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Abstract

Audio signals are a type of high-dimensional data, and their clustering is critical. However, distance calculation
failures, inefficient index trees, and cluster overlaps, derived from the equidistance, redundant attribute, and sparsity,
respectively, seriously affect the clustering performance. To solve these problems, an audio-signal clustering
algorithm based on the sequential Psim matrix and Tabu Search is proposed. First, the audio signal similarity is
calculated with the Psim function, which avoids the equidistance. The data is then organized using a sequential
Psim matrix, which improves the indexing performance. The initial clusters are then generated with differential
truncation and refined using the Tabu Search, which eliminates cluster overlap. Finally, the K-Medoids algorithm is
used to refine the cluster. This algorithm is compared to the K-Medoids and spectral clustering algorithms using
UCI waveform datasets. The experimental results indicate that the proposed algorithm can obtain better Macro-F1
and Micro-F1 values with fewer iterations.
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1 Introduction
Audio signal clustering forms the basis for speech recog-
nition, audio synthesis, audio retrieval, etc. Audio signals
are considered as high-dimensional data, with dimen-
sionalities of more than 20 [1]. Their clustering is under-
taken based on this consideration and solving the
problems in high-dimensional data clustering, in this re-
gard, is highly beneficial.
There are three types of clustering algorithms for high-

dimensional data: attribute reduction [2], subspace clus-
tering [3], and co-clustering [4]. The first method reduces
the data dimensionality with attribute conversion or re-
duction and then, performs clustering. The effect of this
method is heavily dependent on the degree of dimension
reduction; if it is considerable, useful information may be
lost, and if it is less, clustering cannot be done effectively.
The second method divides the original space into several
different subspaces and searches for cluster in the sub-
space. When the dimensionality is high and the accuracy

requirement rigorous, the number of subspaces rapidly in-
creases. Thus, searching for a cluster in a subspace be-
comes a bottleneck and may lead to failure [5]. The third
method implements clustering iteratively with respect to
the content and feature alternately. The clustering result
is adjusted as per the semantic relationship between the
theme and characteristic, realizing a balance between data
and attribute clustering. This method has two stages,
resulting in a high time complexity. In addition to the
above three methods, clustering algorithms for high-
dimensional data includes hierarchical clustering [6], par-
allel clustering [7], knowledge-driven clustering [8], etc.
However, these methods also have similar problems.
Equidistance, the redundant attribute, and sparsity are

the fundamental factors affecting the clustering perform-
ance of high-dimensional data [9]. Equidistance renders the
distance between any two points in a high-dimensional
space approximately equal, leading to a failure in the clus-
tering algorithm, based on the distance. The redundant at-
tribute increases the dimensionality of the high-
dimensional data and the complexity of the index structure,
decreasing the efficiency of building and retrieving the
index structure. Sparsity enables uniform data distribution,
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and some clusters may overlap with each other, affecting
the clustering precision.
It is reported that some dimensional components of

the high-dimensional data are non-related noise that
hide the real distance, resulting in equidistance. The
Psim function can find and eliminate noise in all the di-
mensions [10]. The Tabu Search [11] is a heuristic global
search algorithm. All the possible existent clusters are
combinatorically optimized using the Tabu Search such
that a non-overlap cluster is selected.
To solve the clustering problems owing to equidis-

tance, the redundant attribute, and sparsity, an efficient
audio signal clustering algorithm is proposed, by integra-
tion with the Psim matrix and Tabu Search. First, for all
the points in the high-dimensional space, the Psim
values between them and the corresponding location
numbers are stored in a Psim matrix. Next, a sequential
Psim matrix is generated by sorting the elements in each
row of the Psim matrix. Further, the initial clusters are
generated with differential truncation and refined with
the Tabu Search. Finally, the initial clusters are iteratively
refined with the K-Medoids algorithm, until all the clus-
ter medoids are stable.

2 Related works
2.1 Psim matrix
Traditional similarity measurement methods (e.g., the Eu-
clidean distance, Jaccard coefficient [12], and Pearson co-
efficient [12]) fail in high-dimensional space because in
these methods, equidistance is a common phenomenon in
high-dimensional space; hence, the calculated distance is
not the real distance. To solve this problem, the Hsim
function [13] was proposed; however, the relative differ-
ence and noise distribution were not considered. The
Gsim function [14] was also proposed and the relative dif-
ferences of the properties in different dimensions were an-
alyzed, but the weight discrepancy was ignored. The
proposed Close function [15] can reduce the influence of
components in certain dimensions, whose variances are
larger; however, the relative difference was not considered
and it would be affected by noise. The Esim [16] function
was proposed by improving the Hsim and Close functions
and considering the influence of the property on the simi-
larity. In every dimension, the Esim component has a
positive correlation. All the dimensions are divided into
normal and noisy. In a noisy dimension, noise is the main
ingredient. When it is similar and larger than the signal, in
a normal dimension, Esim is invalid. The secondary meas-
urement method [17] is used to calculate the similarity by
considering the property distribution, space distance, etc.
However, the noise distribution and weight are not taken
into account. In addition, its formula is complicated and
the calculation is slow. In high-dimensional space, a large
difference exists in certain dimensionalities [10], even

though the data is similar. This difference occupies a large
portion of the similarity calculation; hence, all the calcula-
tion results are similar. Therefore, the Psim function [10]
was proposed to diminish the influence of noise on the
similarity data; experimental results indicate that this
method is suitable.
When using the Psim function to measure the similar-

ity, the data component in every dimension must be
sorted and the value range divided into several intervals.
The similarity between X and Y in the j-th dimension is
added to the Psim function, if and only if, their data
components are in the same interval.
In an n-dimensional space, the Psim value between X

and Y is as follow:

Psim X;Yð Þ ¼
X

j∈Ds X;Yð Þ

1−
jXj−Y jj
lj−uj

� �
Ds X;Yð Þj j

n

where Xj and Yj are the data components of X and Y in
the j-th dimension. Ds(X,Y) is a subscript set of Xj and
Yj, which are in the same interval [uj, lj], and |Ds(X,Y)|
is the number of elements in Ds(X,Y). The above is the
outline of the Psim function; a detailed introduction can
be found in [10].
Data organization is critical in a clustering algorithm.

In the traditional method, the data space is separated
using an index tree and mapped onto the index-tree
nodes. The commonly used index trees are the R tree
[18], cR tree [19], VP tree [20], M tree [21], SA tree [22],
etc. The partitioning of the data space is the foundation
for building an index tree, but its complexity increases
with the increase in dimensionality. Thus, it is difficult
to build index trees for high-dimensional data. In
addition, the retrieval efficiency of the index tree falls
sharply with the increase in dimensionality. The retrieval
function works effectively, when the dimensionality is
less than 16; however, it weakens rapidly, for dimension-
alities greater than 16, even down to the level of a linear
search [23]. A sequential Psim matrix is used to solve
this problem. First, all the Psim values between points,
S1, S2, ⋯, SM, are calculated to build a Psim matrix,
PsimMat, with a size, M ×M. PsimMat(i, t) is composed
of three properties: i, t, and Psim(Si, St). Next, the se-
quential Psim matrix, SortPsimMat, is generated by sort-
ing the elements in every row of PsimMat in the
descending order of the Psim value. The elements in the
i-th row represent the similarities between Si and the
other points. From left to right, the Psim values grad-
ually diminish, indicating a decrease in the similarity. It
can be seen that the sequential Psim matrix is not af-
fected by the dimensionality and can represent the simi-
larity distribution of all the points. Therefore, it is
suitable for high-dimensional data clustering.

(1)

Li et al. EURASIP Journal on Audio, Speech, and Music Processing  (2017) 2017:26 Page 2 of 9



2.2 Differential truncation
The elements in every row of SortPsimMat are regarded
as a sequence, A, whose length is M. The sequential Psim
differential matrix, DeltaPsimMat, is generated with a dif-
ferential operation on the sequence, A. The size of DeltaP-
simMat is M × (M − 1). The elements in the i-th row of
SortPsimMat represent the similarities between Si and the
other points. Several points corresponding to the frontier
elements in this row, from the left, would form a cluster
centered at Si because the similarity between the elements
inside the cluster is higher than that of those outside.
Thus, the similarity differences between the elements in-
side the cluster are lesser than that of the others. Assum-
ing that the cluster centered at Si has pi elements, the left
pi − 1 elements in the i-th row of DeltaPsimMat are lesser
than the differential threshold, ΔAmax. Thus, a reasonable
ΔAmax is set up and all the elements that are less than
ΔAmax in the i-th row of DeltaPsimMat are found to form
a cluster centered at Si.

2.3 Tabu Search
After differential truncation, the intersection of some of
the clusters may not be null. Thus, the overlapping ele-
ments should be eliminated by refinement. The clusters
that are to be refined are called the imminent-refining
cluster sets, and the initial values are the clusters after
differential truncation. The clusters that have been re-
fined are called the refined cluster sets and their initial
values are null. The refinement of the cluster is an itera-
tive process. Considering the average Psim of the re-
mainder elements in the i-th row of SortPsimMat, after
differential truncation, as the similarity of a cluster cen-
tered at Si, the operation in every iteration is as follows:
First, the similarity of every cluster is calculated. Next,
the cluster with the highest similarity is added into the
refined cluster set and the element in the other cluster is
deleted, if it is in the selected cluster. However, there is a
problem. After deleting the overlapping elements, the
similarity of the cluster in the imminent-refining cluster
set may be greater than that of the selected cluster. To
solve this problem, Tabu Search is used for refinement.
Tabu Search is an expansion of the neighborhood

search, a global optimum algorithm [11], and is mainly
used for combinatorial optimization. A roundabout
search can be avoided using the Tabu rule and aspiration
criterion, for improving the global search efficiency. This
method can accept an inferior solution and has a strong
“climbing” ability; it has a higher probability of obtaining
a global optimal solution.
The main process of Tabu Search is as follows: Initially,

a random initial solution is regarded as the current solu-
tion, and several neighboring solutions are considered as
the candidate solutions. Further, if the objective function
value of a certain candidate solution meets the aspiration

criterion, the current solution is replaced by this candidate
solution and added to the Tabu list. Else, the best choice
of a non-Tabu object is considered as the new current so-
lution. In addition, the corresponding solution must be
added into the Tabu list [24]. The above steps are re-
peated, until the terminate criterion is satisfied.
In order to use Tabu Search for refining the cluster, an

appropriate Tabu object, Tabu list, aspiration criterion, and
terminate criterion are required. The Tabu objects are the
elements in the refined cluster set and are saved into the
Tabu list to prevent the Tabu Search from falling into the
local optimum. The Tabu length is set as the number of
clusters after differential truncation. In every iteration
process, the selected cluster is considered as the Tabu ob-
ject. After eliminating the overlapping elements, the cluster,
whose similarity is higher than that of the previously se-
lected cluster, is considered as the better cluster and it re-
places the previously selected cluster. The previously
selected cluster is removed from the Tabu list and added
into the imminent-refining cluster set. The above “eliminat-
ing the overlapping elements—searching for a better clus-
ter” process is repeated, until a better cluster can no longer
be found. Then, the previously selected cluster is consid-
ered as the optimal cluster of this iteration. The search for
the better cluster of the next iteration then commences,
until the imminent-refining cluster set is null.

3 Clustering algorithm
3.1 Problem description
The dataset of M audio signals with a length, n, is con-
sidered as the point set, S = {S1, S2,⋯, SM}, of n-dimen-
sional space, where Si = {Si1,⋯, Sij,⋯, Sin}, i = 1, 2, ⋯,
M, j = 1, 2, ⋯, n, and Sij are the j-th property of Si.
The goal is to search for sets, C1, C2, ⋯, CK, that meet

the following two requirements:

1. C1∪ C2∪ ∪ CK = S
2. Cv∩ Cw = φ, for any 1 ≤ v ≠w ≤ K.

3.2 Framework of the clustering algorithm
The proposed clustering algorithm has four steps, as
shown in Fig. 1. First, the sequential Psim matrix is built
to represent the similarity between the points in the set,
S. Next, the initial cluster is generated by integration
with the differential truncation and heuristic search. Fur-
ther, the initial cluster is refined with Tabu Search. Fi-
nally, the expected cluster is generated by clustering,
based on the K-Medoids.

3.3 Clustering algorithm procedure
3.3.1 Construction of a sequential Psim matrix
The Psim values between all the points in the set, S, are
calculated using Eq. 1 and saved into the Psim matrix,
PsimMat. Then, the elements in every row of PsimMat
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are sorted with quicksort to obtain the sequential Psim
matrix, SortPsimMat. The above is a brief introduction;
the detailed procedure can be found in [25].

3.3.2 Initial cluster generation
First, the Laplacian matrix, L, is generated by PsimMat,
and its eigenvalue distribution is used to determine the
number of expected clusters [26]. Next, the differential
threshold, ΔAmax, is initialized. Let Cmax be the maximal
time for searching the cluster set. The upper bound of
Cmax is the combinatorial number, CK

M , where K is the
number of clusters. Searching CK

M times is time-
consuming because the magnitude of CK

M is M!. In
addition, the K expected clusters maybe not found by
searching CK

M times. Thus, Cmax is set to Cmax =M and a
heuristic search is implemented. Finally, the collision list
of the clusters, TBLC, is set to null and i = 1. Then, the
initial cluster can be generated with the following steps.

Step 1: The elements in the i-th row of DeltaPsimMat
are visited from left to right, until the pi-th element is
greater than the differential threshold, ΔAmax, for the
first time.
Step 2: The points corresponding to the left pi ‐ 1
elements in the i-th row of SortPsimMat are used to
construct a cluster, Ci

T , centered at Si.
Step 3: If i <M, then i = i + 1; go to Step 1; else, c = 1.
Step 4: K clusters, Ci1

T ;C
i1
T ;⋯;CiK

T , are selected from M
clusters, C1

T ;C
2
T ;⋯;CM

T , to ensure that the set
composed of K centers of the selected cluster are not in
the Tabu list,TBLC.
Step 5: If the union of K clusters is equal to the set,
S, then the set, Ci ¼ C0

i ;C
1
i ;⋯;CK

i

� �
, is considered

as the initial cluster set, where Cv
i ¼ Civ

T . Otherwise,
the set CI is added into the TBLC; go to Step 6.

Step 6: If c ≥ Cmax, then i = 1, increase ΔAmax, clear
TBLC, and go to Step 1. Otherwise, c = c + 1; go to
Step 4.

3.3.3 Refinement of the initial cluster
The initial cluster set, CI, is considered as the imminent-
refining cluster set, CRefining. The refined cluster set, CRe-

fined and the Tabu list are both null. The maximal search
time is Fmax and a heuristic algorithm is used for the
search. Fmax is set to Fmax = K because Fmax is propor-
tional to the size of CI. The refinement procedure for CI

is as follows.

Step 1: The number of iterations, r = 0, and the number
of searches in the current iteration, f = 0.
Step 2: The similarity of every cluster in CRefining is
calculated, and the cluster with the highest similarity is
considered as the better cluster, COptimal, and moved
into the refined cluster set, CRefined. In addition, the
selected cluster and similarity are added toTBLF.
Step 3: The element in the reminder cluster, CRefining, is
deleted, if it is in the cluster, COptimal. Then, the
similarity of every cluster in CRefining is calculated, and
the cluster with the highest similarity is expressed as
CMaxPsim.
Step 4: If the average similarity of every cluster in
CMaxPsim is not more than those in COptimal or f ≥ Fmax,
then go to Step 5. Otherwise, f = f + 1; go to Step 6.
Step 5: If r ≥ K, then the refinement of the initial cluster
is terminated. Otherwise, r = r + 1, f = 0; go to Step 2.
Step 6: Cluster COptimal is moved back to CRefining from
CRefined and the corresponding information in the TBLF
is deleted.
Step 7: Cluster CMaxPsim is considered as the better
cluster, COptimal, and moved into CRefined. In addition,
the corresponding information is added into theTBLF.
Step 8: Go to Step 2.

3.3.4 Clustering based on iterative partitioning
The cluster, after Tabu Search, has the basic cluster
characteristics. For further improvement, clustering
based on K-Medoids [27] is implemented.

3.4 Convergence analysis
The proposed clustering algorithm has four steps, and
the corresponding convergence analysis is as follows:

1. Construction of a sequential Psim matrix
The Psim matrix, PsimMat, is generated by running
Eq. 1 M ×M times; the sequential Psim matrix,
SortPsimMat, is generated by sorting the elements
in every row of PsimMat. The above operation can
be completed within a limited time; hence, this step
converges.

Fig. 1 Framework of the proposed clustering algorithm

Li et al. EURASIP Journal on Audio, Speech, and Music Processing  (2017) 2017:26 Page 4 of 9



2. Generating the initial cluster
First, the number of expected clusters can be
determined by spectral clustering in a limited time.
Next, with the increase in the differential threshold,
ΔAmax, the number of elements in every cluster
increases. Thus, the union, Ci1

T∪C
i1
T∪L∪C

iK
T , gets

closer to the set, S, gradually. Thus, this step
converges.

3. Refinement of the initial cluster
This step iterates K times. In every iteration
procedure, the calculation of the K average
similarities of the cluster is carried out K times, at
most. The above operation can be completed in
limited time; thus, this step converges.

4. Clustering based on iterative partitioning
This step is based on the K-Medoids clustering algo-
rithm, which converges naturally. Thus, this step
also converges. The above statements show that the
four steps can be completed in limited time. Thus,
the proposed clustering algorithm converges.

3.5 Time complexity analysis
Considering multiplication and comparison as the two
basic operations, the corresponding complexity analysis
is as follows:

1. Construction of a sequential Psim matrix
The complexity of this step is reported to be
O(M2 · n) [25].

2. Generating the initial cluster
The size of the Laplacian matrix, L, in Section 3.3.2
is M ×M. Its top K eigenvalues are calculated with
the power iteration method [28], and the time
complexity is O(K ·M2). The optimal number range
of the clusters, Kopt, is 1≤Kopt≤

ffiffiffiffiffi
M

p
. Hence, the time

complexity for the calculation of the eigenvalues in
the Laplacian matrix, L, is O(M2.5). Further, the
initial cluster is generated by iterating several times.
The analysis in every iteration process is as follows:
First, the differential threshold, ΔAmax, is increased
and the elements in every row of DeltaPsimMat are
visited. The time complexity is O(M2), accordingly.
Then, K clusters are selected and tested whether
their union is equal to the set, S. The maximal
comparison time for calculating the union of two
clusters is M2n because the maximal number of
elements in a cluster is M and the dimension of an
element is n. Thus, the maximal comparison time
for the union of K clusters is (K ‐ 1)M2n. In addition,
the selection operation of the K clusters are
performed Cmax =M times, at most. Therefore, the
time complexity of the selection process is O((K −
1)M2n · Cmax) =O((K − 1)M2n ·M) =O(KM3n). The
optimal number of clusters, Kopt, is less than

ffiffiffiffiffi
M

p

[29]; i.e., O(KM3n) =O(M3.5n). Let the maximal
iterations be H. Hence, the time complexity for
generating the initial cluster is O(H ·M3.5n).

3. Refinement of the initial cluster
In this step, the basic operation is the calculation of
the K similarities of the cluster. The maximal
number of elements in every cluster is M. Thus, the
number of addition operations is K ·M. This basic
operation is carried out K2 times, at most. Therefore,
the total number of addition operations is K3 ·M;
i.e., the time complexity in this step is O(K3M). The
upper bound of the optimal number of clusters is
Kopt ¼

ffiffiffiffiffi
M

p
[29]. Thus, the time complexity can be

expressed as O(M2.5).
4. Clustering based on iterative partitioning

This step should be iteratively carried out Q times.
In every iteration process, there are three basic
operations: the construction of K clusters, the
computation of the K medoids of the clusters, and
the calculation of the objective functions Eq and E�

q .
During these three basic operations, the Psim value
is calculated as K ·M, M and M times, respectively.
Thus, the total number of Psim calculations in this
step is Q · (KM +M +M) =Q(K + 2)M. From Eq. 1, it
can be seen that the time complexity of the Psim
calculation is O(n). Therefore, the time complexity
of this step is O(Q(K + 2)M · n) =O(QKMn), which
is briefly expressed as O(QM1.5n) by virtue of the
property [29] of the optimal number of clusters, 1≤
Kopt≤

ffiffiffiffiffi
M

p
.

To sum up the above statements, the time complexity
of the proposed clustering algorithm is O(M2 ⋅ n) +
O(M2 ⋅ n) +O(M ⋅ n log n) +O(M2.5) +O(H ⋅M3.5n) +
O(M2.5) +O(QM1.5n) =O(M2 ⋅ n) +O(M ⋅ n log n) +
O(M2.5) +O(H ⋅M3.5n) +O(QM1.5n). Generally, the dif-
ference in the magnitudes of M and n is negligible, i.e.,
M > > log n. Thus, O(M ⋅ n log n) and O(M2.5) can be ig-
nored, relative to O(M2 ⋅ n). The magnitudes of H and Q
are the same because they are both iterations. Thus,
O(QM1.5n) can be ignored relative to O(H ⋅M3.5n).
Therefore, the time complexity can be briefly expressed
as O(M2 ⋅ n) +O(H ⋅M3.5n) =O(H ⋅M3.5n).
As can be seen from the above analysis, this algorithm

is a polynomial time algorithm, which can be carried out
in a normal machine and condition.

4 Experiment
4.1 Overview
In the following experiment, the hardware includes an
AMD Athlon(tm) II X2-250 processor and a Kingston 4G
memory; the software used includes the Win7 operating
system and Microsoft Visual Studio 2012. The audio sig-
nal data [30] is downloaded from the UCI database. This
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dataset is composed of 5000 audio vectors with lengths of
41, and each one is produced by mixing a normal wave-
form with noise; there are three categories.
The number of clusters is determined using the spec-

tral clustering algorithm. Then, the test data is clustered
ten times with the proposed clustering algorithm, based
on the Psim matrix and Tabu Search (PM-TS clustering
algorithm), the K-Medoids clustering algorithm [29], and
the spectral clustering algorithm [26]. In the process of
each clustering, the iterations, Macro-F1 and Micro-F1
[31], are calculated. In addition, their average in ten
clustering processes is required. Finally, these algorithms
are compared based on the above results.

4.2 Selection criteria for the compared algorithm
In our experiment, there are three criteria for selecting the
compared clustering algorithm: the selected algorithm must
be widely recognized by academia and industry, it should
be suitable for high-dimensional data clustering and con-
verge stably, and must be relevant to our algorithm.
Based on the above criteria, the K-Medoids and the

spectral clustering algorithms were selected. Both are
widely used by academia and industry, can converge sta-
bly, and are strongly related to our algorithm. In addition,
they are also related to each other. The detailed analysis is
as follows:

1. Correlation analysis of the K-Medoids clustering
algorithm

The K-Medoids clustering algorithm is one of the
few clustering algorithms that is theoretically con-
vergent. At the beginning of this algorithm, the ini-
tial cluster is randomly selected, and subsequently,
iterative clustering is done by the center of the
nearest point close to the center of the cluster. The-
oretically, iterative clustering is the key to conver-
gence and not the initial cluster. The focus of our
study is to propose a clustering algorithm suitable
for high-dimensional data; convergence is a pre-
requisite to be satisfied. Therefore, the iterative
clustering strategy of the K-Medoids clustering al-
gorithm is adopted for convergence. In addition,
the randomly selected initial cluster of the K-
Medoids clustering is replaced by a refined non-
overlapping cluster. Thus, our algorithm is derived
from the K-Medoids clustering algorithm.

2. Correlation analysis of the spectral clustering
algorithm
First, the spectral clustering algorithm procedure is
similar to that of the proposed and K-Medoids clus-
tering algorithms. The clustering function can be
completed only by the adjacency matrix that stores
the similarity of the points and not by the vector
that records the point coordinates, as in the K-
Means clustering algorithm. Next, the spectral clus-
tering algorithm is based on graph theory. The data
points and their similarities are represented as the

Fig. 2 Running time for producing sequential Psim matrix ten times

Fig. 3 Searching times for producing initial clusters ten times

Fig. 4 Overlap of the initial cluster and that of the refined cluster
after running Tabu Search ten times

Fig. 5 Recall of the initial cluster and that of the refined cluster after
running Tabu Search ten times
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vertex and weight of the edge, respectively. The
eigenvector of the adjacency matrix is extracted
from its Laplace matrix and is subsequently used for
clustering. Because the number of eigenvectors is
considerably lesser than the dimension of the points,
it can be regarded as a dimensionality reduction
clustering algorithm. Our algorithm is also of the
same type because the sparse and noisy dimension
components do not participate in the computation.
Hence, both the algorithms are similar with respect
to the reduction in dimensionality. Finally, the num-
ber of clusters used in the proposed and K-Medoids
clustering algorithms is calculated with the eigen-
value decomposition of the Laplace matrix in the
spectral clustering algorithm, i.e., some of the results
of the spectral clustering algorithm are useful for the
proposed and K-Medoids clustering algorithms; thus,
these algorithms are strongly related to the spectral
clustering algorithm.

4.3 Tabu Search analysis
Tabu Search, the core of our algorithm, can solve the
overlap problem of the initial cluster to improve its qual-
ity. Ten Sequential Psim Matrix are generated, and the
running time is shown in Fig. 2. After that, the corre-
sponding initial clusters are generated in accordance with
the method described in Section 3.3.2 and refined with
the method in Section 3.3.3 to produce ten sets of refined

clusters. The searching times for producing the initial
clusters are shown in Fig. 3. The overlap, recall, precision,
and running time of the initial and refined clusters are cal-
culated, respectively, as shown in Figs. 4, 5, 6 and 7.
It can be seen that 35–45% of the elements, which

were overlapping in the initial cluster, are eliminated by
Tabu Search. The recall and precision of the initial clus-
ter were approximately 39 and 34%, respectively. After
Tabu Search, the recall reduced to approximately 33%,
but the precision increased to approximately 39%. This
is owing to the elimination of certain correct classified
elements, while deleting the overlapping elements in the
cluster, leading to a reduction in the recall. However, the
number of error classified elements deleted by Tabu
Search is more. Therefore, the proportion of correct
classified elements in the cluster increases. The search-
ing times for producing the initial clusters is the random
number from 1 to 5000, because the maximal searching
times Cmax is M = 5000. But in most cases, the expected
initial clusters can be found within 1500 times, and the
corresponding running time is less than 9 s. The upper
bound of running time for refining cluster is total time
to construct all the permutations of cluster. In our ex-
periment, the operation time is less than 0.5 s due to the
limited number of clusters (only three clusters).
The experimental results are averaged and presented

in Table 1; they illustrate the role of Tabu Search in the
refinement of the initial cluster. After Tabu search, the
precision increased from 33.9 to 38.4%, although the re-
call reduced to 33.4%, satisfying the equilibrium distribu-
tion of the precision and recall. In addition, several
overlapping elements (approximately 40%) in the initial
cluster are completely deleted with Tabu Search. The

Fig. 6 Precision of the initial cluster and that of the refined cluster
after running Tabu Search ten times

Fig. 7 Running time of the initial cluster and that of the refined
cluster after running Tabu Search ten times

Table 1 Average performances of the initial and refined clusters
with Tabu Search

Initial cluster Refined cluster

Overlap (%) 40.7 0

Recall (%) 39 33.4

Precision (%) 33.9 38.4

Running time (s) 7.36 0.49

Fig. 8 Iterations of the three algorithms, run ten times
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average running time for producing the initial clusters is
7.36 s, and the one in refinement is 0.49 s. It can be seen
that the time load from cluster optimization is accept-
able. Therefore, it can improve the quality of the cluster
to a certain extent.

4.4 Stability analysis
First, the method for determining the number of clus-
ters, in Section 3.3.2, is applied to the test data. The re-
sult is three, which corresponds to the existing data.
Then, this dataset is clustered ten times with the PM-TS
clustering algorithm, K-Medoids clustering algorithm
[29], and the spectral clustering algorithm [26]. The cor-
responding results are depicted in Figs. 8, 9, 10 and 11.
It can be seen that the iterations for the PM-TS clus-

tering algorithm are lesser than those of the K-Medoids
and spectral clustering algorithms, indicating that our
proposed method can obtain a more precise initial clus-
ter and converges faster. In addition, the whole running
speed of PM-TS clustering algorithm is faster than the
one of K-Medoids and spectral clustering algorithms. In
most cases, the clustering accuracy (Macro-F1 and
Micro-F1) and stability (variations in Macro-F1 and
Micro-F1) are both of the order, PM-TS clustering algo-
rithm > spectral clustering algorithm > K-Medoids clus-
tering algorithm. The above results demonstrate the
advantages of the PM-TS clustering algorithm in terms
of the speed, accuracy, and stability. In some cases, the
clustering accuracies of the K-Medoids and spectral
clustering algorithms are less than 50%, indicating a

clustering failure. However, the PM-TS clustering algo-
rithm did not have similar issues, exhibiting its validity.

4.5 Whole-performance analysis
The experimental results are averaged and presented in
Table 2; they illustrate the better performance of the
PM-TS clustering algorithm compared to the K-Medoids
and spectral clustering algorithms. On the one hand, its
iterations are lesser and the convergence is fast as well
as the whole running speed. On the other hand, it has
no failure cases and Macro-F1/Micro-F1 increase more
than 13 and 10%, respectively. To sum up the above ana-
lysis, the failure in the distance calculation, the ineffi-
cient index tree, and the cluster overlap, derived from
the characteristics of the high-dimensional data, can be
corrected using the PM-TS clustering algorithm.

5 Conclusions
Audio signal clustering is critical in media computing.
The key to improving its performance is the solving of
the problems that exist in high-dimensional data cluster-
ing, such as failures in the distance calculation, ineffi-
cient index trees, cluster overlaps, etc. To address these
problems, a clustering algorithm integrated with the se-
quential Psim matrix, differential truncation, and Tabu
Search is proposed. Compared to the other clustering al-
gorithms, its characteristics are as follows: In high-
dimensional space, the sequential Psim matrix is used to
calculate the distance and organize data. Differential
truncation and Tabu Search are used to obtain the initial
cluster with a high accuracy. Experimental results indi-
cate that the performance of this algorithm is better than

Fig. 9 Whole running time of the three algorithms, run ten times Fig. 11 Micro-F1 of the three algorithms, run ten times

Fig. 10 Macro-F1 of the three algorithms, run ten times

Table 2 Average performances of the three algorithms

K-Medoids
clustering

Spectral
clustering

PM-TS
clustering

Iterations 14.2 21.8 12.8

Whole running
time (s)

27.16 54.58 19.48

Macro-F1 (%) 50.71 46.94 59.81

Micro-F1 (%) 53.54 51.58 61.65
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that of the K-Medoids and spectral clustering algo-
rithms. Several heuristic methods used in this algorithm
have a potential for improvement. Thus, our future work
includes the determination of more effective initial pa-
rameters, evaluation functions, and convergence criteria,
for improving the accuracy of the results.
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