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Abstract

An artificial neural network is an important model for training features of voice conversion (VC) tasks. Typically, neural
networks (NNs) are very effective in processing nonlinear features, such as Mel Cepstral Coefficients (MCC), which
represent the spectrum features. However, a simple representation of fundamental frequency (F0) is not enough for
NNs to deal with emotional voice VC. This is because the time sequence of F0 for an emotional voice changes
drastically. Therefore, in our previous method, we used the continuous wavelet transform (CWT) to decompose F0
into 30 discrete scales, each separated by one third of an octave, which can be trained by NNs for prosody modeling
in emotional VC. In this study, we propose the arbitrary scales CWT (AS-CWT) method to systematically capture F0
features of different temporal scales, which can represent different prosodic levels ranging from micro-prosody to
sentence levels. Meanwhile, the proposed method uses deep belief networks (DBNs) to pre-train the NNs that then
convert spectral features. By utilizing these approaches, the proposed method can change the spectrum and the F0
for an emotional voice simultaneously as well as outperform other state-of-the-art methods in terms of emotional VC.
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1 Introduction
Recently, the study of voice conversion (VC) has attracted
wide attention in the field of speech processing. This
technology can be applied in various domains, such as
emotion conversion [1], speech assistance [2], and other
applications [3, 4]. Therefore, it has continued to moti-
vate related studies each year. Many statistical approaches
have been proposed for spectral conversion in the past
few decades [5, 6]. Among these approaches, a Gaus-
sian Mixture Model (GMM) has been commonly used,
and many improvements have been proposed [7, 8] for
GMM-based VC. Other VCmethods, such as those based
on non-negative matrix factorization (NMF) [2, 9], have
also been proposed. The NMF and GMM methods are
based on linear functions. For better VC performance,
the VC technique needs to train more complex nonlinear
features, such as Mel Cepstral Coefficients (MCC) [10],
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which are widely used in automatic speech and speaker
recognition. Meanwhile, some approaches construct non-
linear mapping relationships using neural networks (NNs)
to train the mapping dictionaries between the source and
target features [11], whereas others use deep belief net-
works (DBNs) to achieve non-linear deep transformation
[12]. Results have shown that these deep architecture
models have better performance than shallow conversion
in some complex voice feature conversion.
However, most of the VC-related works focus on the

conversion of spectral features, rather than on the con-
version of fundamental frequency (F0). The spectral and
F0 features obtained from STRAIGHT [13] can affect the
voice’s acoustic and emotional features, respectively. F0
features comprise one of the most important parame-
ters for representing emotional speech, because they can
clearly describe the variation of voice prosody from one
pitch period to another. However, F0 features extracted
from STRAIGHT are low-dimensional features that can-
not be processed well by deep models, such as NMF
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models or DBNmodels. Therefore, F0 features are usually
converted by logarithm Gaussian (LG) normalized trans-
formation [14] in these models. However, previous studies
have shown that prosody conversion is affected by both
short- and long-term dependencies, such as the sequence
of segments, syllables, words within an utterance, as well
as lexical and syntactic systems of a language [15]. The
LG-based method is insufficient to convert the prosody
effectively owing to constraints of their linear models and
low-dimensional F0 features. In our earlier work [16], we
proposed a new NN-based method that can train the
segmental F0 features for emotional prosody conversion.
Although we conducted segmental processing to increase
the dimensions of F0 features that can be trained by the
NNs well, the segmental F0 features cannot model F0 in
different temporal scales. Continuous wavelet transform
(CWT) can effectively model F0 in different temporal
scales and significantly improve the speech synthesis per-
formance [17]. For this reason, Suni et al. [18] applied
CWT for intonation modeling in hidden Markov model
(HMM) speech synthesis. Ming et al. [19] used CWT in
F0modeling within the NMFmodel for emotional VC and
obtained a better result than the LG method in terms of
F0 conversion. In their recent work [20], a deep learning
model was used for F0 modeling in emotional VC.
In our recent work [21], inspired by the ability of deep

learning models to perform well in complex non-linear
feature conversion [12] and the ability of CWT to improve
F0 feature conversion [19], we proposed a novel method
that used NNs to train the CWT- F0 for converting the
prosody of the emotional voice. Different from [19], we
decomposed the F0 into 30 temporal scales containing
more specifics of different temporal scales, and trained
them by NNs, which can perform better compared with
the LG model and the NMF-based model. In the current
paper, we extend our earlier work [21] to systematically
capture the F0 features of different temporal scales, which
can then represent different prosodic levels ranging from
micro-prosody to the sentence levels. We achieve this by
using the CWTmethod to decompose the F0 contour into
several temporal scales. This approach is different from
our earlier research in [21], in which we decomposed the
F0 with 30 discrete scales, each separated by one third of
an octave.
In the current study, we proposed an arbitrary scales

CWT (AS-CWT) method to decompose F0 to several
scales, which canmore approximately represent each level
of individual prosodics. Given that the DBNs can effec-
tively perform spectral envelope conversion, we train the
MCC features for spectral feature conversion by using
DBNs proposed by Nakashika et al. [12]. We chose differ-
ent models to separately convert the spectral features and
F0 feature. This is because, although the wavelet trans-
form decomposed F0 features to more complex features,

they can be trained enough by NNs, whereas the more
complex spectral features require a deeper architecture.
In the remaining part of this paper, we describe features
processing concerning MCC and CWT in Section 2. The
DBNs and NNs used in our proposed method are intro-
duced in Section 3. In Section 4, we describe the frame-
work of our proposed emotional VC system. Section 5
gives the detailed stages process of experimental evalua-
tions, and Section 6 presents the conclusions.

2 Feature extraction and processing
The STRAIGHT is frequently used to extract features
from a speech signal. Generally, the smoothing spec-
trum and instantaneous-frequency-based F0 are derived
as excitation features for every 5 ms from the STRAIGHT
[13]. To obtain the same number of frames, a dynamic
time warping method is used to align the extracted fea-
tures (spectrum and F0) of the source voice and target
voice. Then, the aligned spectral features are translated
into MCC. The F0 features produced by STRAIGHT are
one dimensional and discrete. Modeling the variations
of F0 in all temporal scales using linear models is dif-
ficult. Inspired by the work in [18], before training the
F0 features by NNs, we adopted CWT to decompose the
F0 contour into several temporal scales, which can then
be used to model different prosodic levels ranging from
micro-prosody to the sentence levels. In an earlier work
[21], we adopted CWT to decompose the F0 contour
into 30 temporal scales before training the F0 features by
NNs. The decomposed 30 dimensional features are lin-
early spaced scales, each separated by one third of an
octave. However, only the features that can represent the
utterance, phrase, word, syllable, and phone levels are use-
ful for training. Thus, in the current paper, we apply the
AS-CWT method to decompose F0 features before train-
ing them. The steps for processing details are described
below.
1. To explore the perceptually relevant information, F0

contour is transformed from the linear to logarithmic
semitone scale, which is referred to as logF0. As shown
in Fig. 1a, the logF0 is discrete. As the wavelet method
is sensitive to the gaps in the F0 contours, we must fill
in the unvoiced parts in the logF0 via linear interpolation
to reduce discontinuities in voice boundaries. Finally, we
normalize the interpolated logF0 contour to zero mean
and unit variance. An example of an interpolated pitch
contour is depicted in Fig. 1b.
2. Next, we calculate the scales of different prosodic lev-

els ranging from sentence level to micro-prosody using
AS-CWT method. In order to find the scales of sentence,
phrase, and word levels, we first perform segmentation
in the extra neutral voice data. As shown in Figure 2, the
ranges of duration vary in sentence, phrase, and word.
We use the Gaussian function to separately calculate
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Fig. 1 Log-normalized F0 (a) and interpolated log-normalized F0 (b). The red curve target F0; the blue curve source F0

Fig. 2 Example of performing segmentation in the training data. Here, Xs , Xp , and Xw represent the durations of sentence, phrase, and word,
respectively
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the probability densities of the duration in the sentence,
phrase, and word using

S(x) = N
(
x,μs, σ 2

s
)

P(x) = N
(
x,μp, σ 2

p

)
(1)

W (x) = N
(
x,μw, σ 2

w
)
,

where S(x), P(x), andW (x) represent the probability den-
sity of duration in the sentence, phrase, and word, sepa-
rately. Themeans and standard deviations of the durations
in the sentence, phrase, and word are calculated from the
pre-segmented training data, as shown in Fig. 2. Figure 3
represents the probability density curves of the sentence,
phrase, and word. We choose the parts over 60% to pro-
cess the scales of the sentence, phrase, and word levels.
Each temporal duration is defined by

si = min(xs) + max(xs) − min(xs)
λ

∗ i

pi = min(xp) + max(xp) − min(xp)
λ

∗ i (2)

wi = min(xw) + max(xw) − min(xw)

λ
∗ i,

where si, pi, and wi represent the durations of sentence,
phrase, and word, respectively; xs, xp, and xw are the
values when probability densities S(x), P(x), and W (x),
respectively, are over 60%; i = 0, . . . , λ; and λ is the num-
ber of scales in sentence, phrase, and word. The average
duration of non-emphasized syllables was found between
50 and 180 ms [22], and that of phone level is 20 to
40 ms. Thus, the durations of syllable and phone can
be represented as syli = 50 + ((180 − 50)/λ) ∗ i and
phoi = 20 + ((40 − 20)/λ) ∗ i. The scales can then be
represented by

θi = log2(Di/τ0)

Di ∈ {si, pi,wi, syli, phoi}, (3)

where τ0 = 5 ms and {Di}i=0,...,λ represents all the dura-
tions of the sentence, phrase, word, syllable, and phone
levels. θi represents each scale calculated by Eq. 3.
3. After calculating the scales that can model prosody

at different temporal levels, we adopt CWT to decom-
pose the F0 contour with several temporal scales. The
continuous wavelet transform of F0 is defined by

W (τ , t) = τ−1/2
∫ ∞

−∞
f0 (x) ψ

(
x − t

τ

)
dx (4)

ψ (t) = 2√
3
π−1/4 (

1 − t2
)
e−t2/2, (5)

where f0 (x) is the input signal and ψ is the Mexican hat
wavelet. The original signal f0 can be recovered from the
wavelet representationW (f 0) by inverse transform [23]:

f0(t) =
∫ ∞

−∞

∫ ∞

0
W (f0)(τ , x)τ−5/2ψ

(
x − t

τ

)
dxdτ (6)

As described in [18], the reconstruction is incomplete if
all information onW (f 0) is not available. In that study, the
authors performed the decomposition and reconstruction
by choosing ten scales, all of which are one octave apart.
In our recent work in [21], we decomposed the continuous
logF0 with 30 discrete scales, each separated by one third
of an octave. Increasing the number of scales can result in
a better reconstruction after the decomposition. However,
we want to select the features to better represent the utter-
ance, phrase, word, syllable, and phone levels, so we apply

Fig. 3 Gaussian distributions of duration in sentence, phrase, and word
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the non-linear scales θi calculated in Eq. 3, which can bet-
ter represent the duration (Di) of all levels of linguistic
structure. Therefore, our F0 is represented by separate
components given by

Wθi(f0)(t) = Wθi(f0)
(
2θi+1τ0, t

)
(θ + 2.5)

−5/2
, (7)

The original signal is approximately recovered by

f0 =
λ∑

i=0
Wθi f0(t)(θi + 2.5)−5/2 + ε(t) (8)

where ε(t) is the reconstruction error and λ represents
the number of scales in each temporal level. We evalu-
ated the accuracy of the reconstruction by decomposing
and reconstructing several training sentences with differ-
ent values of λ. The correlation between the original and
the reconsturcted F0 signal was calculated with root mean
square reconstruction error. In Section 5, we describe the
experiments to obtain the optimum value of λ. Figure 4
shows the example of λ = 3. As shown in the figure,
the sentence, phrase, word, syllable, and phone levels each

have three scales. In this example, one-dimensional F0
feature is decomposed to 15 streams in distinct scales.

3 Trainingmodel
3.1 Neural networks
Neural networks (NNs) are trained on a frame error (FE)
minimization criterion and the corresponding weights are
adjusted to minimize the error squares over the whole
source-target, stereo training data set. As shown in Eq. 9,
the error of mapping is given by

ε =
∑

t
||yt − G(xt)||2, (9)

whereG(xt) denotes the NNsmapping of xt and is defined
as shown below:

G(xt) = (G1 ◦ G2 ◦ · · · ◦ GL) =
L⊙

l=1
G(l)(xt) (10)

Gl(xt) = σ(Wlxt) (11)

In the equations above,
⊙L

l=1 denotes the composi-
tion of L functions. For instance,

⊙2
l=1W (l)(z) =

σ(W (2)σ (W (1)(xt)). W (l) represents the weight matrices

Fig. 4 Example of sentence, phrase, word, syllable, and phone level scales when the number of each level (λ) is set to 3. The red, blue, and yellow
curves represent the scales in each level when temporal duration (Di) is calculated with i = 1, i = 2, and i = 3, respectively
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of layer l in NNs. σ denotes a standard tanh function
which is defined as:

σ (x) = tanh (x) = e2x − 1
e2x + 1

, (12)

As shown in the training model of Fig. 5, we use a
four-layer NN model for prosody training. w1, w2, and
w3 represent the weight matrices of the first, second, and
third layers of NN, respectively.

3.2 Deep belief networks
Deep belief networks (DBNs) have an architecture that
stacks multiple Restricted Boltzmann Machines (RBMs),
which are composed of a visible layer and a hidden layer
with full, two-way inter-layer connections but no intra-
layer connections. As an energy-based model, the energy
of a configuration (v, h) is defined as :

E (v, h) = −aTv − bTh − vTWh, (13)

where W ∈ RI×J , a ∈ RI×1, and b ∈ RJ×1 denote the
weight parameter matrices between visible units and hid-
den units, a bias vector of visible units, and a bias vector
of hidden units, respectively. The joint distribution over v
and h is defined as

P (v, h) = 1
Z
e−E(v,h). (14)

The RBM has the shape of a bipartite graph and has
no intra-layer connections. Consequently, the individual
activation probabilities are obtained via

P
(
hj = 1|v) = σ

(

bj +
m∑

i=1
wi,jvi

)

; (15)

P (vi = 1|h) = σ

⎛

⎝ai +
n∑

j=1
wi,jhj

⎞

⎠ . (16)

In DBNs, σ denotes a standard sigmoid function given
by (σ (x) = 1/(1 + e−x)). For parameter estimation,
RBMs are trained to maximize the product of probabil-
ities assigned to some training set data. To calculate the
weight parameter matrix, we use the RBM log-likelihood
gradient method, which is defined as

L (θ) = 1
N

N∑

n=1
logPθ

(
v(n)

)
− λ

N
‖W‖ . (17)

In the equation, Pθ

(
v(n)

)
is the probability of visible vec-

tors in the inner model with the model parameters θ =
(W , a, b). To differentiate the L (θ) via Eq. 18, we can
obtainW when making the L (θ) be the largest.

∂L (θ)

∂Wij
= EPdata

[
vihj

] − EPθ

[
vihj

] − 2λ
N

Wij. (18)

where, EPdata 〈· · ·〉 and EPθ
〈· · ·〉 represent the average val-

ues of the input data and the inner model, respectively.
As shown in the training model of Fig. 5, our proposed
method has two different DBNs for source speech and tar-
get speech (DBNsource and DBNtarget). This is intended
to capture the speaker-individuality information and con-
nect them by the NNs. The numbers of each node from
input x to output y are [24 48 24] for DBNsource and

Fig. 5 Training model of the proposed method
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DBNtarget, respectively. The connected NN is a three-
layer model. The whole training process of the DBNs is
conducted as described in the steps below.
1. We train two DBNs for the source and target speak-

ers. In the training of DBNs, the hidden units that are
computed as a conditional probability (P (h|v)) in Eq. 15
are fed to the following RBMs. These are then trained
layer-by-layer until the highest layer is reached.
2. After pre-training the two DBNs separately, we con-

nect them by the NNs. The weight parameters of NNs
are estimated in order to minimize the error between the
output and the target vectors.
3. Finally, the entire network (DBNsource, DBNtarget,

and NNs) is fine-tuned by back-propagation using the
MCC features.

4 Framework of the proposedmethod
Our proposed framework, as shown in Fig. 6, transforms
both the excitation and the filter features from the source
voice to the target voice. As described in Section 2, we
extracted the spectral features and F0 features from both
the source voice and target voice by the STRAIGHT, and
then used DTW to align them. Next, we processed the
aligned F0 features into CWT-F0 features by AS-CWT
method for NNs and transform the aligned spectral fea-
tures into the MCC features, respectively. The conversion
function training of our proposed method has two stages.
The first stage is the conversion of CWT-F0 using the

NNs, the other is the MCC conversion using the DBNs.
In the first stage, we used the high-dimension CWT-F0
features for prosody features training. To achieve this,
we transfered the parallel data consisting of the aligned
F0 features of the source and target voices to CWT-F0
features by using the AS-CWT method. Then we used
the four-layer NN models to train the CWT-F0 features.
The numbers of nodes from the input layer to output
layer are [5λ 10λ 10λ 5λ]. In the second stage, we first
transformed aligned spectral features of source and tar-
get voices to 24-dimensional MCC features. Then, we
used these MCC features of the source and target voice
as the input-layer data and output-layer data for DBNs.
Finally, we connected them by the NNs for deep training.
The conversion phrase of Fig. 6 shows how our trained
conversion function can be applied. The source voice is
processed into spectral features and F0 features by the
STRAIGHT, which are then transformed to MCC and
CWT-F0 features, respectively. These features can then be
fed into the conversion function to convert the features.
Finally, we converted them back to spectrum and F0 and
used these features to reconstruct the waveform with the
STRAIGHT.

5 Experiments
5.1 Experimental setup
We used a database of emotional Japanese speech con-
structed in a previous study [24]. The waveforms used

Fig. 6 Framework of the proposed method
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were sampled at 16 kHz. Input and output data had the
same speaker but expressing different emotions. We set
the six datasets into the following: happy to neutral voices,
angry to neutral voices, and sad to neutral voices, as
well as their inverse conversion from neutral voices to
each emotion voices. For each dataset, 50 sentences were
chosen as training data and 10 sentences were choosen for
the VC evaluation.
As described in Section 2, to obtain the optimum num-

bers of scales (λ) in each temporal level, we used the
AS-CWT method to decompose and reconstruct several
training sentences with the numbers of scales ranging
from three to ten. We then calculated the RMSE between
the original contours and the reconstructed F0 values.
As shown in Fig. 7, the value of RMSE decreases as the
numbers of scales increases; however, when increasing to
eight, the value of RMSE decreases slightly. Hence, we
select eight scales in each temporal levels in our pro-
posedmodel. As shown in Fig. 8 shown, the reconstructed
F0 with eight scales in each temporal level is more sim-
ilar to the original contours then three scales and five
scales. To evaluate the proposed method, we compared
the results with several state-of-the-art methods listed
below.

• DBNs+LG: This system proposed by Nakashika et al.
converts spectral features by DBNs and converts the
F0 features through the LG method [12], which can
be expressed with the equation

log
(
f 0conv

) = μtgt + σtgt

σsrc

(
log

(
f 0src

) − μsrc
)

(19)

where μsrc and σsrc are the mean and variance of the
F0 in logarithm for the source speaker, respectively;
μtgt and σtgt are the mean and variance of the F0 for
target speaker, respectively; (f 0src) is the source
speaker pitch; and (f 0conv) is the converted
fundamental frequency for the target speaker.

• DBNs+NMF: Using the DBNs to convert spectral
features while using the non-negative matrix
factorization (NMF) to convert five-scale CWT-F0
features.

• DBNs+CWT(30): This is the proposed method in
our previous work [21] that uses DBNs to convert
spectral features while using the NNs to convert the
30-scales CWT-F0 features; each scale is separated by
one third of an octave.

• DBNs+CWT(40): This method uses the same model
as DBNs+CWT(30) with a different number of
scales(40) in CWT-F0 features.

• DBNs+AS-CWT (proposed method): This is the
proposed system that uses the DBNs to convert
spectral features while using the NNs to convert the
CWT-F0 features decomposed by AS-CWT method,
each temporal level has eight scales (8 × 5 scales in
total).

5.2 Objective experiment
Mel Cepstral Distortion (MCD) was used for the objec-
tive evaluation of spectral conversion, andMCD is defined
below.

MCD = (10/ ln 10)

√√√√2
24∑

i=1

(
mcti − mcci

)2 (20)

In Eq. 20, mcti and mcci represent the target and the
converted mel-cepstral, respectively.
To evaluate the F0 conversion, we used the RMSE

RMSE =
√√√
√ 1

N

N∑

i=1

((
F0ti

) − (
F0ci

))2 (21)

where F0ti and F0ci denote the target and the converted F0
features, respectively. A lower MCD and F0-RMSE value
indicate smaller distortion or predicting error. Unlike the
RMSE evaluation function used in [19], which evaluated

Fig. 7 RMES as a function of number of scales
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Fig. 8 Examples of original F0 signal and F0 signal reconstructed with different numbers of scales. The top graph shows the original F0 signal (Os)
and the F0 signal reconstructed with eight scales in each temporal level (R8 has 8 × 5 scales in total); the second graph shows Os and the
reconstructed signal with five scales in each temporal level (R5 has 5 × 5 scales in total); the bottom pan shows Os and reconstructed signal with
three scales in each temporal level (R3 has 3 × 5 scales in total)

the F0 conversion by calculating logarithmic-scaled F0, we
used the original target F0 and converted F0 to calculate
the RMSE values. Given that our RMSE function evaluates
complete sentences that contain both voiced and unvoiced
F0 features instead of the voiced logarithmic scaled F0,
the RMSE values are expected to be high. For emotional
voices, the unvoiced features also include some emotional
information. Therefore, we choose the F0 of complete sen-
tences for evaluation instead of the voiced logarithmic
scaled F0.
The average MCD and F0-RMSE results from emo-

tional to neutral pairs are reported in Table 1. The
MCD results are presented in the left part of Table 1.
Comparing DBNs with source, DBNs decrease the
value of MCD. As shown in Fig. 9, among DBNs+LG,
DBNs+NMF, DBNs+CWT(30), DBNs+CWT(40), and
DBNs+AS-CWT, MCD decreases or increases slightly,
proving that the conversion of F0 does not have a
significant impact on the spectral feature conversion. The
F0-RMSE results are presented in the right part of Table 1.

As shown in Table 1 and Fig. 10, the conventional linear
conversion logarithm Gaussian can affect the conversion
of happy to neutral, but only slightly affects the conver-
sion of angry voices and sad voices to neutral voices.
The NMF method, the previous CWT method, and the
proposed AS-CWT method can affect the conversion

Table 1 MCD and F0-RMSE results for different emotions

MCD F0-RMSE

A2N S2N H2N A2N S2N H2N

Source 6.03 5.18 6.30 76.8 73.7 100.4

DBNs+LG 5.47 4.77 5.92 76.1 73.5 85.2

DBN+NMF 5.46 4.78 5.93 69.4 66.9 74.3

DBN+CWT(30) 5.47 4.77 5.93 61.6 64.2 75.9

DBN+CWT(40) 5.47 4.77 5.93 62.3 67.2 76.1

DBN+AS-CWT 5.47 4.77 5.93 51.1 52.1 64.4

A2N, S2N, and H2N represent the datasets angry to neutral voice, sad to neutral
voice, and happy to neutral voice, respectively
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Fig. 9Mel-cepstral distortion evaluation of spectral features conversion from emotional to neutral voices

of all emotional voice datasets. Comparing the results
of DBN+CWT(30) and DBN+CWT(40), we see that 30
scales is the optimal number of scales for this model. Sim-
ply increasing the number of scales can not enhance the
effect for DBNs+CWT. In addition, the proposed method
can obtain significant improvement in F0 conversion as a
whole.
Table 2 shows the MCD and F0-RMSE results from the

neutral to emotional pairs. For spectral conversion, MCD
values are deceased by the DBNs training model. How-
ever, when comparing Fig. 11 with Fig. 9, we can see
that the effects of the conversion from neutral to angry

and sad voices are not as significant as their inverse con-
version, but the conversion from neutral to happy voice
can generate better results than its inverse conversion.
As shown in Fig. 12, RMSE values decrease significantly
when our proposed method is used compared with other
methods. When comparing Fig. 12 with Fig. 10, we can
see that the CWT method and AS-CWT method can
effectively convert F0 features from neutral to emotional
voices and obtain better results than the conversion from
emotional to neutral voices. This is because the CWT
and AS-CWTmodels decompose the one-dimensional F0
features into several scales containing further details of

Fig. 10 Root mean-squared error evaluation of F0 features conversion from emotional to neutral voices
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Table 2 MCD and F0-RMSE results for different emotions

MCD F0-RMSE

N2A N2S N2H N2A N2S N2H

Source 6.03 5.18 6.30 76.8 73.7 100.4

DBNs+LG 5.67 4.88 5.55 76.3 72.0 99.3

DBNs+NMF 5.67 4.88 5.54 70.4 62.3 75.2

DBNs+CWT(30) 5.68 4.88 5.55 39.5 40.1 64.5

DBNs+CWT(40) 5.68 4.88 5.55 41.6 40.5 67.5

DBNs+AS-CWT 5.68 4.88 5.55 41.5 39.4 63.2

N2A, N2S, and N2H represent the datasets neutral to angry voice, neutral to sad
voice and neutral to happy voice, respectively

different temporal scales, which modeled and captured
F0 features more appropriately than the other methods as
well as alleviated estimation errors. As Fig. 13 shows, the
blue, red, and yellow curves represent the source, target,
and converted F0, respectively. Here, we can see that after
conversion using the proposedmethod, F0 becomesmuch
similar to the target neutral voice.

5.3 Subjective experiment
We conducted a subjective emotion evaluation via a mean
opinion score test. The opinion score was set to a five-
point scale (the more similar to the emotion of the sample
voice the target speech sounded and the more different
it is from the source speech, the larger the point given).
Here, we test the emotional to neutral pairs (H2N, S2N,
A2N) and their inverse conversion (N2H, N2S, N2A). In
each test, 50 utterances (10 for source speech, 10 for
target speech, and 30 for converted speeches using the
four methods) were selected, and 10 listeners took part

in the testing. Each subject listened to the source and
target speech samples. Then, the subject listened to the
speech converted using the four methods and was asked
to give each conversion a point value. Figure 14 shows the
results of the MOS test, with the error bar showing a 95%
confidence interval. In this test, a higher value indicates
a better result. As the figure indicates, the conventional
LG method shows poor performance when converting
angry voice to neutral voice. The AS-CWT method (the
proposed method) obtained a better score than the LG
method and NMF almost in every emotional VC t test,
t > 2.4, p < 0.04), except for the case when convert-
ing angry voice to neutral voice (p > 0.1). The difference
between AS-CWT and CWT is not statistically signifi-
cant when dealing with conversion from emotional voice
to neutral voice and neutral voice to angry voice, because
p > 0.1 in the p value test, but was significant for neutral
to sad (t = 2.5, p = 0.037) and neutral to happy (t = 3.0,
p = 0.015).

6 Conclusions and future works
In this paper, we proposed a method using DBNs to train
the MCC features to construct the mapping relationship
of the spectral envelopes, while using NNs to train the
CWT-F0 features. Such features are conducted by the
F0 features with arbitrary scales for prosody conversion
between the source and target speakers. A compari-
son between the proposed method and the conventional
methods (logarithm Gaussian, NMF) shows that our pro-
posed model can effectively change the acoustic and the
prosody for the emotional voice at the same time.
When using this method, however, some problems

remain. Specifically, the proposed model must extract the

Fig. 11Mel-cepstral distortion evaluation of spectral features conversion from neutral to emotional voices
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Fig. 12 Root mean-squared error evaluation of F0 features conversion from neutral to emotional voices

Fig. 13 Examples of source F0, target F0, and converted F0

Fig. 14MOS evaluation of emotional voice conversion
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parallel speech data, which can limit the process to a one-
to-one conversion only. In future works, we will explore a
many-to-many emotional VC method and use it in other
applications, such as emotional voice recognition [25] or
facial expression recognition [26].
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