won-
derful”. These two tracks are mainly composed of the
sound of stringed and wind instruments, and they include
no prominent melody. In this case, the HPCP descrip-
tor, which can describe the harmonic progression very
well, performs better than MLD descriptor. The No. 3
cover set is composed of two versions of “Never Can
Say Goodbye” performed by different singers. Both of
them include main melody performed by female singer,
and the accompaniment in these two tracks is weak

Table 4 The tracks in the cover sets

Cover sets Title of the tracks Track ID Artists

No. 1 Something Wonderful 1 Carly Simon

2 Amel Larrieux

No. 2 Spooky 3 The Puppini Sister

4 Atlanta Rhythm
Section

No. 3 Never Can Say Goodbye 5 Isaac Hayes

6 Gerald Albright

when compared with the vocal sound. In this circum-
stance, the MLD descriptor performs better than the
HPCP descriptor. Since the two tracks in No. 2 cover set
include strong accompaniment and predominant melody,
both the HPCP and MLD descriptors perform well on
it. (ii) By comparing the results among Fig. 4a–c and
those among Fig. 4d–f, we can see that when the sin-
gle similarity (HPCP-Dmax in this case) can not distin-
guish the reference/cover pair (No. 3 cover set in this
case), the early fused similarity (1L-HPCP-QD in this
case) can perform very well, and when the two single
similarity measures (MLD-Dmax and MLD-Qmax in this
case) perform well on No. 1 cover set, the early fused
similarity (1L-MLD-QD in this case) performs better on
it. The latent reason is that the early fusion method
may utilize the complementarity between the Qmax and
Dmax in finding alignments. (iii) As shown in Fig. 4g–i,
when compared with 2L-HPCP-Best1 or 2L-MLD-Best1-
based schemes, 2L-Best1 achieves global optimum on
three cover sets. The possible reason is that the late
fusion method may fuse the complementarity between
the two early fused similarities (1L-HPCP-QD and 1L-
MLD-QD in this case) efficiently. (iv) By comparing the
results in Fig. 4 c, f, i, we can see that when compared
with the early fusion methods (1L-HPCP-QD and 1L-
MLD-QD in this case), the late fusion may enlarge the
distance between the intro-distance and inter-distance
further, which may result in a higher identification
accuracy.

4.3.1 Efficiency of early fusion
To test the validity of the early fusion, the identification
accuracy (in terms of MAP, MaRR, TOP10, and MR) and
classification efficiency (in terms of TNR, CA, and ACA)
obtained before and after the early fusion are compared in
Fig. 5, where HPCP+QD [32] (or MLD+QD, CPCP+QD,
and BSC+QD) denotes the early fused similarity based
on HPCP+Qmax [5] (or MLD+Qmax, CPCP+Qmax, and
BSC+Qmax) measure andHPCP+Dmax (orMLD+Dmax,
CPCP+Dmax, and BSC+Dmax) measure. We observe
that the performances (in terms of all the evaluation
measures except for MR) achieved by the early fusion
scheme are much better than those of the fused objects
(including the scheme proposed in [5]), which verifies
that these two similarity measures (Qmax and Dmax)
carry complementary information. As shown in [34], the
early fusion scheme can integrate this information effi-
ciently because (i) the low-weight edges in each simi-
larity network are cut, which helps to reduce the noise
and (ii) the high-weight edges present in one or two
networks are added to the other and the low-weight
edges supported by both networks are retained depend-
ing on how tightly connected their neighborhoods are
across networks, which helps to integrate common as
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a b c

d e f

g h i

Fig. 4 Distance matrices obtained by CSI schemes with or without similarity fusion. The actual values are subtracted by 1 to make the visual
comparison easier. a HPCP-Dmax. b HPCP-Qmax. c 1L-HPCP-QD. dMLD-Dmax. eMLD-Qmax. f 1L-MLD-QD. g 2L-HPCP-Best1. h 2L-MLD-Best1.
i 2L-Best1

well as complementary information across the similarity
networks.

4.3.2 Learningmethod selection
The averages of the magnitudes of regression coeffi-
cients obtained by the group LASSO for each learning
method and descriptor considered are plotted in Fig. 6.
It can be seen that across the learning methods we
choose, the BayesNet is the most efficient for both HPCP
and MLD.
In addition, we compare the performances obtained

after late fusion under different learning method

combinations in Fig. 7, where 2L-Best1 denotes the
combination of the classification results of the top one
learning method for HPCP+QD similarity and that for
MLD+QD similarity, the 2L-Best2 means the combina-
tion of the classification results of the top two learning
method for HPCP+QD similarity and those for MLD+QD
similarity, and so on. We observe that (i) different learn-
ing method combinations obtain the similar MAP and
MaRR performances on all four datasets and 2L-Best1
performs more stably across different datasets than the
other combinations. (ii) 2L-Best1 achieves consistently
better performances, in terms of TOP10, TNR, and
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a b

c d

e f

g
Fig. 5 Comparison of the identification accuracy in terms of aMAP, bMaRR, c TOP10, and dMR and the classification efficiency in terms of e TNR,
f CA, and g ACA before and after early fusion on different data sets. QD early fusion of the Qmax and Dmax-based similarities with SNF

ACA, than the other combinations on all four datasets.
(iii) In Fig. 7d, the lines with circle, triangle, and square
overlap, which means that 2L-Best1 scheme performs
similar as 2L-Best2 or 2L-Best3 scheme and better than

2L-Best4 or 2L-Best5 scheme in term of MR. (iv) As
shown in Fig. 7f, 2L-Best1 performs worse than the
other four combinations, but the gap is very small (about
0.01%). In general, 2L-Best1 combination performs much
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a b

Fig. 6 Averages of the magnitudes of regression coefficients across the learning methods included for a HPCP and bMLD

better than the other four combinations especially when
computational complexity is considered. So, 2L-Best1 is
adopted to obtain the final fused similarity. Specifically,
the mean of the probability-based similarities obtained
by the BayesNet classifier for HPCP-QD similarity
and for MLD-QD similarity is taken as the final fused
similarity.

4.3.3 Complementarity between different descriptors
Another important question is whether the information
carried by different descriptors is complementary. To
answer this question, the performances obtained by 2L-
HPCP-Best1 and those achieved by 2L-Best1 combination
are compared in Tables 5 and 6. We observe that 2L-Best1
scheme performs better than 2L-HPCP-Best1 scheme
across all the evaluation measures included on all four
datasets except for the CA performance on DB802, where
the gap is less than 0.005%. So it is verified that the
MLD-QD and HPCP-QD similarities carry complemen-
tary information. As shown in Tables 5 and 6, the similar
conclusion can also be obtained for the CPCP-QD and
BSC-QD similarities. Therefore, the combination of dif-
ferent descriptors can help to improve performances.

4.3.4 Comparisonwith state-of-the-art fusion based CSI
schemes

In these experiments, the performances of eight fusion
techniques are compared on all four datasets. They
are two-layer fusion with best learning method (2L-
Best1), two-layer fusion when HPCP is considered (2L-
HPCP-Best1), early fusion based on HPCP descriptor
(1L-HPCP-QD) [32] and on MLD descriptor (1L-MLD-
QD), the schemes proposed in [24, 26], and [31], and
the Particle Swarm Optimization (PSO) based one.
In PSO based scheme, the similarities used in this
work, HPCP+Qmax, HPCP+Dmax, MLD+Qmax and

MLD+Dmax, are weighted and added together, and the
optimal weight combination is sought by PSO technique
[41]. For the fusion schemes in [26] and [24]4, the fused
objects are those provided in [26] and [24], respectively.
Unfortunately, we can not obtain the implementation of
the pitch salience function used in [31], so the fused
objects for [31] are those used in this work.
The comparison results in terms of identification accu-

racy and classification efficiency are shown in Tables 5
and 6, respectively. It can be seen that: i) For HPCP-MLD
(or BSC-CPCP) based combination, 2L-Best1 scheme per-
forms much better than 1L-HPCP-QD [32] (or 1L-BSC-
QD) or 1L-MLD-QD (or 1L-CPCP-QD) scheme in terms
of all evaluation measures on all four datasets except for
CA on DB802 (where the gap is smaller than 0.005%),
which verifies the necessity and validity of the late fusion.
ii) For HPCP-MLD based combination, 2L-Best1 scheme
performs much better than state-of-the-art fusion based
CSI schemes [24, 26, 31] and PSO based one in terms
of identification accuracy and classification efficiency on
all four datasets, except for the TNR on DB962, where
PSO scheme achieves higher TNR at the sacrifice of much
lower CA. iii) For BSC-CPCP based combination, 2L-
Best1 scheme performsmuch better than the fusion based
CSI scheme in [31] and PSO based one in terms of iden-
tification accuracy and classification efficiency on all four
datasets. However, in some cases, 2L-Best1 scheme per-
forms worse than the fusion based CSI schemes in [24, 26].
The possible reason is that the number and the type of the
descriptors fused in [24, 26] are different from those used
in BSC-CPCP based combination.
As shown in Tables 5 and 6, when the similar experi-

ments are applied on the CPCP- and BSC-based similar-
ities, the similar results are obtained. It should be noted
that since there are too many reference/non-cover pairs in
the training set, the classifier would determine that almost
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e f

g
Fig. 7 Comparison of identification accuracy, in terms of aMAP, bMaRR, c TOP10, and dMeanRank, and classification efficiency, in terms of e TNR,
f CA, and g ACA, obtained after late fusion based on different learning method combinations on different datasets
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Table 5 Identification accuracy achieved by different descriptor combinations

Combination of HPCP and MLD Combination of BSC and CPCP

MAP MaRR TOP10 MR MAP MaRR TOP10 MR

DB801 2L-Best1 0.6064 0.4748 1394 52 2L-Best1 0.5563 0.4396 1251 72

2L-HPCP-Best1 0.5898 0.4628 1249 61 2L-BSC-Best1 0.5394 0.4255 1233 88

1L-HPCP-QD [32] 0.5941 0.2549 1329 61 1L-BSC-QD 0.5415 0.2344 1207 78

1L-MLD-QD 0.2825 0.1287 663 136 1L-CPCP-QD 0.1776 0.0887 403 174

[26] 0.5393 0.2358 1138 84 [26] 0.5393 0.2358 1138 84

[24] – – – – [24] – – – –

PSO 0.4899 0.2201 1030 77 PSO 0.4732 0.2115 1031 86

[31] 0.3939 0.1842 859 77 [31] 0.3242 0.1553 763 90

DB799 2L-Best1 0.6105 0.4901 1326 50 2L-Best1 0.5280 0.4419 1105 78

2L-HPCP-Best1 0.5824 0.4676 1268 57 2L-BSC-Best1 0.5050 0.4204 1049 90

1L-HPCP-QD [32] 0.5873 0.2573 1266 56 1L-BSC-QD 0.5080 0.2286 1041 83

1L-MLD-QD 0.2922 0.1362 605 140 1L-CPCP-QD 0.1693 0.086 324 189

[26] 0.5418 0.2313 1122 78 [26] 0.5418 0.2313 1122 78

[24] – – – – [24] – – – –

PSO 0.5025 0.2280 1058 70 PSO 0.4491 0.2165 8671 99

[31] 0.4281 0.2009 894 67 [31] 0.2963 0.1460 644 96

DB802 2L-Best1 0.5764 0.4668 1233 52 2L-Best1 0.5461 0.4469 1169 67

2L-HPCP-Best1 0.5609 0.4515 1208 66 2L-BSC-Best1 0.5166 0.4210 1143 96

1L-HPCP-QD [32] 0.5635 0.2469 1201 55 1L-BSC-QD 0.5234 0.2327 1140 83

1L-MLD-QD 0.2856 0.1337 636 134 1L-CPCP-QD 0.1757 0.0870 361 192

[26] 0.5228 0.2318 1072 82 [26] 0.5228 0.2318 1072 82

[24] – – – – [24] – – – –

PSO 0.5050 0.2277 1026 63 PSO 0.4401 0.2029 920 85

[31] 0.4280 0.1986 896 61 [31] 0.3196 0.1552 728 86

DB962 2L-Best1 0.6315 0.5440 1347 87 2L-Best1 0.5833 0.5186 1124 105

2L-HPCP-Best1 0.6125 0.5242 1334 102 2L-BSC-Best1 0.5567 0.4921 1098 129

1L-HPCP-QD [32] 0.6135 0.2801 1316 92 1L-BSC-QD 0.5573 0.2602 1073 105

1L-MLD-QD 0.3417 0.1683 662 174 1L-CPCP-QD 0.2238 0.1134 389 236

[26] 0.5856 0.2710 1170 105 [26] 0.5856 0.2710 1170 105

[24] – – – – [24] – – – –

PSO 0.5452 0.2568 1098 91 PSO 0.4851 0.2336 908 111

[31] 0.4568 0.2213 917 89 [31] 0.3627 0.1819 699 113

Notes: For MAP, MaRR, and TOP10, the larger the value is, the better performance is obtained. For MR, the smaller the value is, the better performance is obtained

all reference/test pairs are reference/non-cover pairs dur-
ing testing the classifier. So, almost all CA values in Table 6
are around 98 and 99%.

5 Conclusions
To date, few investigations have been done on describ-
ing similarity between versions by combining different
musical descriptors and similarity functions. In this paper
we take a necessary step in this field, which can not
only improve performances in terms of identification

accuracy and classification efficiency but also improve
our understanding of the relationship between different
musical descriptors and similarity functions. Two musi-
cal descriptors and two different similarity functions are
fused by a two-layer fusion model. In the early fusion,
the similarities obtained by applying different similarity
functions on one music descriptor are fused by the SNF
technique. In the late fusion, the early fused similarities
based on two different musical descriptors are integrated
through mapping the similarities to probability-based
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Table 6 Classification efficiency achieved by different descriptor combinations

Combination of HPCP and MLD Combination of BSC and CPCP

TNR CA (%) ACA TNR CA (%) ACA

DB801 2L-Best1 0.468 99.7718 0.7340 2L-Best1 0.417 99.7715 0.7081

2L-HPCP-Best1 0.420 99.7692 0.7100 2L-BSC-Best1 0.401 99.7662 0.7003

1L-HPCP-QD [32] 0.420 99.7672 0.7100 1L-BSC-QD 0.401 99.7662 0.7003

1L-MLD-QD 0.157 99.6891 0.5785 1L-CPCP-QD 0.063 99.6604 0.5316

[26] 0.359 99.7541 0.6795 [26] 0.359 99.7541 0.6795

[24] 0.456 98.8105 0.7230 [24] 0.456 98.8105 0.7230

PSO 0.279 99.7289 0.6395 PSO 0.242 99.7218 0.6208

[31] 0.114 99.6749 0.5570 [31] 0.089 99.6689 0.5446

DB799 2L-Best1 0.486 99.7729 0.7425 2L-Best1 0.370 99.7778 0.6847

2L-HPCP-Best1 0.431 99.7710 0.7155 2L-BSC-Best1 0.355 99.7450 0.6774

1L-HPCP-QD [32] 0.431 99.7710 0.7155 1L-BSC-QD 0.355 99.7450 0.6774

1L-MLD-QD 0.166 99.7020 0.5830 1L-CPCP-QD 0.058 99.6741 0.5291

[26] 0.347 99.7541 0.6735 [26] 0.347 99.7541 0.6735

[24] 0.408 98.7142 0.6985 [24] 0.408 98.7142 0.6985

PSO 0.259 99.7360 0.6295 PSO 0.288 99.6281 0.6435

[31] 0.112 99.6931 0.5560 [31] 0.066 99.6772 0.5332

DB802 2L-Best1 0.464 99.7709 0.7320 2L-Best1 0.372 99.7565 0.6859

2L-HPCP-Best1 0.430 99.7755 0.7150 2L-BSC-Best1 0.366 99.7562 0.6832

1L-HPCP-QD [32] 0.430 99.7755 0.7150 1L-BSC-QD 0.366 99.7562 0.6832

1L-MLD-QD 0.163 99.7014 0.5815 1L-CPCP-QD 0.060 99.6762 0.5299

[26] 0.340 99.7572 0.6700 [26] 0.340 99.7572 0.6700

[24] 0.407 99.1071 0.7000 [24] 0.407 99.1071 0.7000

PSO 0.429 98.5529 0.7080 PSO 0.202 99.7289 0.6395

[31] 0.101 99.6908 0.5505 [31] 0.060 99.6771 0.5299

DB962 2L-Best1 0.498 99.8453 0.7490 2L-Best1 0.383 99.8302 0.6915

2L-HPCP-Best1 0.443 99.8440 0.7215 2L-BSC-Best1 0.373 99.8295 0.6865

1L-HPCP-QD [32] 0.443 99.8440 0.7215 1L-BSC-QD 0.373 99.8295 0.6865

1L-MLD-QD 0.186 99.7990 0.5930 1L-CPCP-QD 0.079 99.7796 0.5397

[26] 0.377 99.8354 0.6885 [26] 0.377 99.8354 0.6885

[24] 0.423 99.1193 0.7080 [24] 0.423 99.1193 0.7080

PSO 0.740 71.7942 0.7290 PSO 0.239 99.8040 0.6194

[31] 0.140 99.7926 0.5700 [31] 0.085 99.7814 0.5424

Notes: For TNR, CA, and ACA, the larger the value is, the better performance is obtained

similarities by learning method and then taking the mean
value of the results. In addition, the group LASSO tech-
nique is adopted to select the best learning method for
each kind of early fused similarity before the late fusion to
ensure the fusion efficiency and reduce the computational
complexity as well. By incorporating the advantages of
early fusion and late fusion, the proposed scheme achieves
better performances in terms of identification accuracy
and classification efficiency than state-of-the-art fusion-
based CSI schemes. Another important advantage of the

proposed model is that it is flexible and generic enough to
include more musical descriptors and similarity functions
to enhance the performance further. However, the dis-
advantage of the proposed scheme is that it achieves
higher CSI identification accuracy at the cost of higher
computation complexity.
For future work, considering the similarity between CSI

task and Query-By-Humming (QBH) task, we plan to
modify the proposed model to make it suitable for the
QBH task.
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Endnotes
1 http://labrosa.ee.columbia.edu/millionsong/

secondhand
2A complete list of tracks included in the music collec-

tion and the code of the proposed scheme can be found
(http://nchenecust.com/download.html).

3 http://weka.wikispaces.com/
4 http://infiniteseriousness.weebly.com/cover-song-

detection.html
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