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Abstract

In speech enhancement, noise power spectral density (PSD) estimation plays a key role in determining appropriate
de-nosing gains. In this paper, we propose a robust noise PSD estimator for binaural speech enhancement in time-
varying noise environments. First, it is shown that the noise PSD can be numerically obtained using an eigenvalue
of the input covariance matrix. A simplified estimator is then derived through an approximation process, so that the
noise PSD is expressed as a combination of the second eigenvalue of the input covariance matrix, the noise
coherence, and the interaural phase difference (IPD) of the input signal. Later, to enhance the accuracy of the noise
PSD estimate in time-varying noise environments, an eigenvalue compensation scheme is presented, in which two
eigenvalues obtained in noise-dominant regions are combined using a weighting parameter based on the speech
presence probability (SPP). Compared with the previous prediction filter-based approach, the proposed method
requires neither causality delays nor explicit estimation of the prediction errors. Finally, the proposed noise PSD
estimator is applied to a binaural speech enhancement system, and its performance is evaluated through computer
simulations. The simulation results show that the proposed noise PSD estimator yields accurate noise PSD
regardless of the direction of the target speech signal. Therefore, slightly better performance in quality and
intelligibility can be obtained than that with conventional algorithms.
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1 Introduction
The purpose of speech enhancement is to improve the
quality and intelligibility of speech signals by suppressing
daily environmental noise while allowing a minimal level
of speech distortion. The Wiener filter and statistic
model-based estimators [1] are well-known examples of
the speech enhancement algorithm. Since the de-noising
gains of the speech enhancement algorithm are
fundamentally determined by the noise power spectral
density (PSD), it is important to obtain an accurate noise
PSD estimate. Therefore, extensive research has been
conducted on noise PSD estimations using a single-
microphone system [2–5]; however, they often exhibit

limited performances in situations with non-stationary
noise or a low signal-to-noise (SNR) ratio [6].
To overcome the limitations of single-channel systems,

various multi-channel techniques have been developed,
including the minimum variance distortionless response
(MVDR) [7] and the multi-channel Wiener filter (MWF)
with constraints [8–12]. The MVDR is a widely used
spatial filter in multi-channel systems that minimizes
output power under the constraint that the desired
signal is not affected [7]. On the other hand, the MWF
provides an optimal solution for broadband noise
reduction from a minimum mean square error (MMSE)
perspective. Speech-distortion-weighted MWF (SDW-
MWF) has been introduced to control speech distortion
and noise reduction [8]. Algorithms such as SDW-MWF
and MVDR preserve speech binaural cues, but distort
noise binaural cues [10]. Therefore, extensions for
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preserving the binaural cues of directional sources using
additional cost functions or linear constraints have been
proposed [10, 11]. As a result, another extension to pre-
serve interaural coherence (IC) has been proposed [12]
as part of a study of spatially isotropic noise, the spatial
characteristic of which is represented by IC.
Although MWF-based extension algorithms can

achieve significant noise reduction, there is always a
trade-off between noise reduction and cue preserva-
tion regarding directional sources and background
noise. One way to overcome the problem of binaural
cue preservation is to apply a real-valued equal gain
to both sides, rather than applying a complex-valued
filter. This method diminishes noise reduction
performance by acting as a single-channel noise
reduction method, but preserves all binaural cues
[13]. MWF performance critically depends on the
statistical estimates of desired and undesired signal
components. The Voice Activity Detector (VAD) is a
general method for estimating noise or speech
statistics, where the noise statistic can be updated
during a noise-only time-frequency (TF) bin index.
However, this method has the drawback that when
the noise is time-varying and non-stationary, more so-
phisticated techniques are required to estimate signal
statistics.
Many studies on binaural or multi-channel speech

enhancement [14–18] based on real-valued gain func-
tion have shown that superior speech quality can be
obtained by utilizing spatial information for both tar-
get speech and noise. Coherence-based binaural noise
reduction was proposed in [14] and proven effective
in terms of tracking the PSD of the diffuse noise.
However, the effectiveness was validated using only
the target speech source located in front of the
listener. Other studies [15, 17] have proposed a
prediction filter-based binaural noise PSD estimator
where the diffuse noise PSD was obtained by solving
a second-order equation formulated using a channel
prediction model. Theoretically, this method should
enable the device to obtain a true noise PSD when
the target is situated at any location within a given
distance of the listener. However, this approach
requires a delay between channel signals to ensure
the causality condition for the prediction filter, and
the prediction error needs to be explicitly calculated.
These factors directly affect the PSD estimator
performance [16, 19].
Recently, neural network-based speech enhancement

algorithms have been investigated [20, 21]. These
algorithms are typically divided into two processes. In
the learning process, features are extracted from a
large training data set to learn the model and apply
speech enhancement gains based on that model in

the speech enhancement part. Although extensive re-
search has been conducted on speech enhancement
using neural networks, it is difficult to apply portable
applications because of its high complexity.
In this paper, a new noise PSD estimator for a binaural

speech enhancement system that can be operated in a
fast time-varying diffuse noise field is presented. First, it
is established that noise PSD can be estimated from the
eigenvalues of the input covariance matrix without de-
pendence on the target speech direction. Then, a
method of approximating the obtained noise PSD is pre-
sented. The result is that the smaller eigenvalue is com-
bined with the noise correlation function and the
binaural phase difference.
The auto- and cross-PSDs of the input binaural sig-

nal are often estimated using a first-order recursive
averaging filter [22]. In a rapidly changing noise en-
vironment, averaging with a short time constant is re-
quired to quickly reflect the signal statistics of the
signal PSDs. However, the use of short time constants
leads to bias in PSD estimates, which in turn
degrades the overall performance of the speech
enhancement system. In this paper, a method of
compensating for the bias is proposed that uses the
statistical characteristic of eigenvalues with a minor
increase of the computational cost. The proposed
algorithm can be adopted widely in speech-related
applications, such as hearing aids and mobile phones.
The remainder of this paper is organized as follows.

Section 2 presents a description of the general two-
channel speech enhancement algorithm. A new noise
PSD estimator based on the eigenvalue of the input
covariance matrix is presented in Section 3. In
Section 4, a compensation method to improve the
performance of the noise estimator in a practical
environment is discussed. Section 5 presents the
simulation results, in which the performance of the
proposed algorithm is compared with the results
achieved using the conventional techniques. Finally,
Section 6 concludes this paper.

2 Configuration of the speech enhancement
algorithm for binaural systems
In this section, we begin with a mathematical model-
ing of noisy input signals in noisy environments.
Following that, the configuration of a binaural speech
enhancement system that can be applied to the pro-
posed noise PSD estimator is briefly described.

2.1 Input signal model
The binaural noisy input signals, xi(t), corrupted by
additive noise in the temporal domain can be writ-
ten as
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xi tð Þ ¼ s tð Þ⊗hi tð Þ þ ni tð Þ; i ¼ L;R; ð1Þ
where s(t) is the speech signal and ni(t), i = L, R are the
environmental noises received by the left and right
channel microphones, respectively, at time index t. hi(t)
represents the acoustic impulse response from the
speech source to the i-th channel microphone and ⊗
denotes the convolution operation. After applying the
short-time Fourier transforms (STFTs), (1) can be rewrit-
ten in the frequency domain as

Xi k; lð Þ ¼ S k; lð ÞHi k; lð Þ þ Ni k; lð Þ; i ¼ L;R; ð2Þ
where k and l are the frequency and frame indices, re-
spectively. In this paper, the noise, Ni(k, l), is assumed as
a diffuse noise which is a non-directional signal with
equal power and random phase [23, 24]. Under the as-
sumption that the speech and noises are uncorrelated,
the auto- and cross-PSD of the noisy input signals are
obtained as

Φii
X k; lð Þ ¼ Hi k; lð Þj j2ΦS k; lð Þ þΦN k; lð Þ; ð3Þ

Φij
X k; lð Þ ¼ Hi k; lð ÞH�

j k; lð ÞΦS k; lð Þ
þΦij

N k; lð Þ; i; j
¼ L or R; ð4Þ

where ∗ denotes the complex conjugate, ΦS(k, l) and
ΦN(k, l), respectively, are the speech and noise auto-PSDs,
i.e., ΦS(k, l) = E[|S(k, l)|2] and ΦN(k, l) = E[|NL(k, l)|

2] ≈
E[|NR(k, l)|

2]. Lastly, Φij
N k; lð Þ ¼ E Ni k; lð ÞN�

j k; lð Þ
h i

is the
cross-PSD between the left and right channel noises.
In practice, the PSDs of the noisy input signals are

obtained using a first-order recursive averaging filter
[22, 25, 26],

~Φ
ij
X k; lð Þ ¼ α ~Φ

ij
X k; l−1ð Þ þ 1−αð ÞXi k; lð ÞX�

j k; lð Þ; ð5Þ

where α ∈ [0, 1] is the smoothing factor that controls the
trade-off relationship between the fast capturing of the
time-varying statistics of the signals and the low-
variance estimation of the spectrum.

2.2 Binaural speech enhancement system
Figure 1 presents a block diagram of the general binaural
speech enhancement system consisting of two micro-
phones at the left and right ear positions of the listener.
First, the noisy input signals are picked up by the left
and right channel microphones and are transformed
into frequency-domain signals via STFT. After
estimating the noise, the de-noising gain, Gi(k, l), is
determined based on the estimated noise and input
PSDs. The enhanced speech signal, Si k; lð Þ , is then
obtained as

Ŝ i k; lð Þ ¼ Gi k; lð Þ⋅Xi k; lð Þ; i ¼ L or R: ð6Þ

Various investigations have been performed on the
noise reduction gain in single-channel [1, 27] and multi-
channel speech enhancement systems [7–12, 28]. For
binaural applications, a system that is capable of gener-
ating binaural outputs and preserving binaural cues such
as the interaural level difference (ILD) and interaural
time difference (ITD) is preferred [29]. These binaural
cues are crucial for spatial awareness and also important
for speech intelligibility [30, 31]. To obtain the enhanced
binaural output with interaural cue preservation, a real-
valued equal gain is often applied to both left and right
channels. For example, if the left and right channel spec-
tra gains are computed using the Wiener filter approach,
the equal gain is determined as [32]

G k; lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GL k; lð Þ⋅GR k; lð Þ

p
; ð7Þ

Gi k; lð Þ ¼ ξ i k; lð Þ
1þ ξ i k; lð Þ ; ð8Þ

where ξ i k; lð Þ ¼ Φi
S k; lð Þ=ΦN k; lð Þ is an a priori SNR

that can be estimated using the decision-directed
method [1]. Instead of (7), more sophisticated multi-
channel techniques such as a multi-channel Wiener
filter with various constraints [8–12] and generalized
sidelobe canceller (GSC)-based method [33, 34] can

Fig. 1 Block diagram of the binaural speech enhancement system
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be used. Although such techniques have demonstrated
great potential in reducing both stationary and non-
stationary noises, combining spectral and spatial
filtering, there is always a trade-off between noise re-
duction performance and interaural cue preservation
for interfering sources and the background noise [13].
Therefore, in this paper, real-valued gain (7) is applied
to preserve the perceptual impression of the acoustic
scene. In any case, the accuracy of the estimated
noise PSD has a direct impact on the performance of
the speech enhancement system. Therefore, in this
paper, we propose a robust noise PSD estimation al-
gorithm for the binaural speech signal.

3 The proposed noise PSD estimator
In this section, we introduce the proposed noise PSD
estimator based on eigenvalue of input covariance
matrix. After that, approximation of the proposed
estimator based on interaural binaural cues is presented.

3.1 Noise PSD estimation based on eigenvalues
Under the assumption that the noises are uncorrelated,
the cross-correlation between the left and right channel
noises becomes zero for most frequencies; however, dif-
fuse noises in practical environments have significant
correlation, especially at low frequencies [35]. Several
coherence models for diffuse noise field have been pro-
posed [36–38]. It is well-known that spatial coherence
between two omnidirectional microphones in a spheric-
ally isotropic field can be modeled as real-valued analytic
sinc function. In subsequent studies, several coherence
models for binaural noise field considering the shadow-
ing effect of the head have been proposed [22, 37, 38]. In
this paper, we use the sinc function ΓN = sinc(2πfdLR/c),
where dLR and c are the distance between the left and
right microphones and the speed of sound, respectively, to
model the coherence in the diffuse noise field. This was
chosen because it is a simple and effective method and
applied for many binaural speech enhancement
techniques [15, 18, 39]. In addition, the head shadowing
effect can be approximated simply by adjusting the dis-
tance between the microphones [17]. Using the coherence
model, the cross-correlation between the left and right
channel diffuse noise of a binaural system can be
expressed as ΦLR

N ¼ ΓNΦN [17]. Then, the 2 × 2 covari-
ance matrix of the binaural input signal in (2) becomes

R ¼ ΦLL
X ΦLR

X

ΦRL
X ΦRR

X

" #

¼ HLj j2ΦS þΦN HLH�
RΦS þ ΓNΦN

HRH�
LΦS þ ΓNΦN HRj j2ΦS þΦN

" #
; ð9Þ

where we omitted the frequency and frame indices for

the sake of simplicity. Furthermore, the eigenvalues of
the covariance matrix in (9) can be computed by solving
a characteristic equation:

λ2− ΦLL
X þΦRR

X

� �
λþΦLL

X ΦRR
X − ΦLR

X

�� ��2 ¼ 0: ð10Þ
The above characteristic equation can be rewritten

using the signal and noise PSDs as

λ2−λ HLj j2 þ HRj j2� �
ΦS þ 2ΦN

� �
þΦNΦS HLj j2 þ HRj j2−2ΓNℜ HLH

�
R

� �� �� �
þΦ2

N 1−Γ2N
� �

¼ 0; ð11Þ
where R ∙f g denotes real part. Using the fact that auto-
and cross-PSD of target speech can be expressed by ΦS

HiH�
j ¼ Φij

X−ΦN , (11) can be rearranged for the noise
PSD ΦN:

N2
Φ 1−Γ2

N

� �þΦN − ΦLL
X þΦRR

X

� �þ 2ΓNℜ ΦLR
X

� �� �
− λ2−λ ΦLL

X þΦRR
X

� �� � ¼ 0:

ð12Þ
Now, by solving (12), the noise PSD is obtained as

ΦN ¼ 1

2 1−Γ2N
� �� f ΦLL

X þΦRR
X

� �
−2ΓNℜ ΦLR

X

� �
−

ffiffiffiffiffi
Δt

p
g;
Δt

¼ − ΦLL
X þΦRR

X

� �þ 2ΓNℜ ΦLR
X

� �� �2

þ4 1−Γ2
N

� �
λ2−λ ΦLL

X þΦRR
X

� �� �
:

ð13Þ
It should be noted that both the first and second ei-

genvalues of the input covariance matrix satisfy the
above equation.
The estimator in (13) can be compared with the

previous channel prediction-based noise PSD estima-
tor in [17], where the noise PSD was obtained by
solving a quadratic equation formed using the signals
of the channel prediction filter. By substituting (3)
and (4) into (13), it is straightforward to show that
the estimator in (13) and the one in [17] are equiva-
lent. The details are provided in the Appendix. Thus,
the two estimators are expected to achieve numeric-
ally identical noise PSD under an ideal condition. On
the other hand, another noise PSD estimator using
the prediction filter was proposed in [15]. That
method in [15] estimates the binaural noise PSD
using the target-blocking signal based on the inter-
aural transfer function (ITF) information obtained
through the two-channel prediction filter.
However, there are two major differences when the

implementation is considered. First, the algorithm in
[17] requires an appropriate delay between channel
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signals to satisfy the causality of the system. It was
shown in [40] that inappropriate delays could
degrade the performance of the algorithm. Second,
the prediction error and ITF need to be calculated
explicitly. Therefore, inaccuracies occurring in the
process of calculating the prediction error can lead
to a bias of the estimated noise PSD. To reduce this
bias, [13] proposed a method of calculating those
variables using a time-domain adaptive prediction
error filter (PEF). However, the performance of the
adaptive PEF depends on the filter order, the input
SNR, and the delay between the input signals. On
the other hand, the proposed algorithm obtains the
noise PSD estimate directly from the auto- and
cross-PSD of the binaural input signal. Therefore, it
can be less sensitive to the bias error of the esti-
mated variables, compared with the method in [13].
In the next section, we first present a method of
simplifying the estimator in (13), and later, a method
of reducing the bias error will be addressed.

3.2 Approximation of the eigenvalue-based noise PSD
estimator
From the characteristic equation in (11), the two eigen-
values of the covariance matrix are calculated as

λ1;2 ¼
HLj j2 þ HRj j2� �

ΦS þ 2ΦN � ffiffiffiffi
Δ

p

2
; ð14Þ

where

Δ ¼ HLj j2 þ HRj j2� �2
Φ2

S þ 8 HLj j
� HRj jΦSΦNΓN cos ∠ΦLR

S

� �þ 4Γ2
NΦ

2
N ð15Þ

In our previous study [16], Eq. (15) was approxi-
mated as Δ ≈ ((|HL|

2 + |HR|
2)ΦS + 2ΦNΓN)

2 based on
assumptions that ILDs and ITDs are negligible. As a
result, the second eigenvalue was simplified to λ2
=ΦN(1 − ΓN), from which the noise PSD was obtained
as ΦN≈λ2= 1−ΓNð Þ . However, ITD at low frequencies
normally shows a dependency on the direction of the
sound source [29], and therefore affects the direc-
tional perception of the sound source. In addition,
the noise coherence is particularly high at low fre-
quencies; this can amplify the bias caused by an erro-
neous approximation at low frequencies. Thus,
ignoring ITD causes significant errors in the noise
PSD estimates, especially when the speech is located
anywhere but in front of the listener. In this paper,
we present a simple but accurate approximation of
(15), which is effective for not only all target direc-
tions but also all frequency bands.

Creating a new term, 4 HLj j2 þ HRj j2� �
ΦSΦNΓN cos

∠ΦLR
S

� �
, and using the fact that 4Γ2NΦ

2
N ¼ 4Γ2NΦ

2
N

cos2 ∠ΦLR
S

� �þ sin2 ∠ΦLR
S

� �� �
, we can rewrite (15) as

Δ ¼ HLj j2 þ HRj j2� �
ΦS þ 2ΓNΦN cos ∠ΦLR

S

� �� �2
−4 A−Bð Þ;

A ¼ jHLj−; jHRjð Þ2ΦSΦNΓN cos ∠ΦLR
S

� �
;

B ¼ sin2 ∠ΦLR
S

� �
Φ2

NΓ
2
N ;

ð16Þ
where ∠x denotes the angle in radians of the function x.
Now, Δ is composed of three terms including a perfect
square. Because the low-frequency ILDs are known to
be insignificant [41], it can be generally assumed that
|HL| ≈ |HR| at low frequencies. At high frequencies, on
the other hand, the noise coherence ΓN becomes insig-
nificant. Thus, it is possible to ignore the term A in (16).
The third term B consists of two functions; sin2 ∠ΦLR

S

� �
and Γ2

N . The sin2 ∠ΦLR
S

� �
function will have small values

at low frequencies, regardless of the location of the
speech source, due to the relatively long wavelength
compared with the microphone distance. However, at
high frequencies, it monotonically increases according to
the angle of the speech source until the relative phase
difference reaches 90∘. However, because the noise co-
herence ΓN will be small at high frequencies, the multi-
plicative combination of sin2 ∠ΦLR

S

� �
and ΓN will be still

insignificant, compared with the perfect square term.
Based on these observations, we approximate (16) as

Δ≈ HLj j2 þ HRj j2� �
ΦS þ 2ΓNΦN cos ∠ΦLR

S

� �� �2
:

ð17Þ
By substituting (17) to (14), the second eigenvalue can

be expressed as

λ2≈ΦN−ΓN cos ∠ΦLR
S

� �
ΦN : ð18Þ

In practice, the IPD of the target speech, ∠ΦLR
S , is not

available. Thus, in this paper, we use the IPD estimate
obtained from the noisy input instead of ∠ΦLR

S . Several
studies have been conducted on the cross phase of input
and clear speech in noisy environments. Although ∠ΦLR

S

and ∠ΦLR
X are different, the cos ∠ΦLR

S

� �
value used in Eq.

(18) is combined with the noise coherence, approaches
zero at high frequencies, and has a meaningful value
only at low frequencies. Experimental results show that
using ∠ΦLR

X instead of ∠ΦLR
S has a negligible effect on

the final result. Finally, we estimate the noise PSD using
(18) as

ΦN ¼ λ2
1−ΓN cos ∠ΦLR

X

� � ; ð19Þ

where ∠ΦLR
X denotes the IPD estimate obtained from the
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noisy input signal. The practical noise coherence shows
as lower than one due to the head influence [17, 38, 42].
Thus, by setting the upper bound of the noise coherence
as less than one, the divide-by-zero problem can be
avoided. Unlike the complicated noise PSD equation in
(13), the above equation can estimate the noise PSD
with only the second eigenvalue and IPD obtained from
the noisy input signals. Thus, the accuracy of the noise
PSD estimate in (19) is affected by the accuracy of the
second eigenvalue and IPD of the target speech. The
second eigenvalue in the numerator represents the
power of the uncorrelated components contained in the
two microphone signals, and thus, it is independent of
the presence and direction of the target speech. Since
the IPD in the denominator is combined with the noise
coherence, the direction of the target speech is consid-
ered only at low frequencies below 500 Hz. The error
caused by the approximation will be measured in com-
puter simulations.

4 Compensation for underestimation of noise PSD
When the auto- and cross-PSDs of the input signal are
estimated using the first-order recursion algorithm in
(5), the smoothing factor, α, has to cope with two
contradictory constraints: capturing the time-varying
statistics of the signal component and reducing the esti-
mator variance [22, 26, 43]. When the noise statistics are
fast time varying, capturing of the instantaneous statis-
tics of the signals is necessary. To this end, a short-term
averaging needs to be conducted. However, the short-
term averaging can result in bias error of the estimated
PSD [16, 25]. In this section, we propose a method of
compensating the bias using the speech presence
probability.

4.1 Bias compensation for eigenvalue
In the absence of speech, the two eigenvalues of the in-
put covariance matrix in (9) are expected to be identical.
However, the fluctuation of auto- and cross-PSD esti-
mates causes the first eigenvalue to be larger and the
second eigenvalue to be smaller than the actual values,
while it is still satisfied that the sum of diagonal ele-
ments of the covariance matrix, i.e., the sum of left and
right channel noise PSDs, is identical to the sum of ei-
genvalues. Thus, in the absence of speech, it is possible
to obtain a more accurate eigenvalue by averaging the
two eigenvalues as given by

λc ¼ βnλ2 þ 1−βn
� �

λ1; ð20Þ

where βn is a weighting parameter. On the other hand,
during the presence of speech, only the second eigen-
value reflects the noise power. Thus, the eigenvalue

averaging in (20) can be applied only during the speech
absence period.
To this end, we propose a soft-decision approach simi-

lar as in [44] in which the weighting parameter is deter-
mined based on the SPP:

βn ¼ β
0
n þ 1−β

0
n

� 	
⋅p; ð21Þ

where β
0
n is a minimum bound of the weighting param-

eter and p is an estimate of SPP. When a frequency band
is with high SPP (p ≈ 1), βn ≈ 1, and λc ≈ λ2. Thus, during
the presence of speech, only the second eigenvalue is
reflected in the noise PSD estimate. When the frequency
band is with low SPP (p ≈ 0), βn becomes β

0
n , and the

two eigenvalue are combined with the minimum bound,
β

0
n. Accordingly, the bias compensation for eigenvalue

in (20) is mainly applied only to frequency bands
with low SPP, i.e., noise-dominant frequency bands.
Using (17), the maximum eigenvalue can be approximated
as λ1 ¼ HLj j2 þ HRj j2� �

ΦS þΦN 1þ ΓN cos ∠ΦLR
S

� �� �
.

Thus, the averaged eigenvalue using (20) can be expressed
as λc ¼ ΦN 1þ ΓN cos ∠ΦLR

S

� �
−2βΓN cos ∠ΦLR

S

� �� �þ
1−βð Þ HLj j2 þ HRj j2� �

ΦS , which results in a new noise
PSD estimator:

ΦN ¼ λc− 1−βn
� �

HLj j2 þ HRj j2� �
ΦS

1þ ΓN cos ∠ΦLR
S

� �
−2βnΓN cos ∠ΦLR

S

� � : ð22Þ

In a speech dominant region, i.e., βn ≈ 1, the second
term in the numerator goes to zero. On the other hand,
in a speech absence region, i.e., βn ≈ 0, we have ΦS ≈ 0.
Therefore, the second term in the numerator can be ig-
nored. Based on these observations, the new noise PSD
estimator based on the averaged eigenvalue can be re-
expressed as

~ΦN ¼ λc
1þ ΓN cos ∠ΦLR

X

� �
−2βnΓN cos ∠ΦLR

X

� � : ð23Þ

The minimum bound of the weighting parameter, β
0
n ,

is experimentally determined as the one providing the
lowest logarithmic error (LogErr) between the true and
estimated noise PSD. A more detailed procedure can be
found in the experimental evaluation. Also, the bands or
regions with low SPPs still need to be identified, so in
the next subsection, we propose a method of estimating
SPP using eigenvalue ratios.

4.2 Estimation of the speech presence probability
The eigenvalue compensation method introduced in the
previous subsection requires an SPP estimator in order
to obtain p. Energy ratio-based approaches [27, 44–47]
have been widely used to determine the speech activity
region. Under the assumption that the left and right
channel diffuse noise are uncorrelated, (14) is reduced to
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λ1 ¼ HLj j2 þ HRj j2� �
ΦS þΦN ¼ Φ̂S þΦN and λ2 =ΦN.

Then, a priori SNR can be calculated as ξ ¼ ΦS=ΦN

¼ λ1=λ2−1, which indicates that the eigenvalue ratio λ1/
λ2 can be used as an alternative to the energy ratio.
Thus, in this paper, the energy ratio-based SPP in [3] is
modified using the eigenvalue ratio.
First, using the eigenvalue ratio, a local likelihood of

speech is calculated as

PL k; lð Þ ¼ 0 if 10 log10ρL k; lð Þ < TL

1 otherwise



; ð24Þ

where

ρL k; lð Þ ¼
Pk

0 ¼kþk1
k
0 ¼k−k1

λ1 k
0
; l

� 	
= 2k1 þ 1ð ÞPk

0 ¼kþk1
k
0 ¼k−k1

λ2 k
0
; l

� �
= 2k1 þ 1ð Þ

−1:

The eigenvalues of adjacent 2k1 bands are averaged
prior to the likelihood calculation to reduce random
fluctuation. The threshold, TL, can be empirically deter-
mined using a method similar to that in [3]. In order to
improve the robustness of performance, an additional
frame likelihood of speech is measured as

PF lð Þ ¼ 0 if 10 log10ρF lð Þ < TF lð Þ
1 otherwise



; ð26Þ

where

ρF lð Þ ¼ βSPPρF l−1ð Þ þ 1−βSPP
� � 1

N

X
k
ρL k; lð Þ:

Similar to the methods in [48, 49], the threshold, TF(l),
is updated using a convex combination:

TF lð Þ ¼ βcom min BSþN lð Þð Þ
þ 1−βcom
� �

max BN lð Þð Þ; ð28Þ
where 0 ≤ βcom ≤ 1 is a weighting factor and BS +N(l) and
BN(l) denote buffers corresponding to noisy and noise-
only cases, respectively, in which the log ratios of L con-
secutive frames, 10log10ρF(m), l − L + 1 ≤m ≤ l, are stored.

Now, the threshold, TF(l), is adaptively adjusted according
to the convex combination between the minimum of the
elements of BS +N(l) and the maximum of the elements of
BN(l). Finally, the SPP is estimated as

p k; lð Þ ¼ αSPPp k; l−1ð Þ þ 1−αSPPð Þp 0 k; lð Þ; ð29Þ

where p' (k, l) = PL(k, l) · PF(l) and 0 ≤ αSPP ≤ 1 is a smooth-
ing parameter. It is important to mention that the pro-
posed SPP estimator in (29) re-uses the eigenvalues
computed using (10).

4.3 The proposed noise PSD estimator with SPP-based
eigenvalue compensation
A block diagram of the proposed noise PSD estimator
is depicted in Fig. 2. First, the auto- and cross-PSD
are estimated using a first-order recursive averaging
filter, as in (5). Two eigenvalues are computed using
the estimated PSDs as in (10), and the energy
compensation in (20) is selectively applied to the
noise-dominant regions. Finally, the PSD of the noise
is obtained using (23). A new binaural speech
enhancement system can be developed by replacing
the noise PSD estimation block in Fig. 1 with the
proposed noise PSD estimator in Fig. 2.

5 Computer simulations
In this section, the performance of the proposed noise
PSD estimator is evaluated through computer simula-
tions in a binaural speech enhancement situation and
compared with those of the previous methods. All
speech sentences used in the computer simulations
were taken from the TIMIT database [50] and
convolved with binaural room impulse responses
(BRIRs) from the Oldenburg database [51] to simulate
target directions. Binaural noises taken from the ETSI
database [52] and Oldenburg database were added to
the target speech at various SNRs. The left and right
channel input signals were decomposed into 32 ms
subframes with 50% overlap at a sampling rate of

Fig. 2 Block diagram of the proposed noise PSD estimator
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16 kHz. The length of the subframe was determined
to satisfy the rank-1 property [53].

5.1 Bias analysis of the approximated noise PSD estimator
First, we measured the total error caused by the approxi-
mation in (19). To this end, the logarithmic error
(LogErr) [5] between the noise PSDs obtained using the
ideal estimator, Φo

N k; lð Þ in (13), and its approximated
version in (19) were calculated:

LogErr ¼
X
l

X
k

10 log10
Φo

N k; lð Þ
ΦN k; lð Þ

����
����: ð30Þ

In the simulation of 5.1 and 5.2, the 20 sentences from
the TIMIT database were convolved with BRIRs from
the Oldenburg database measured in an office environ-
ment to generate the target speech signal. Results were
obtained using various noise types at 0 dB (Fig. 3a, b)
and 5 dB (Fig. 3c, d) SNRs. At low frequencies below
1 kHz (Fig. 3a, c), the maximum LogErr was less than
0.3 dB, which is lower than the just-noticeable level
difference [54]. At high frequencies from 1 to 8 kHz
(Fig. 3b, d) where the noise coherence is relatively insig-
nificant, the maximum LogErr was 0.03 dB, which is
much lower than that found at low frequencies. The re-
sults in Fig. 3 show that the effect of approximation was
fairly independent of the noise type and target direction.
We also measured the cosine difference between the clean

and noisy cross-PSD phase, cos ∠ΦLR
X

� �
, and the cos ∠ΦLR

S

� �
results are depicted in Fig. 4a, b. In addition, the correspond-
ing scaling differences between 1= 1−ΓN cos ∠ΦLR

X

� �� �
and 1

= 1−ΓN cos ∠ΦLR
S

� �� �
are shown in Fig. 4c, d. The results at

the low frequencies, below 1 kHz, are presented in (a) and
(c), while the results above 1 kHz are presented in (b) and
(d). Figure 4 shows that even at the low frequencies the dif-
ference between the noisy and clean speech phases had a
negligible effect on the scaling factor. Consequently, in terms
of accuracy and robustness, the estimator in (19) with the
noisy cross-PSD phase can be considered a very good ap-
proximation of the ideal estimator in (13).

5.2 Effectiveness of the eigenvalue compensation method
First, to implement the eigenvalue compensation scheme,

the minimum bound of the weighting parameter, β
0
n, needs

to be determined. To this end, we measured the LogErr
under the speech absence hypothesis (p = 0) by changing

β
0
n . The noise PSD was obtained using (23) with the

energy-compensated eigenvalue, λc. The results for nine
different noise types are displayed in Fig. 5, where it can
be observed that the minimum LogErr was obtained at

around 0:2 < β
0
n < 0:4, regardless of the noise type. Thus,

we set β′n ¼ 0:35 for all following simulations employing
the eigenvalue compensation scheme.
Next, the overall effect of the eigenvalue compensation

was assessed. The eigenvalue compensation was proposed
to alleviate the bias problem caused by short-term aver-
aging. Thus, the accuracy of the estimated noise PSD was
measured in terms of LogErr by changing the smoothing
factor, α, of the first-order recursion algorithm in (5). For
this simulation, 20 speech sentences taken from the
TIMIT database and mensa noise from the ETSI database

Fig. 3 LogErr measured for various types of noise under a 0 dB and c 5 dB at low frequencies (below 1 kHz) and b 0 dB and d 5 dB at high
frequencies (from 1 to 8 kHz)
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[52] at 0 dB SNR were used as input. For the LogErr
calculation, the auto PSD of the left channel noise was
considered the true noise PSD. The results are shown in
Fig. 6. It can be observed that the noise PSDs obtained
using (19), blue lines with circle and square markers, were
significantly biased, particularly when the averaging was
conducted over short terms with small α. High variation
of the input PSDs resulted in high LogErr. The results ob-
tained using (13) are represented by black lines with

diamonds and triangle markers and are almost identical to
those obtained with (19). However, the LogErr was notice-
ably reduced by using the proposed eigenvalue compensa-
tion scheme as indicated by the red asterisk and diamond
markers. The results in Fig. 6 clearly confirm the benefits
of the proposed eigenvalue compensation scheme. The
parameter choice α will be discussed in Section 5.3.
To utilize the benefits of the eigenvalue compensation

scheme, it is important to have a correct SPP parameter,

Fig. 4 LogErr measured phase difference between clean and noisy cross-PSD at a low frequencies (below 1 kHz) and b high frequencies (from 1
to 8 kHz) and LogErr measured scaling difference between clean and noisy cross-PSD phase applied at c low frequencies and d high frequencies

Fig. 5 LogErr according to the weighting parameter for the eigenvalue combination
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p. Thus, the SPP estimator in (29) was evaluated and
compared with the conventional energy-based SPP in
[3]. All test parameters were set as described in [3]. We
used βcom = 0.1 for the convex combination, and the size
of the buffers, BS +N(l) and BN(l), was set to 15. The βSPP
in (27) and αSPP in (29) were fixed to 0.65 and 0.3, re-
spectively. We used k1 = 1, TL = 6 for under 5500 Hz,
and TL = 8 for over 5500 Hz.
Figure 7a shows the spectrogram of the noisy input

signal. In this simulation, target speeches were con-
volved with a cafeteria BRIR and cafeteria ambient noise
was added to them at 0 and 5 dB. The reference SPP
was obtained from a clean speech signal using the
method in [48] Eqs. (1) and (7) and depicted in Fig. 7b.
The SPP results of the conventional and proposed SPP
estimators are plotted in Fig. 7c, d, respectively. It is evi-
dent from the results in Fig. 7b–d that the SPP masker
from the proposed method is closer to the reference
masker than the conventional method and performs well
even in the 0 dB SNR condition.

5.3 Noise estimation evaluation
The proposed noise PSD estimator in Fig. 2 was evalu-
ated in comparison to the previous methods including
the single-channel SPP-based noise PSD estimator
(SC-SPP) [5], the improved dual-channel noise PSD
estimator (ImNPSD) [17], the dual-channel noise PSD

estimator (DC-NPSD) [6], and the bias-corrected block-
ing method of the interaural transfer function (BB-ITF)
[15]. The proposed noise PSD estimator in (23) is re-
ferred to as “Prop” in all plots. To make the comparison
consistent, the smoothing factor for the estimation of
auto-and cross-PSDs was fixed at α = 0.65 in all tested
algorithms. As mentioned in Section 4, long-term
smoothing can reduce the estimator variance, but at the
same time, short-term smoothing is required to capture
the fast time-varying statistics of the signals. Thus, as a
compromise between these two contradictory require-
ments, we experimentally chose a smoothing factor that
can balance the tracking performance and LogErr. BB-
ITF was implemented using the fast least-mean square
(FLMS) algorithm [55] based on a 256-tap prediction
error filter. The forgetting factor for signal power
smoothing was set to 0.9, and the step size for updating
the weight was 0.1. We also used a causality delay of 32
samples to account for the largest possible ITD of the
binaural system. The same error signal, i.e., (4a) in [15]
was utilized to implement ImNPSD.
First, snapshots of the estimated noise PSDs are compared

in Fig. 8, where cafeteria noise from the Oldenburg database
was added to the speech signal at 0 dB SNR. Cafeteria BRIRs
were also used to simulate speech sources in different direc-
tions. For visualization purposes, the results obtained using
DC-NPSD, ImNPSD, and BB-ITF were shifted vertically.

Fig. 6 LogErr in speech absence and presence regions according to the smoothing factor
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Figure 8a shows the estimation results in the speech absence
region. The proposed algorithm achieves the most accurate
noise PSD among the compared algorithms. Figure 8b, c
shows the results in speech presence regions when the
speech source was located at 0° and − 90° to the left of the
listener, respectively. For ImNPSD and BB-ITF, noticeable
overestimation was observed in the 1–3 kHz frequency
band due to the bias of the channel prediction filter. On the
other hand, the proposed algorithm maintained a reasonable

accuracy regardless of target direction. However, DC-NPSD
produced high overestimation errors at high frequencies, be-
cause it is based on the assumption that the levels of target
speech at both channels are equal.
To numerically evaluate the accuracy of the noise

PSD estimate, an averaged logarithmic error (LogErr)
was measured. The over- and underestimation of
LogErrs were measured separately and combined as
suggested in [5]. In this simulation, 20 speech

Fig. 8 Estimated noise PSD spectra: a speech absence region, b speech presence region with a speech source at 0° azimuth, and c speech
presence region with a speech source at − 90° azimuth

Fig. 7 a The spectrogram of the noisy input signal. The reference SPP maskers obtained using the b reference, c conventional, and d
proposed methods

Ji et al. EURASIP Journal on Audio, Speech, and Music Processing  (2017) 2017:25 Page 11 of 16



signals, the nine different noises listed in Fig. 3, and
cafeteria noises from the Oldenburg database were
used. Figure 9a, b shows the averaged LogErr at differ-
ent SNR conditions for a speech source located at 0∘ and
− 90° azimuth, respectively. The experimental results show
that the proposed algorithm always obtained the lowest
LogErr among the compared algorithms in all tested con-
ditions. BB-ITF achieved the second-best performance.
For ImNPSD and BB-ITF, the causality delay was
determined to achieve the best performance, resulting in a
32-sample delay. For the target speech at − 90°, all
binaural algorithms underwent slight performance
degradation. However, the proposed algorithm still main-
tained the best performance even though there was no
consideration of signal delay. Additionally, the single-
channel algorithm (SC-SPP) showed a comparable per-
formance to the binaural algorithms for the target speech
at − 90°. However, this was not concerned with the preser-
vation of the binaural cues such as ILD and ITD.
To assess the tracking performance, noisy speech

containing a sudden increase and decrease of the
noise power level was implemented in the noise PSD
estimators. The test conditions were the same as in
Fig. 8b. The noise power was increased by approxi-
mately 15 dB during 1.5–2.5 s and then decreased to
the original level. Figure 10 shows the power curves
of the noise PSD estimates. The power curves were
obtained by summing the estimated noise PSD over
the entire frequency band. It can be seen that the
SC-SPP could not effectively track the noise power,
while the channel prediction-based approach (BB-ITF)
and the proposed algorithm reflected the sudden

variation of noise power in their PSD estimates. How-
ever, BB-ITF exhibited slightly higher estimation error
than the proposed algorithm.

5.4 Speech enhancement performance
The binaural speech enhancement system in Fig. 1
was implemented by using the proposed noise PSD
estimator (Fig. 2) and conventional noise PSD estima-
tors, and their respective performances were evaluated
in terms of the quality and intelligibility of the
enhanced speech. To this end, we measured the
frequency-weighted SNR improvement (ΔfwSNR) [56],
short-time objective intelligibility improvement
(ΔSTOI) [57], and perceptual evaluation of speech
quality improvement (ΔPESQ). All objective parame-
ters were expressed as a difference of the
correspondent measures in the output and the input
of the system. Since fwSNR [56] was optimized at a
8-kHz sampling rate, the signals were down-sampled
to 8 kHz before the measurement. Other objective
measures including ΔSTOI and ΔPESQ were obtained
at a 16-kHz sampling rate.
The 10 different noises were added to the speech

signals in each of − 5 ~ 5 dB SNR conditions respect-
ively. The Wiener filter gain of Eq. (8) was calculated
using the estimated noise PSDs with the minimum
bound 0.1, and a decision-directed approach was uti-
lized to compute the a priori SNR. Then, estimated
gains were applied to the input speech spectrum to
obtain enhanced output speech. The measurements
were independently conducted for each noisy type
and averaged over different noise types. The input

Fig. 9 Averaged LogErrs measured for a speech source at a 0° and b − 90° azimuth
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SNR was computed over all frames, including speech-
active and speech-inactive periods. Figure 11a shows
the ΔfwSNR results for the left channel with a frontal
target speech source. The proposed noise PSD estima-
tor achieved the best improvement among the tested
systems. This was mainly due to the superior accur-
acy of the proposed noise PSD estimator at low
frequencies, where the noise power was concentrated.
Results with a speech source at − 90° are presented in
(b). It was also found that the proposed algorithm
obtained the best performance. Again, all algorithms
achieved lower performance than the case with a tar-
get at 0°. DC-NPSD worsened ΔfwSNR due to the
mismatched assumption.

To assess the intelligibility and quality, STOI and
PESQ improvements were calculated. The results are
shown in Figs. 12 and 13, respectively. Only the left
channel results are shown here, but similar results
were obtained in the right channel. For the non-
frontal target, DC-NPSD degraded both PESQ and
STOI. SC-SPP improved PESQ but noticeably
degraded STOI. Only BB-ITF and the proposed algo-
rithm improved both PESQ and STOI. In addition,
the proposed algorithm showed better STOI and
PESQ improvement than BB-ITF. Therefore, it can be
concluded that the proposed noise PSD estimator
achieved the best quality and intelligibility perform-
ance among the tested algorithms.

Fig. 11 Frequency-weighted SNR improvement results in the left channel: a speech source at 0° and b − 90°

Fig. 10 The tracking performance results from SC-SPP, BB-ITF, and Prop with a sudden increase and decrease of noise power level
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6 Conclusions
A robust noise PSD estimator for a binaural speech
enhancement system was presented. The proposed al-
gorithm obtained the noise PSD based on the second
eigenvalue of the covariance matrix of the binaural
input signal. To improve the accuracy of the noise
PSD estimate, the eigenvalues in noise-dominant pe-
riods were averaged using SPP, which resulted in a re-
duction of bias error. The proposed algorithm
robustly estimated the noise PSD for targets located in
all directions around the listener in fast time-varying noise
environments. The proposed algorithm is theoretically

equivalent to the conventional channel prediction-based al-
gorithm. However, since it does not require a causality
delay and explicit estimation of the prediction errors, it is
less computationally demanding and has less chance of be-
ing affected by the estimation bias due to fast smoothing.
The experimental results confirmed that the proposed algo-
rithm could achieve higher performance than the conven-
tional algorithms regardless of the target direction, input
SNR, and noise types. The objective parameters also con-
firmed that the proposed algorithm could obtain slightly
better speech quality and intelligibility performance than
the conventional techniques.

Fig. 12 STOI improvement results in the left channel: a speech source at 0° and b – 90°

Fig. 13 a PESQ results in the left channel with a speech source at 0° and b − 90°
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7 Appendix
The noise PSD estimator in (13) can be compared with
the conventional estimator in [17]. According to Eq. (53)
in [17], the noise PSD in a diffuse noise field environ-
ment is estimated as

ptNIm
Φ ¼ 1

2 1−Γ2N
� �� f ΦLL

X þΦRR
X

� �
−2ΓNℜ ΦLR

X

� �
−

ffiffiffiffiffiffiffiffi
ΔtIm

p
g;
ΔtIm ¼ f− ΦLL

X þΦRR
X

� �
þ2ΓNℜ ΦLR

X

� � g2−4 1−Γ2N
� �

ΦC
EΦ

RR
X :

ð31Þ
In the above equation, the real-valued noise coherence

ΓN [39] was considered to compensate for the underestima-
tion problem at low frequencies. Comparing (31) with (13),
it can be noticed that only the last term inside root, ΦC

EΦ
RR
X

, is different. However, it can be proven that the both equa-
tions are equivalent.
According to Eq. (52) in [17], the error PSD in (31)

can be described as

ΦC
E ¼ ΦLL

X −ΦRR
X HWj j2; ð32Þ

where HW ¼ ΦLR
X =ΦRR

X is the transfer function of the
channel prediction filter. Thus, substituting (32) into
(31), the last term inside root can be rewritten as

ΦC
EΦ

RR
X ¼ ΦLL

X −ΦRR
X ⋅

ΦLR
X

ΦRR
X

⋅
ΦRL

X

ΦRR
X

0
@

1
AΦRR

X

¼ ΦLL
X ΦRR

X −ΦLR
X ΦRL

X :

ð33Þ

On the other hand, the eigenvalue can be computed
from (10) as

λ ¼
ΦRR

X þΦLL
X

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦRR

X −ΦLL
X

� �2 þ 4ΦLR
X ΦRL

X

q
2

ð34Þ

Now, substituting (34) into (13) results in

− λ2−λ ΦLL
X þΦRR

X

� �� � ¼ ΦRR
X þΦLL

X

� �2
− ΦRR

X −ΦLL
X

� �2 þ 4ΦLR
X ΦRL

X

� 	
4

¼ ΦLL
X ΦRR

X −ΦLR
X ΦRL

X :

ð35Þ
Therefore, the noise PSD estimator in (13) and the

previous method in [17] are equivalent.
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