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Abstract

Robustness against background noise is a major research area for speech-related applications such as speech
recognition and speaker recognition. One of the many solutions for this problem is to detect speech-dominant
regions by using a voice activity detector (VAD). In this paper, a second-order polynomial regression-based
algorithm is proposed with a similar function as a VAD for text-independent speaker verification systems. The
proposed method aims to separate steady noise/silence regions, steady speech regions, and speech onset/offset
regions. The regression is applied independently to each filter band of a mel spectrum, which makes the algorithm
fit seamlessly to the conventional extraction process of the mel-frequency cepstral coefficients (MFCCs). The k-
means algorithm is also applied to estimate average noise energy in each band for spectral subtraction. A pseudo
SNR-dependent linear thresholding for the final VAD output decision is introduced based on the k-means energy
centers. This thresholding considers the speech presence in each band. Conventional VADs usually neglect the
deteriorative effects of the additive noise in the speech regions. Contrary to this, the proposed method decides not
only for the speech presence, but also if the frame is dominated by the speech, or the noise. Performance of the
proposed algorithm is compared with a continuous noise tracking method, and another VAD method in speaker
verification experiments, where five different noise types at five different SNR levels were considered. The proposed
algorithm showed superior verification performance both with the conventional GMM-UBM method, and the state-
of-the-art i-vector method.
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1 Introduction
Automatic speaker recognition systems’ performances are
greatly improved in the last two decades, especially with
the introduction of the modeling methods such as univer-
sal background model (UBM) [1] and i-vectors [2]. For
the front end, mel-frequency cepstral coefficients
(MFCCs) [3] are extensively preferred by the researchers
in speaker or speech recognition systems. Despite the high
performance of the MFCCs in controlled environments,
their performance degrades in adverse conditions, such as
convolutive channel noise, additive background noise, and
reverberation. Many different techniques have been devel-
oped to overcome this issue such as using a voice activity
detector (VAD), extracting robust features, and speech

enhancement. Some of them are mentioned in the follo-
wing paragraphs.
Instead of using the MFCCs, other types of features

are proposed by the researchers to increase the robust-
ness of the recognizers [4–8]. Also, since the MFCCs are
widely adopted, many researchers have made effort to
improve its robustness under noise by modifying, or
changing, some processes in the conventional scheme
[9–13]. Interested readers may refer to [14] for the
recent progress in the feature extraction techniques for
robust speaker recognition.
Another way to improve the performance of the recog-

nizers is to enhance the speech. These methods usually
require an estimation of the level and frequency re-
sponse of the noise. When the noise has been estimated,
the enhancement can be achieved via methods such as
spectral subtraction [15] or Wiener filtering as in [16].
Once the signal is enhanced, it can be treated as a clean
signal and can be used in further operations (i.e., feature
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extraction). A popular method for the noise estimation
is based on the minimum statistics as proposed in [17]
or based on its improvement [18]. Statistical differences
are taken into account in [19] for non-stationary noise
power spectral density estimation. Relying on the
speech/non-speech decisions of the frames (by consider-
ing the harmonics for the voiced speech and durations
for the unvoiced speech), a noise tracking algorithm is
proposed [20]. Speech presence probability is considered
in [21], which depends on the relation of the adjacent
spectral components.
The methods referred in the previous paragraph are

aiming to track the noise spectrum even under the
speech activity. They are fast adapting to the changes in
the noise level but may degrade the information during
the speech regions. Since both the noise and the speech
are present at the same time, exactly separating them is
not possible. On the other hand, separating the speech-
dominant and the noise-dominant frames can also be
beneficial. It is also possible to estimate an average of
the noise from the noise-dominant frames, or the noise
parameters can be updated between the speech regions.
Various voice activity detection algorithms have been
developed for this purpose. In [22], long-term signal
probabilities are used as the discrimination criteria and
the decision is assigned to the frame in the middle of a
long window. Similarly, in [23], long-term signal variabil-
ity is used but the decision is assigned to the long
window. Energy-based detection and Gaussian mixture
model (GMM)-based statistical model are combined for
the VAD in [24]. Modeling the feature distribution with
a bi-Gaussian model can be also used as a VAD, where
the Gaussian with the lower mean corresponds to noisy
frames [25]. Four different voicing measures and a
spectral feature are concatenated and mapped to a one-
dimensional space via principal component analysis in
[26], and the resulting feature distribution is bi-Gaussian.
In addition to the four voicing measures used in [26],
MFCCs and two pitch trackers are used as features for the
VAD in [27]. A comparison of some standard VAD
methods for speaker recognition can be found in [28],
where the bi-Gaussian modeling-based VAD is reported
to be the best performing one. Similar to the VAD, vowel-
like regions are used in [29] and improved in [30] by in-
cluding the non-vowel-like regions. Missing data approach
is also investigated in several studies [31–34], where a
binary time-frequency mask is constructed for the noisy
spectrum to indicate reliable and unreliable features. The
unreliable features are then reconstructed, or marginalized
(ignored in score computation).
Usually, VADs look for clues of speech presence (i.e.,

harmonicity, periodicity, energy, long-term variability)
but do not give any idea about if the found speech
region is useful for recognition, or how many bands

include speech information. As mentioned before,
exactly separating the noise and the speech is not pos-
sible. Therefore, an output speech of a robust VAD may
not cover the same speech/speaker information as its
clean equivalent does. Especially for the low SNR signals,
directly using the VAD output is not suitable, because of
the nonlinear transformation effect of the additive noise
on the low energy frames [35]. Missing data approach
tries to compensate this issue; however, its performance
highly depends on the estimation of the spectral mask,
where a poor estimation reduces the recognition
performance [36].
In this paper, a polynomial regression-based algorithm

is proposed as a solution to the aforementioned problem,
that is, separating the useful speaker/speech information
from the additive noise. A polynomial is fitted on the en-
ergy output over a range of several frames, and the output
is not strictly frame-dependent. Also, suppression of sud-
den energy ripples is possible with this method, which is
achieved by smoothing in some studies [27]. Besides the
polynomial regression, another important novelty of the
proposed algorithm is the pseudo SNR-dependent linear
thresholding that takes account of the speech presence in
each band. Since the algorithm is unsupervised, it is suit-
able for any SNR level and any stationary additive noise,
unlike supervised methods such as neural networks,
which may perform inadequately under unseen environ-
ments. To verify the performance of the proposed
method, speaker verification experiments with both male
and female data were made. Five different noise types at
five different overall SNR levels were added to the test
files. Both conventional UBM and state-of-the-art i-vector
frameworks were investigated.

2 Polynomial regression on mel spectrum
The proposed method can be separated into two parts.
As the first part, the polynomial regression, k-means
classification, and speech enhancement applied on the
filter bank outputs are explained in Sections 2.1, 2.2, 2.3,
2.4, and 2.5. For the second part, based on the results
from the first part of the proposed algorithm, the final
VAD output decision is given in Section 2.6.

2.1 Motivation
The VADs, in general, use parameters, such as period-
icity, harmonicity, and long-term variability, or energy
levels to detect speech regions, then make frame-based
speech/non-speech decision. For the voiced phonemes,
these parameters could be sufficient, because of their
harmonic structure and relatively high energy. However,
the unvoiced phonemes may be treated as noise since
they do not possess harmonic content as the voiced
phonemes do and have less energy. To overcome this
problem, polynomial regression is applied on the output
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of each filter band of the mel scale spectrum, and the
frames are grouped together by finding the best fitting
polynomial over the range of five to ten frames. For a
25-ms frame with a 10-ms overlap, this range is equal
to 65–115 ms, which covers the average duration of a
vowel-like (i.e., vowel, semivowel, and diphthong) re-
gion in a continuous speech [29]. Another important
issue is that the temporal contour of speech energy of
a filter bank output approximately resembles a bell-
like shape in the spectrum, i.e., energy level rising
from the speech onset point and vice versa. This
phenomenon was also considered in [37], where an
end point detection method was proposed with the
aid of the aforementioned rising and falling energy
levels (called beginning and ending edges, respec-
tively). With a basic energy thresholding for VAD,
low energy frames, especially unvoiced phonemes, are
likely to be suppressed in low SNR levels. In the pro-
posed algorithm, the grouped frames are represented
by the average energy of the fitted polynomial, which
can be thought as an energy boost for the low energy
frames in a speech region. Also, this representation
avoids the misclassifications of sudden energy ripples
(i.e., noise frame with a higher energy than its
neighbor noise frames, or speech frame with a lower
energy than its neighbor speech frames). It should be
noted that a single polynomial may not capture the
entire bell-like shape of a speech segment, due to the
frame range (5–10) limitations. Instead, the minimum
expectation is to capture at least the rising and falling
edges and the peak regions.

As a preliminary experiment, the proposed algorithm
is going to be tested on a sample speech signal to illus-
trate its effectiveness. The speech file used in the tests is
an utterance spoken by a male speaker from the Noizeus
corpus [38], with an 8 kHz sampling frequency. The mel
spectrum of the signal is shown in Fig. 1a, which is ob-
tained by using 25 ms long frames with 10 ms overlap,
windowing with a Hamming window, taking 1024 points
Fourier transform, and filtering with 26 filters that are
equally spaced on the mel scale between 300 Hz and
4 kHz. Note that these parameters are the same
throughout this section and also for the speaker verifica-
tion experiments in Section 3. The lynx noise from the
NOISEX-92 database [39] is mixed with the clean
speech to obtain a noisy speech signal with a desired
overall SNR level (5 dB in this case). Note that the
NOISEX-92 database has a 16 kHz sampling frequency.
Noise files were down-sampled to 8 kHz to match the
sampling rates of speech and noise data. To achieve this,
first, the NOISEX-92 data were filtered by a low pass
filter (almost ideal low pass) with a cut-off frequency of
4 kHz. Then, the data were down-sampled by a factor of
two. The mel spectrum of the degraded signal is illus-
trated in Fig. 1b.
The effect of the noise can be easily observed by compar-

ing the spectra given in Fig. 1. The speech signals with low
energies vanish into the noise. However, the regions with
higher energies are still visible in the spectrum. The ultim-
ate goal of the proposed algorithm is to detect and enhance
these frames by using the polynomial regression, followed
by the spectral subtraction.

Fig. 1 Mel spectra of the a clean signal and b the noisy signal with a 5 dB overall SNR
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2.2 A brief review of polynomial regression
Before detailing the proposed algorithm, reminding the
general polynomial regression expressions with least
squares sense could be beneficial. A kth order polyno-
mial is defined as a0 + a1x + … + akx

k, where x is the
intermediate variable, and a’s are the coefficients of the
polynomial. The least squares method minimizes the
summed difference (error) of the observed value and the
estimated value. This error can be defined as in Eq. 1.

E ¼
Xn
i¼1

yi− a0 þ a1xi þ…þ akx
k
i

� �� �2 ð1Þ

where y is the observation vector (filter bank output vec-
tor for a given band), n is the length of the vector (number
of frames considered for regression, 5 to 10), and i is the
index (frame index). In the proposed method, xi = i. The
optimum value of a coefficient is the value that makes the
partial derivative of the error, with respect to the coeffi-
cient, equal to zero (Eq. 2).

∂E
∂a0

¼ −2
Xn
i¼1

yi− a0 þ a1xi þ…þ akx
k
i

� �� � ¼ 0

⋮ ⋮

∂E
∂ak

¼ −2
Xn
i¼1

yi− a0 þ a1xi þ…þ akx
k
i

� �� �
xki ¼ 0

ð2Þ

Taking the terms with y to one side, these equa-
tions can be written in a matrix form as given in
Eq. 3. Equation 3 can be expanded as XTy = XTXa,
where X is defined as in Eq. 4. Then, the coefficients
of the polynomial can be found as a = (XTX)−1XTy.

n
Xn
i¼1

xi ⋯
Xn
i¼1

xki

Xn
i¼1

xi
Xn
i¼1

x2i ⋯
Xn
i¼1

xkþ1
i

⋮ ⋮ ⋱ ⋮
Xn
i¼1

xki
Xn
i¼1

xkþ1
i ⋯

Xn
i¼1

x2ki

2
66666666664

3
77777777775

a0

a1

⋮
ak

2
666664

3
777775

¼

Xn
i¼1

yi

Xn
i¼1

xiyi

⋮
Xn
i¼1

xki yi

2
66666666664

3
77777777775

ð3Þ

X ¼

1 x1 x21 ⋯ xk1
1 x2 x22 ⋯ xk2
⋮ ⋮ ⋮ ⋱ ⋮

1 xn x2n ⋯ xkn

2
6664

3
7775 ð4Þ

2.3 Application of polynomial regression on mel
spectrum
The order of the polynomial, “k,” is chosen as two in the
proposed method. The reason behind this choice is that
a first-order polynomial is a straight line, which is not
suitable to follow the variations of a highly nonstationary
signal. On the other hand, as the order of the polynomial
increases, the fitted signal takes values closer to the real
signal but the computational load increases. For the pro-
posed algorithm, only an approximation of the general
trend over the frames is sufficient; hence, the polynomial
order was chosen as two. Also, it should be noted that
no substantial advantage was found by using a third-
degree polynomial.
The regression is applied in each band of the mel

spectrum, directly to the smoothed filter bank energies.
It can be expanded to the conventional spectrum; how-
ever, increased number of the frequency bins will also
increase the computation time. Also, the mel spectrum
is a part of the MFCC extraction process; hence, the
proposed algorithm fits seamlessly in the conventional
framework.
Let S(t,m) denote the filter bank output of the noisy

speech signal for frame t and filter m. The filter bank
outputs are first smoothed to reduce the ripples (Eq. 5).

Ssðt;mÞ ¼
X2
n¼−2

pnSðt þ n;mÞ ð5Þ

where, Ss(t,m) is the smoothed filter bank output, pn is
the smoothing coefficient with p−2 = p2 = 0.1, p

−1 = p1 = 0.2, and p0 = 0.4. The smoothed filter bank
outputs are then subjected to the polynomial regres-
sion in each filter band independently. The regression
error is defined as the normalized distance between
the smoothed filter bank outputs and the fitted poly-
nomial (Eq. 6).

eN ;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN−1
i¼0

�
Ssðt þ i;mÞ−FNðt þ i;mÞ

�2
r

N
;

N ¼ 5; 6;…; 10

ð6Þ

where FN(t,m) is the value of the fitted polynomial at
frame t and filter bank m. N is the number of the frames
used for regression, and eN,m is the error observed for
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N-length fitting. The consecutive frames, which give the
minimum eN,m, are grouped and represented by the
average of the fitted polynomial (i.e., average energy of
the group). Starting from the next frame, this process
continues until all frames have been represented by their
respective average polynomial energy. As an example,
consider first 25 frames. F is calculated from 1st frame
to 5th, then 1st to 6th,…1st to 10th. Assume that mini-
mum error is found in the range of 6 frames. So, frames
1, 2,…6 represents a group. Next, F is calculated from
7th frame to 11th, then 7th to 12th, and so on. In the
end, the number of the segments is at most D/5, where
D is the total number of the frames.
In Fig. 2, the results of the polynomial regression

are visualized for a better understanding of the pro-
posed algorithm, using the same degraded signal
shown in Section 2.1. The blue-colored line shows
the smoothed filter bank outputs of the first filter.
The red line shows the frame groups represented by
their respective polynomial’s average energy (note the

horizontal parts). Same illustration is made for the
filter 24, given in Fig. 3.

2.4 Two class k-means algorithm
After representing all of the frames within a band as
energy levels, a threshold is necessary to determine the
noise-dominant or the speech-dominant groups. In
order to define a threshold level, the well-known k-
means algorithm is used, influenced from the success of
the bi-Gaussian modeling approach [28]. The k-means
algorithm can be thought as a simplified version of
Gaussian mixture models, where the weights and the
variances of the classes are assumed to be equal. Also,
since only two classes are needed and the number of the
data points (frames) is low (at most D/5 points as
described above), a simple classification should be
sufficient. The k-means algorithm gives two energy
levels as class centroids. The frames that belong to the
higher energy class are assumed to be speech-dominant
frames. On the other hand, low energy speech regions

Fig. 2 Results of the regression and the k-means in filter 1

Fig. 3 Results of the regression and the k-means in filter 24
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contribute to the lower energy class. Therefore, the
lower energy center is chosen as the threshold and only
the frames below this threshold are treated as noise-
dominant frames. Then, the average noise energy in the
band can be calculated by using these frames.
The horizontal lines in Figs. 2 and 3 show the class

centroids found by the k-means algorithm. The lower
line (dashed), which is the centroid of the lower energy
class, is used as the threshold level for the filter band.
The frames below the threshold are used to estimate the
average noise energy in each band.
It can be observed from the figures that as the speech

energy decreases, the class centroids come closer to each
other. This situation is clearly seen by comparing the
class centers of the two filter bands. Filter 24 covers the
higher frequencies, where less speech energy is found
usually. Therefore, the difference between the class cen-
troids is reduced. As the overall SNR is decreased, it is
expected that the class centroids in the other filters also
come closer. This information will be used in Section
2.6 to estimate how noisy the signal is.

2.5 Speech enhancement
Once the noise energy for a band has been estimated,
the spectral subtraction method can be used to enhance
the speech information. To avoid the spectrum beco-
ming too small, an energy floor is also included as
expressed in Eq. 7.

Se t;mð Þ ¼ max Ss t;mð Þ−N mð Þ; 0:001Ss t;mð Þð Þ ð7Þ

where Se(t,m) is the enhanced signal and N(m) is the
estimated noise energy for mth filter.
At the end of the regression and k-means processes,

each of the filter bank outputs is divided into one of the
two classes, indicating the reliable and unreliable
components similar to the missing data method as men-
tioned in Section 1. However, the binary matrix of the
proposed algorithm is used in a way that it aids the final

decisions on the frames. Let the ones in the matrix de-
note the reliable components and the zeros denote the
unreliable components. If the ones dominated a frame, it
is highly probable that the frame is a speech frame.
However, as the noise level increases, the number of
ones also tends to increase, due to misclassifying the
noise frames as speech in filter bands. Therefore, a con-
stant threshold value for all SNR levels is not suitable
for the final decision. A pseudo SNR-dependent thresh-
old called “clarity level” is defined to tackle the afore-
mentioned problem, which is detailed in the following
subsection. The procedures described above to obtain
binary representation of the frames can be summarized
as a block diagram given in Fig. 4.

2.6 Clarity level and VAD output
The clarity level is a parameter that is related to the
k-means class centroids in a band. Mathematically, it
is defined as in Eq. 8.

L ¼
P
m¼1

M
log10 Chi mð Þ=Clow mð Þ� �

M
ð8Þ

where L is the clarity level, Chi(m) is the centroid of the
speech-dominant class, and Clow(m) is the centroid of
the noise-dominant class, of mth filter, and M is the total
number of filters in the filter bank. It should be noted
that Clow(m) is also used as the threshold as described in
Section 2.4.
As the noise level in the signal increases, the value of

the L decreases. This is mostly due to the fact that the
class centroids get closer to each other since the speech
vanishes into the noise. Therefore, if the clarity level is
high, the signal is treated as a high SNR signal and a
small number of ones found in a frame of the binary
matrix is sufficient to determine that the frame is domi-
nated by the speech. If the clarity level is low, more
evidence is needed to depict a frame as the speech, so
the total number of ones in a frame should be more.

Fig. 4 Block diagram of the processes to observe enhanced speech information and binary representation of the frames in a given band
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The relation between the clarity level and the sufficient
speech evidence value for a signal can be expressed as in
Eq. 9, which is found by setting the limits for the best
and worst SNR cases as 7 and 23, respectively, then sim-
ply calculating the equation of the line between them.

Ls ¼
7; L > 0:8

round ð28:36−25:45�LÞ; 0:8≥L≥0:25
23; L < 0:25

8><
>:

ð9Þ

where Ls is the minimum number of ones required for a
frame to be detected as speech (sufficient speech evi-
dence number) and is calculated per utterance. After
comparing the ones in the frames of the binary matrix
with the sufficient speech evidence value, frames de-
tected as the noise are eliminated and the other frames
observed as the final VAD output are subjected to
discrete cosine transform to obtain the MFCCs.
The best-case limit of Ls, 7, is determined by assuming

the speech signal should cover at least several bands for
a clean signal, and it is found that this limit is not crit-
ical as the worst-case limit (choosing 6, 7, or 8 gave
similar verification performances). On the other hand,
the worst-case limit (L < 0.25) indicates a severely de-
graded signal; therefore, much more evidence is needed.
Eighteen and 23 were examined as the worst-case limits,
and Ls = 23 improved speaker verification performance
in terms of equal error rate (EER) for the low SNR levels
(− 5 and − 10 dB) as high as absolute 10% compared to
Ls = 18. Hence, Ls = 23 is chosen as the worst-case limit.
This result also supports the assumption made above;
more speech evidence in a frame is needed for the low
SNR levels. Note that total number of the filters in the
bank is 26, and the worst-case limits were not reached
for the SNR levels used in the experiments, they rather
adjust the slope of the threshold line. The values of L
were determined on a sample signal described in Section

2.1, which is not included in any part of the speaker
verification process. Values higher than 0.8 indicate al-
most clean speech (SNR > 15 dB), and values lower than
0.25 correspond to noisy speech (SNR < − 10 dB).
The VAD decision process is summarized as a block

diagram in Fig. 5.
As a preliminary experiment, noisy speech spectrum,

enhanced speech spectrum, and final VAD output
decisions are shown together in Fig. 6 for the utterance
degraded with the lynx noise at 0 dB overall SNR value.
It is clear that the proposed algorithm can detect rela-
tively high energy regions, but more proofs are needed
to understand if the proposed method adds robustness
to recognition systems or deteriorates the speech/
speaker information. Therefore, speaker verification

Fig. 6 a Noisy speech signal with a 0 dB overall SNR, b enhanced
speech signal, and c final VAD output (only the frames detected as
speech-dominant) of the proposed algorithm

Fig. 5 VAD final decision processes as a block diagram
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experiments are conducted with five different noises and
five different SNR levels for each noise in the next
section.

3 Speaker verification experiments
3.1 Description of the experimental setup
In the experiments, 250 male and 250 female
speakers from the NIST SRE 1998 database were
used, where there are approximately 5 min training
data per speaker. For the tests, speech segments with
30 s duration were used. There are 1308 test speech
files for male speakers and 1379 test files for female
speakers. For each test file, there is one trial for the
target speaker and nine trials for the non-target
speakers. A more detailed analysis of the database can
be found in [40]. A simple energy-based VAD as
given in [41] was applied to clean training data to
eliminate silence. Since the training data is clean, the

type of VAD will not make much difference on the
verification performance. For each speaker, only one
model is trained by using the speaker’s training data.
The proposed and baseline methods are applied only
to the test utterances. In the test phase, the features
were extracted only from the speech-dominant frames
for all methods. The feature vectors used in the ex-
periments were 26-dimensional (13 MFCCs, excluding
the zeroth coefficient and their deltas).
For the back end, GMM-UBM [1] and the i-vector [2]

methods were considered. For the GMM-UBM, two
gender-dependent UBM models with 1024 mixtures were
trained by pooling all available gender-dependent training
data. The speaker models were then adapted from their re-
spective gender’s UBM with a relevance factor of 16. For
the i-vector framework, same UBMs and the pooled train-
ing data were used to train the total variability matrix in 20
iterations, and then, 100 dimensional i-vectors were

Table 1 Male speaker verification results of GMM-UBM method in terms of percent EER (minDCF) for the proposed algorithm,
Drugman’s VAD method [27], and Rangachari’s noise tracking method [21]. The last columns show the relative percent EER reduction
rates compared to Drugman’s VAD and Rangachari’s method, respectively

Noise type SNR level
(dB)

Proposed
algorithm

Drugman’s
VAD

Rangachari’s
noise tracking

EER reduction
compared to
Drugman’s

EER reduction
compared to
Rangachari’s

Lynx − 10 34.25 (0.64) 46.10 (0.85) 47.4 (0.87) 25.70 27.74

− 5 25.30 (0.47) 32.18 (0.60) 39.22 (0.72) 21.38 35.49

0 15.29 (0.28) 14.60 (0.27) 22.47 (0.42) − 4.72 31.95

5 8.41 (0.15) 8.41 (0.15) 13.45 (0.24) 0 37.47

10 5.42 (0.10) 6.50 (0.12) 9.93 (0.18) 16.61 45.41

F16 − 10 41.28 (0.78) 48.31 (0.88) 48.16 (0.89) 14.55 14.28

− 5 31.88 (0.60) 41.82 (0.80) 45.18 (0.84) 23.77 29.43

0 20.87 (0.39) 24.38 (0.46) 33.4 (0.60) 14.40 37.51

5 11.85 (0.22) 11.54 (0.21) 18.19 (0.34) − 2.68 34.85

10 6.95 (0.13) 7.8 (0.14) 12.46 (0.23) 10.89 44.22

Car − 10 5.96 (0.10) 6.27 (0.11) 8.94 (0.16) 4.94 33.33

− 5 4.74 (0.08) 5.88 (0.10) 8.35 (0.15) 19.38 43.23

0 4.35 (0.08) 5.50 (0.10) 8.18 (0.15) 20.91 46.82

5 4.05 (0.07) 5.27 (0.09) 7.95 (0.14) 23.15 49.05

10 4.05 (0.07) 5.12 (0.09) 7.95 (0.14) 20.90 49.05

Babble − 10 36.85 (0.69) 48.08 (0.87) 47.85 (0.88) 23.35 22.98

− 5 26.83 (0.50) 38.45 (0.72) 43.94 (0.87) 30.22 42.84

0 17.50 (0.33) 19.49 (0.36) 28.28 (0.51) 10.21 38.11

5 10.01 (0.18) 10.16 (0.18) 14.52 (0.27) 1.47 31.06

10 6.72 (0.12) 7.26 (0.13) 10.93 (0.20) 7.44 38.51

Stitel − 10 42.66 (0.79) 47.17 (0.86) 45.18 (0.84) 9.56 5.57

− 5 33.71 (0.62) 37.23 (0.69) 37.15 (0.69) 9.45 9.26

0 19.95 (0.37) 19.26 (0.36) 20.41 (0.38) − 3.58 2.25

5 9.40 (0.17) 9.71 (0.18) 11.62 (0.21) 3.19 19.10

10 5.96 (0.11) 6.95 (0.12) 9.32 (0.17) 14.24 36.05
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extracted from each utterance. Linear discriminant analysis
(LDA) was used to reduce the channel mismatch effects,
and probabilistic LDA was employed for scoring the i-
vectors. MSR Identity Toolbox [42] was used in all of the
classification and scoring phases.

Two methods were selected to compare the perfor-
mance of the proposed VAD algorithm. One of these
methods was the noise tracking algorithm proposed in
[21] (called Rangachari’s method from here on). This al-
gorithm works on the frequency bins of the conventional

Table 2 Female speaker verification results of GMM-UBM method in terms of percent EER (minDCF) for the proposed algorithm,
Drugman’s VAD method [27], and Rangachari’s noise tracking method [21]. The last columns show the relative percent EER reduction
rates compared to Drugman’s VAD and Rangachari’s method, respectively

Noise type SNR level
(dB)

Proposed
algorithm

Drugman’s
VAD

Rangachari’s
noise tracking

EER reduction
compared to
Drugman’s

EER reduction
compared to
Rangachari’s

Lynx − 10 36.91 (0.69) 43.80 (0.82) 47.71 (0.88) 15.73 22.63

− 5 27.55 (0.52) 34.51 (0.64) 41.40 (0.78) 20.16 33.45

0 16.67 (0.31) 18.63 (0.34) 28.86 (0.53) 10.52 42.23

5 9.86 (0.18) 10.80 (0.20) 17.76 (0.32) 8.70 44.48

10 6.60 (0.12) 7.61 (0.14) 11.16 (0.20) 13.27 40.86

F16 − 10 42.13 (0.79) 47.50 (0.88) 48.73 (0.89) 11.30 13.54

− 5 33.57 (0.63) 42.78 (0.79) 46.62 (0.86) 21.52 27.99

0 23.71 (0.45) 29.51 (0.55) 37.63 (0.69) 19.65 36.99

5 13.63 (0.25) 15.15 (0.28) 23.93 (0.44) 10.03 43.04

10 8.41 (0.15) 8.77 (0.16) 13.92 (0.26) 4.10 39.58

Car − 10 6.89 (0.12) 5.94 (0.11) 8.70 (0.16) − 15.99 20.80

− 5 5.14 (0.09) 5.57 (0.10) 8.33 (0.15) 7.72 38.29

0 4.78 (0.08) 5.51 (0.10) 8.12 (0.15) 13.24 41.13

5 4.49 (0.08) 5.58 (0.10) 8.04 (0.15) 19.53 44.15

10 4.56 (0.08) 5.58 (0.10) 8.12 (0.14) 18.28 43.82

Babble − 10 37.05 (0.69) 46.33 (0.86) 48.22 (0.89) 20.03 23.16

− 5 27.70 (0.52) 38.50 (0.70) 44.01 (0.81) 28.05 37.06

0 18.05 (0.33) 22.84 (0.42) 33.43 (0.62) 20.97 46

5 11.38 (0.21) 12.25 (0.23) 20.66 (0.38) 7.10 44.91

10 7.25 (0.13) 8.19 (0.15) 12.18 (0.23) 11.47 40.47

Stitel − 10 41.55 (0.78) 45.68 (0.86) 46.84 (0.87) 9.04 11.29

− 5 30.96 (0.58) 36.26 (0.68) 40.24 (0.76) 14.61 23.06

0 19.50 (0.36) 21.32 (0.40) 27 (0.5) 8.53 27.77

5 10.95 (0.20) 11.89 (0.22) 16.24 (0.30) 7.90 32.57

10 6.67 (0.12) 8.48 (0.16) 10.51 (0.20) 21.34 36.53

Table 3 SNR-based relative percent EER reduction rates for GMM-UBM method compared to Drugman’s VAD (second and fourth
column) and Rangachari’s method (third and fifth column). Computed by averaging over all noise types

SNR level (dB) Relative EER
reduction compared
to Dugman’s (male)

Relative EER reduction
compared to
Rangachari’s (male)

Relative EER
reduction compared
to Drugman’s (female)

Relative EER reduction
compared to
Rangachari’s (female)

− 10 15.62 20.78 8.02 18.28

− 5 20.84 32.05 18.41 31.97

0 7.44 31.33 14.58 38.82

5 5.02 34.31 10.65 41.83

10 14.02 42.65 13.69 40.25

Average 12.59 32.22 13.07 34.23
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spectrum, but, to make a fair comparison, it was modi-
fied to work on the mel spectrum, similar to the algo-
rithm proposed in this paper. Also, the noise tracking
algorithm does not explicitly indicate the speech-active
regions (although it gives a speech presence probability,
it is not suitable to use it directly as a VAD output).
Therefore, after the noise spectrum was estimated, and
the speech was enhanced with the spectral subtraction
method, the frames that had an energy higher than the
average energy of all frames were accepted as speech

regions. All of the other parameters were the same as
given in [21].
The other method was another recently proposed

VAD [27] (called Drugman’s method from here on). Four
voicing measures of [26], MFCCs, and two pitch trackers
were used as the features, and a neural network with a
single hidden layer of 32 neurons was used to obtain
posterior speech probabilities of frames. The reason for
choosing this method for comparison was that it had
achieved superior results against the four state-of-the-art

Fig. 7 EER values averaged over all noise types for the male data with GMM/UBM backend

Fig. 8 EER values averaged over all noise types for the female data with GMM/UBM backend
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VAD methods, as reported in [27]. Also, its memory and
computational demands are low, and it includes smooth-
ing processes before and after the neural network phase
to remove spurious values and isolated misclassifica-
tions, respectively. The method is implemented by using
the code obtained from the author’s website [43]. For

the spectral subtraction, frames decided as non-speech
were used to estimate average noise energy.

3.2 Experimental results
In the verification phase, the test data was degraded with
Lynx, F16, car, babble, and Stitel noises from the
NOISEX-92 database. The overall SNR levels were
changed from − 10 dB to 10 dB with 5 dB steps. EER
was selected as the main performance metric, which is a
widely accepted measurement in the speaker verification
literature. Also, a detection cost function (DCF) was
defined as given in Eq. 10,

DCF ¼ CFPPFP Nj PN þ CFNPFN Tj PT ð10Þ

where PFP|N is the false positive rate (FPR), PFN|T is the
false negative rate (FNR), the cost of the false acceptance
is CFP = 10, the cost of the false rejection is CFN = 1, the

Table 4 Results of the proposed algorithm with and without
the polynomial regression using GMM-UBM method. Female
data degraded with the lynx noise are used

SNR level (dB) With polynomial
regression

Without polynomial
regression

− 10 36.91 (0.69) 43.36 (0.81)

− 5 27.55 (0.52) 34.08 (0.64)

0 16.67 (0.31) 20.30 (0.37)

5 9.86 (0.18) 11.38 (0.21)

10 6.60 (0.12) 7.61 (0.14)

Table 5 Male speaker verification results of i-vector method in terms of percent EER (minDCF) for the proposed algorithm,
Drugman’s VAD method [27], and Rangachari’s noise tracking method [21]. The last columns show the relative percent EER reduction
rates compared to Drugman’s VAD and Rangachari’s method, respectively

Noise type SNR level
(dB)

Proposed
algorithm

Drugman’s
VAD

Rangachari’s
noise tracking

EER reduction
compared to
Drugman’s

EER reduction
compared to Rangachari’s

Lynx − 10 30.04 (0.55) 43.57 (0.81) 43.57 (0.81) 31.05 31.05

− 5 17.58 (0.33) 28.36 (0.53) 29.51 (0.55) 38.01 40.42

0 9.48 (0.17) 14.37 (0.27) 17.43 (0.32) 34.03 45.61

5 5.58 (0.09) 8.25 (0.14) 11.39 (0.21) 32.36 51

10 3.90 (0.06) 5.35 (0.09) 7.72 (0.14) 27.10 49.48

F16 − 10 38.60 (0.73) 48.16 (0.89) 48.93(0.89) 19.85 21.11

− 5 27.44 (0.52) 38.07 (0.71) 37.08 (0.70) 27.92 26

0 15.82 (0.30) 21.71 (0.40) 23.39 (0.43) 27.13 32.36

5 8.48 (0.15) 11.31 (0.21) 14.98 (0.27) 25.02 43.39

10 5.35 (0.09) 7.41 (0.13) 10.16 (0.18) 27.8 47.34

Car − 10 3.74 (0.06) 4.66 (0.08) 6.04 (0.11) 19.74 38.08

− 5 3.28 (0.05) 4.43 (0.07) 3.66 (0.06) 25.95 10.38

0 2.98 (0.05) 4.20 (0.06) 5.58 (0.09) 29.04 46.59

5 3.13 (0.05) 4.05 (0.06) 5.65 (0.09) 22.71 44.60

10 3.13 (0.04) 3.97 (0.06) 5.58 (0.09) 21.15 43.90

Babble − 10 31.88 (0.60) 47.24 (0.87) 47.09 (0.88) 32.51 32.3

− 5 19.95 (0.37) 32.95 (0.61) 42.66 (0.80) 39.45 53.23

0 10.85 (0.19) 18.19 (0.34) 20.18 (0.38) 40.35 46.23

5 5.65 (0.10) 9.25 (0.17) 12.00 (0.22) 38.92 52.91

10 4.35 (0.07) 6.11 (0.11) 8.56 (0.15) 28.80 49.18

Stitel − 10 37.53 (0.71) 46.56 (0.87) 45.87 (0.86) 19.39 18.18

− 5 22.24 (0.42) 32.11 (0.60) 31.72 (0.60) 30.73 29.88

0 11.23 (0.20) 17.35 (0.32) 15.75 (0.29) 35.27 28.7

5 5.81 (0.11) 9.17 (0.17) 10.24 (0.19) 36.64 43.26

10 4.05 (0.07) 6.34 (0.11) 7.41 (0.13) 36.12 45.34
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a priori probability of target tests is PT = 0.1, and the a
priori probability of nontarget tests is PN = 0.9. The
other performance metric was the minimum of the
DCF. The results of the experiments with the male
speakers using the GMM-UBM method are given in
Table 1 for all noise types and all SNR levels. The

minDCF values are given in parenthesis. Also, the last
two columns of the table show the relative percent EER
reduction between the proposed algorithm and the
others. Similarly, the experimental results for the female
speakers using the GMM-UBM method are given in
Table 2. Table 3 shows the relative percent EER

Table 6 Female speaker verification results of i-vector method in terms of percent EER (minDCF) for the proposed algorithm,
Drugman’s VAD method [27], and Rangachari’s noise tracking method [21]. The last columns show the relative percent EER reduction
rates compared to Drugman’s VAD and Rangachari’s method, respectively

Noise
type

SNR level
(dB)

Proposed
algorithm

Drugman’s
VAD

Rangachari’s noise
tracking

EER reduction compared to
Drugman’s

EER reduction compared to
Rangachari’s

Lynx − 10 31.32 (0.58) 41.84 (0.78) 44.52 (0.84) 25.14 29.65

− 5 20.16 (0.38) 29.44 (0.55) 36.76 (0.86) 31.52 45.15

0 11.82 (0.22) 15.80 (0.30) 23.93 (0.44) 25.19 50.60

5 6.81 (0.12) 8.34 (0.15) 14.35 (0.26) 18.34 52.54

10 4.13 (0.07) 4.85 (0.08) 9.64 (0.18) 14.84 57.15

F16 − 10 38.79 (0.71) 46.26 (0.85) 47.71 (0.88) 16.14 18.69

− 5 27.99 (0.52) 37.63 (0.70) 42.20 (0.78) 25.61 33.67

0 17.4 (0.33) 24.43 (0.46) 31.54 (0.59) 28.77 44.83

5 9.93 (0.18) 11.89 (0.22) 19.29 (0.36) 16.48 48.52

10 5.87 (0.10) 6.16 (0.11) 12.54 (0.23) 4.70 53.19

Car − 10 3.62 (0.06) 3.77 (0.06) 6.74 (0.12) 3.97 47.29

− 5 2.82 (0.05) 3.19 (0.05) 6.23 (0.11) 11.59 54.73

0 2.75 (0.04) 3.12 (0.05) 6.09 (0.11) 11.86 54.84

5 2.75 (0.04) 3.04 (0.05) 6.02 (0.11) 9.54 54.32

10 2.75 (0.04) 3.04 (0.05) 6.09 (0.11) 9.54 54.82

Babble − 10 33.21 (0.63) 44.81 (0.84) 46.12 (0.84) 25.88 27.99

− 5 21.68 (0.40) 34.15 (0.63) 40.32 (0.75) 36.51 46.23

0 12.98 (0.24) 20.08 (0.37) 27.19 (0.51) 35.35 52.26

5 6.89 (0.12) 9.42 (0.17) 16.75 (0.31) 26.85 58.86

10 4.06 (0.07) 5.07 (0.09) 10.73 (0.19) 19.92 62.16

Stitel − 10 33.21 (0.63) 46.04 (0.85) 45.17 (0.83) 27.86 26.47

− 5 26.83 (0.50) 34.37 (0.64) 35.53 (0.65) 21.93 24.48

0 15.08 (0.28) 18.92 (0.35) 22.33 (0.42) 20.29 32.46

5 8.12 (0.14) 10.37 (0.19) 13.77 (0.26) 21.69 41.03

10 4.20 (0.07) 6.23 (0.11) 8.99 (0.17) 32.58 53.28

Table 7 SNR-based relative percent EER reduction rates for i-vector method compared to Drugman’s VAD (second and fourth
column) and Rangachari’s method (third and fifth column). Computed by averaging over all noise types

SNR level (dB) Relative EER reduction
compared to Drugman’s
(male)

Relative EER reduction
compared to Rangachari’s
(male)

Relative EER reduction
compared to Drugman’s
(female)

Relative EER reduction
compared to Rangachari’s
(female)

− 10 24.50 28.14 19.79 30.01

− 5 32.41 31.98 25.43 40.85

0 33.16 40.13 24.29 46.99

5 31.13 47.03 18.58 51.05

10 28.19 47.04 16.31 56.12

Average 29.87 38.86 20.88 45
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reductions for each noise level (averaged over all noise
types). In addition to the tables, EER values averaged
over all noise types are given as bar graphs in Figs. 7 and
8 for the male speakers and the female speakers,
respectively.
Before proceeding to the results for the i-vector

method, it may be beneficial to verify that the polyno-
mial regression is the main reason for the increased veri-
fication performance. For this purpose, the k-means
classification is applied directly to the frames in the

bands, without using the polynomial regression. All
other parts of the algorithm (noise estimation, sufficient
speech evidence thresholding, etc.) are the same. Table 4
shows the results of this case for the female data under
the lynx noise. It is clear that directly classifying the
frames as speech and noise is not as effective as the
polynomial representation. The performance of the
system without the polynomial regression is worse than
the Drugman’s VAD. Therefore, it is clear that the per-
formance of the proposed algorithm can be attributed to

Fig. 9 EER values averaged over all noise types for the female data with i-vector backend

Fig. 10 EER values averaged over all noise types for the female data with i-vector backend
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both the polynomial regression and the sufficient speech
evidence threshold.
The experimental results for the male and female

speakers using the i-vector method are given in Tables 5
and 6, respectively. Table 7 shows the relative percent
EER reductions for each noise level (averaged over all
noise types). The relative EER reduction rates are also
shown in the last two columns of Tables 5 and 6. EER
values averaged over all noise types are given as bar
graphs in Figs. 9 and 10 for the male speakers and the
female speakers, respectively.

3.3 Discussion
As seen in the tables given above, the proposed algo-
rithm showed better verification performances than the
other methods except a few cases for the GMM-UBM
method. It is also shown that all methods’ performances
increased by using the i-vector technique, but the
proposed method benefits from the modeling capacities
of the i-vectors more than the others. The superior
performance of the proposed method may be due to the
selection of useful speaker/speech information from the
noisy speech signal. These regions were effectively ex-
tracted with the aid of the polynomial regression, and
the sufficient speech evidence thresholding technique.
Also, some of the low energy speech regions may be re-
covered by the polynomial regression if related frames
also exceed the threshold. Contrary to this, frames with
high energy speech only in a few bands may be
discarded, due to the presence of the noise in most of
the bands, which are expected to degrade the system’s
performance.
It is verified that the linear function chosen for deter-

mining the sufficient speech evidence is a good approxi-
mation to extract speech/speaker information under
noise. Instead of a linear function between the end
points, other types of functions, such as an exponential,
may increase the verification performance. However, the
authors prefer to analyze the performance differences of
these functions in a future work to avoid an excessively
long paper.
Drugman’s VAD works with a conventional VAD’s

principle: detects speech regions, but does not produce
any information about their usefulness, which probably
deteriorates the verification performance. Hence, for the
text-independent verification, a conventional VAD does
not offer any advantages over the proposed algorithm.
Rangachari’s noise tracking algorithm gave the worst

overall verification performance. As discussed in Section
3.1, since the enhanced speech is treated as a clean
speech, only the frames with an energy that is higher
than the average energy were used for verification in this
method. Instead of this kind of thresholding, a more
suitable way to extract the speech-dominant regions

may positively affect its results. Also, the speaker infor-
mation may be damaged while the algorithm was trying
to track the noise.

4 Conclusions
A novel algorithm is proposed in this work to extract
speaker information in a robust manner. The core of the
algorithm is the polynomial regression, applied in each fil-
ter band. Also, speech presence in each band is considered
for a VAD-like final decision. The thresholding method,
called sufficient speech evidence, increases the verification
performance, especially for the low SNR levels. The
algorithm also fits seamlessly to the conventional MFCC
extraction scheme. The algorithm does not strictly search
speech on/off points; instead, the focus is to extract most
informative frames. Therefore, it is much more suitable
for text-independent systems. In the experiments, the pro-
posed algorithm was compared to a recently introduced
neural network-based VAD and a speech enhancement
algorithm that successfully tracks the additive noise signal.
The proposed algorithm produced superior results than
the others with both the conventional GMM-UBM system
and the state-of-the-art i-vector system. It was verified
that the frames selected by the proposed method captured
more speaker information than a VAD.
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