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Abstract

Voice activity detection (VAD) is an important preprocessing step for various speech applications to identify speech
and non-speech periods in input signals. In this paper, we propose a deep neural network (DNN)-based VAD method
for detecting such periods in noisy signals using speech dynamics, which are time-varying speech signals that may be
expressed as the first- and second-order derivatives of mel cepstra, also known as the delta and delta-delta features.
Unlike these derivatives, in this paper, the dynamics are highlighted by speech period candidates, which are calculated
based on heuristic rules for the patterns of the first and second derivatives of the input signals. These candidates,
together with the log power spectra, are input into the DNN to obtain VAD decisions. In this study, experiments are
conducted to compare the proposed method with a DNN-based method, which exclusively utilizes log power spectra
by using speech signals smeared with five types of noise (white, babble, factory, car, and pink) with signal-to-noise
ratios (SNRs) of 10, 5, 0, and − 5 dB. The experimental results show that the proposed method is superior under all the
considered noise conditions, indicating that the speech period candidates improve the log power spectra.
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1 Introduction
Voice activity detection (VAD) is used as a prepro-
cessing stage for various speech applications to identify
speech and non-speech periods. In speech enhancement,
for example, in spectral subtraction, speech/non-speech
detection is applied to identify the signal periods that
contain only noise. This is useful for noise estimations,
which are then used in the noise reduction process [1].
In digital cellular telecommunication systems, such as the
Universal Mobile Telecommunication Systems (UMTS)
[2], VAD is employed to detect non-speech frames and
thus reduce average bit rates [3]. VAD may also improve
the performance of speech recognition by identifying the
boundaries of the speech to be recognized [4].
Because background noise is a challenging problem,

selecting features that are discriminative for properties of
speech and noise is an important aspect of the design
of VAD algorithms [5]. In prior studies, simple acous-
tic features such as energy and zero crossing rates have
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been used to detect speech periods [6]. This type of tech-
nique is suitable for clean signals, and its performance is
degraded under low signal-to-noise ratios (SNRs). Hence,
various modifications of energy-based features, such as
those described in [1, 7], have been proposed to improve
the VAD performance. Other acoustic features have also
been examined and investigated to improve the VAD per-
formance. For example, the VAD algorithm proposed in
[8] measures the long-term spectral divergence between
speech and noise. Periodic to aperiodic component ratios
were employed in [9]. Pek et al. [10] used modulation
indices of the modulation spectra of speech data. Kin-
nunen and Rajad [11] introduced likelihood ratio-based
VAD method in which speech and non-speech mod-
els are trained on an utterance-by-utterance basis using
mel-frequency cepstral coefficients (MFCCs). Sohn et al.
[12] proposed a method based on a Gaussian statis-
tical model, in which a decision rule is derived from
the mean of the likelihood ratios for individual fre-
quency bands by assuming that the noise is known a
priori. Davis et al. [13] proposed a scheme that incor-
porates a low-variance spectrum estimation technique
and a method for determining an adaptive threshold
based on noise statistics. These methods perform well

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-018-0135-7&domain=pdf
http://orcid.org/0000-0003-2060-6408
mailto: suci.dwijayanti@gmail.com
http://creativecommons.org/licenses/by/4.0/


Dwijayanti et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:10 Page 2 of 15

under stationary noise; however, their performances are
degraded under non-stationary noise. To improve the per-
formance of VAD, machine learning methods have been
explored. For instance, support vector machine (SVM)
methods [14–16] and deep neural networks (DNNs)
[17–19] have been found to be highly competitive with
traditional VAD.
The great flexibility, deep and generative training prop-

erties of DNNs are useful in speech processing [20].
Espi et al. [21] utilized spectro-temporal features as
the input to a convolutional neural network (CNN) to
detect non-speech acoustic signals. Ryant et al. [22] uti-
lized MFCCs as the input to a DNN to detect speech
activity on YouTube. Mendelev et al. [23] proposed a
DNN with a maxout activation function and dropout
regularization to improve the VAD performance. Zhang
et al. [24] attempted to optimize the capability of DNN-
based VAD by combining multiple features, such as pitch,
discrete Fourier transform (DFT), MFCCs, linear pre-
diction coefficients (LPCs), relative-spectral perceptual
linear predictive analysis (RASTA-PLP), and amplitude
modulation spectrogram (AMS) along with their delta
features, as the input to DNNs. However, choosing fea-
tures as the input for a DNN is not a trivial problem.
Research in automatic speech recognition has shown that
raw features have the potential to be used as the input of a
DNN, replacing “hand-crafted” features [25].
In this paper, we first attempt to utilize raw features,

i.e., log power spectra, to detect speech periods using
a DNN. In our preliminary experiment (Appendix 1,
Table 4), two findings are obtained. First, the perfor-
mance of VAD using the log power spectra as the input of
the DNN outperforms standard features, such as MFCCs
and MFCCs combined with delta and delta-delta cep-
stra, for both clean and noisy speech signals. MFCCs
lose some information from the speech signals; this may
occur because of the use of discrete cosine transform
(DCT) compression. Second, in the preliminary experi-
ment, we find that the addition of delta and delta-delta

cepstra to the MFCCs improves the VAD performance.
Delta and delta-delta cepstra are features that express
dynamics that refer to the time-varying properties of
speech signals [26]. Thus, this result indicates that the
dynamics may contribute to improving the VAD per-
formance. Based on the second finding, we attempt to
enhance the VAD performance based on the usage of
log power spectra, adding the first and second deriva-
tives of the log power spectra. In contrast to the dynamic
features, i.e., delta and delta-delta features, which are
computed as the first- and second-order derivatives of
MFCCs, respectively; here, the derivatives are derived
directly from the log power spectra, and these deriva-
tives are used to obtain the speech period candidates,
which are derived based on the patterns carried by those
derivatives. Figure 1 shows the outline of the proposed
method.
As shown in Fig. 1, first, major speech characteristics

are highlighted using a running spectral filter (RSF) [27].
Next, masks are composed using the first and second
derivatives of the log power spectra of the RSF output
through heuristic rules. These masks, which consist of
binary values, are then multiplied by spectra, expressed
in decimal form, to obtain speech period candidates.
Since not all subband signals may contribute to the VAD
decision, we consider obtaining the speech period candi-
dates for individual subbands. These speech period can-
didates, together with the log power spectra, are input
into a DNN to obtain the VAD output. The experimen-
tal results show that the proposed method is superior to
a DNN-based VAD method that utilizes the log power
spectra alone.
The paper is organized as follows. In Section 2, we

describe the proposed method for detecting speech peri-
ods using a combination of speech period candidates
and log power spectra. In Section 3, the experimen-
tal results and a discussion of the results are pro-
vided. In Section 4, the conclusions of the paper are
presented.

Fig. 1 Outline of the proposed method
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Fig. 2 Block diagram of the proposed method

Fig. 3 Subband observations of utterance /ha/, log power spectra, and their first and second derivatives. Blue and red lines represent first and
second derivatives, respectively. a Subband at 250 Hz. b Subband at 875 Hz
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2 Proposedmethod
A speech signal can be analyzed by using a short-time
Fourier transform (STFT) as follows:

X(m, k) =
∞∑

n=−∞
x(n)h(m − n)Wkn

k , (1)

where x(n) is a speech signal; h(n) is an analysis window,
which is time reversed and shifted bym frames; k is a fre-
quency bin variable; K is the number of frequency bins;
andWK = exp−j

( 2π
K

)
. X(m, k) can be further expressed as

follows:

X(m, k) = |X(m, k)|ej∠X(m,k). (2)

As shown in several investigations [28–31], the energy
of clean speech signals is mostly concentrated within a
modulation frequency range of 1 to 16 Hz. Hence, each
subband envelope, |X(m, k)|, is filtered through an RSF
to remove noise outside the modulation frequency range,
and negative values in the filter output are replaced by
zeros [32].
A subband log power spectrum of the RSF output,

E(m, k), is expressed as

E(m, k) = 10 log10(Xrsf (m, k))2. (3)

Hereafter, we call the log power spectrum of the RSF
output as LPS-RSF. The first and second derivatives of the
log power spectrum, E(m, k), obtained through the above
filtering, are calculated as follows:

�−mE(m, k) = E(m, k) − E(m − 1, k) and, (4)

�2
mE(m, k) = �+m�−mE(m, k)

=[E(m + 1, k) − E(m, k)]
−[E(m, k) − E(m − 1, k)] .

(5)

These derivatives are used to produce speech period
candidates that highlight the dynamics in the LPS-RSF.
These candidates are used together with the log power
spectra, derived from Eq. (2), to detect speech periods in
the DNN described in the next subsection. The detailed
process is shown in Fig. 2.

2.1 Speech period candidates
In spoken language, an utterance is a continuous piece of
speech that has a start and an end and is separated from
a successive utterance by a pause. Figure 3 shows the sub-
band observations at 250 and 875 Hz of an utterance /ha/
and the observations’ first and second derivatives of the
LPS-RSF obtained using Eqs. (4) and (5). The frame size
used to obtain this representation is 20 ms, which implies
that each frame consists of 160 samples, and the analysis
window is a Hamming window with a 10-ms frame shift.
As shown in Fig. 3, the starting and ending points of the

utterance /ha/ may be identified from the patterns of the
first and second derivatives. The starting and ending point
candidates of utterance /ha/ in the subband at 250 Hz are
located at frames 6 and 33, respectively. In contrast, in
the subband at 875 Hz, the starting and ending point can-
didates are found to lie at frames 6 and 30, respectively.
These observations indicate that not all subband signals
may contribute to the VAD decision. Therefore, we cal-
culate the first and second derivatives for the individual
subbands to obtain the speech period candidates.

Fig. 4Method of identifying the starting and ending points. a Starting point. b Ending point
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We will use Fig. 4 to explain the mechanism for iden-
tifying the starting (Fig. 4a) and ending (Fig. 4b) points.
These two figures show the observation frames. To deter-
mine the starting and ending points, the speech signal
is observed in segments of eight frames with an overlap
of four frames. The rules for identifying the starting and
ending points are as follows:

(i) To identify a starting point, we consider eight frames
at once and check the former four frames, as shown
in Fig. 4a. We observe these frames to find a frame
that has the local maximum second derivative
followed by a positive first derivative in the successive
frame. When this pattern holds, such frame becomes
a starting point candidate. This process continues for
the successive eight frames with an overlap of four
frames from the previous observation.

(ii) To identify an ending point, we consider eight frames
at once and check the subsequent four frames, as
shown in Fig. 4b. We observe these frames to find a
frame that has the combination of a local minimum
first derivative and a local maximum second
derivative that is preceded by at least one negative
first derivative. When this pattern holds, such frame
becomes an ending point candidate. This process
continues for the successive eight frames overlapped
with four frames from the previous observation.

The above two processes continue until the last observa-
tion frames have been examined.
The starting and ending point candidates that are found

based on rules (i) and (ii) are marked by the simple binary
number of one. Figure 5b shows the starting and ending
point candidates of the speech signal. We then simply add

Fig. 5 Representation of a speech signal (a), its starting and ending point candidates using rules (i) and (ii) (b), masks (c), and speech period
candidates as a result of multiplying masks by the spectra expressed in decimal form (d)
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the binary ones between the starting and ending points to
obtain masks, as shown in Fig. 5c.
The masks, however, may cause misjudgments for non-

speech periods because such masks do not carry informa-
tion coming from the amplitude of the observed signal.
To minimize such misjudgment, we attempt to remove
values of “one” coming from the signal parts when the
amplitudes are relatively small simply by multiplying the
raw spectra expressed in decimal by the masks. Here-
after, the output of this process is referred to as speech
period candidates. The result of the process is shown in
Fig. 5d. These speech period candidates, together with
the log power spectra from Eq. (2), become input for the
DNN. The same signal that is smeared by factory noise
is shown in Fig. 6a. Figure 6d shows the speech period
candidates for the noisy signal smeared with factory
noise (−5 dB).

2.2 DNN-based VAD
DNNs have been shown to be effective in various speech
applications, including the detection of speech periods,
as shown in [22]. According to [33], a DNN is a con-
ventional multilayer perceptron (MLP) with many hidden
layers. For simplicity, for an L + 1-layer DNN, the input
layer is regarded as layer 0, and the output layer is consid-
ered layer L. In the first L layers, an activation vector a� is
obtained as follows:

a� = f
(
z�

)
= f

(
W�a�−1 + b�

)
, for 0 < � < L. (6)

where z� ∈ R
N�×1 is an excitation vector,W� ∈ R

N�×N�−1

is a weight matrix, b� ∈ R
N�×1 is a bias vector, and N� ∈

R is the number of neurons in layer �. f (.) :∈ R
N�×1 →

R
N�×1 is an activation function applied to the excitation

vector element-wise z. Here, the sigmoid function

Fig. 6 Representation of the speech signal smeared by factory noise (−5 dB) (a), its starting and ending point candidates using rules (i) and (ii) (b),
masks (c), and speech period candidates as a result of multiplying masks by the spectra expressed in decimal form (d)
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σ(z) = 1
1 + e−z (7)

is used.
In the input layer, a0 = P(m, k) ∈ R

N0×1 denotes the
input feature vector of the DNN, where P(m, k) denotes
the log power spectra and the speech period candidates.
P(m, k) is used as a learning instance and is mapped onto
the correct speech periods that are identified during the
training process.
In the output layer for classification tasks such as VAD,

each output neuron represents a class i ∈ {1, . . . ,C},
where C = NL is the number of classes. In the output
layer, a softmax function is added as a linear classifier for
VAD:

aLi = softmaxi
(
zL

) = ezLi
∑C

j=1 e
zLJ
, (8)

where zLi is an ith element of the excitation vector zL. The
value of the ith output neuron aLi represents the probabil-
ity Pdnn(i|P) that the observation P(m, k) belongs to class
i (speech or non-speech).
The training process for the DNN mentioned above

consists of two stages. First, a greedy layer-wise unsuper-
vised learning procedure is performed as the pre-training
stage. Next, fine-tuning is performed on the entire net-
work [34]. The DNN considered in this study is composed
of five layers of restricted Boltzmann machines (RBMs),
which consist of visible and hidden units. Here, Bernoulli

Fig. 7 Representative results of the proposed VAD method. a Clean speech. b Factory noise, SNR = 10 dB. c Factory noise, SNR = 5 dB. d Factory
noise, SNR = 0 dB. e Factory noise, SNR = − 5 dB
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(visible)–Bernoulli (hidden) RBMs, i.e., v� ∈ {0, 1} and
h� ∈ {0, 1}, are used. Once the learning process has
been completed for an RBM, the activity values of its
hidden units can be used as the feature input for train-
ing the next RBM [35]. A contrastive divergence algo-
rithm is used in the pre-training stage to approximate the
gradient of the negative log likelihood of the data with
respect to the RBM’s parameters [36]. After the layer-by-
layer pre-training stage, a backpropagation technique is
applied throughout the entire net to fine-tune the weights
to obtain optimal results [37]. Because the VAD output
consists of two classes (i.e., speech and non-speech), the
DNN-based VAD output for each frame is a binary vector
whose elements are determined as follows:

ym = aL =
{
1, if speech is at framem, and
0, otherwise.

(9)

The DNN outputs trains of 1s (ones) representing the
speech periods.

3 Experimental results and discussion
3.1 Experimental setup
In the experiments, we use 99 speech files from the ASJ
Continuous Speech Corpus for Research vol. 2 [38]. These
speech files are divided equally into three data sets. Then,
we create three groups, each with 66 files for training
(a combination of two data sets to obtain three distinct
groups), and the rest of the speech files are used for eval-
uation purposes. The objective of dividing the data is to
evaluate the proposed method inside a different data set.
To obtain noisy signals, the clean speech files are mixed
with five types of noise, white, babble, factory, car, and
pink, from NOISEX-92 [39]. Each noise signal is differ-
ently selected for the speech files as well as SNRs of 10, 5,
0, and −5 dB. Thus, 21 sets of data are used to produce
1386 speech files for the training of each group.
In this work, the input signals are sampled at 8 kHz. The

frame size is 20ms, and the analysis window is a Hamming
window with a 10-ms frame shift. After the RSF filtering
process, the LPS-RSF is calculated for an individual sub-
band using Eq. (3). Next, the first and second derivatives
for each subband are calculated using Eqs. (4) and (5).
These derivatives are used to obtain the starting and end-
ing point candidates in accordance with rules (i) and (ii).
After the conversion of the starting and ending point can-
didates from the sparse representation to the masks, the
masks are multiplied by the spectra, expressed in decimal
form to obtain speech period candidates. Then, the DNN
is applied to the speech period candidates in combination
with the log power spectra derived from Eq. (2). This com-
bination (i.e., the dynamic features) is fed to the DNN to
obtain the final VAD decision regarding the speech peri-
ods. The dynamic features are normalized to zero mean
and unit variance in each dimension. To train the DNN,

we use five RBMs. These RBMs are stacked together, and
the number of neurons for each RBM is 200, 200, 200, 200,
and 100, in sequence. The learning rate is 0.0001, and the
maximum number of epochs for both the pre-training and
fine tuning stages is 200.
Note that, after determining the speech and non-speech

periods, we did not perform any post processing, such as
a VAD hangover, because such processing is outside the
scope of this paper.

3.2 Results and discussion
The VAD decisions on noisy signals smeared with fac-
tory noise at various SNRs are shown in Fig. 7. In Fig. 7,
the red dashed lines indicate the true speech and non-
speech periods, whereas the solid magenta lines represent
the generated VAD output. As shown in the figure, the
output of the proposed VAD method is reasonably close
to the ground truth.

Table 1 AUC (%) comparison between the proposed method
and DNN-based VAD methods using speech period candidates
and log power spectra as the baseline

AUC (%)—mean ± standard deviation

Noise SNR (dB) Proposed Log power
spectra

Speech
period
candidates

Clean 99.06±0.13 98.72 ±0.20 98.10 ±0.39

White 10 97.91±0.28 97.51 ±0.49 97.06 ±0.54

5 97.44±0.43 97.27 ±0.48 96.64 ±0.46

0 96.59±0.50 96.14 ±0.76 95.44 ±0.57

− 5 94.69±0.66 93.88 ±1.10 93.40 ±0.60

Babble 10 96.84±0.60 96.50 ±0.55 96.19 ±0.68

5 95.19±0.71 94.26 ±0.66 94.59 ±0.92

0 91.30±0.74 88.88 ±0.74 90.42 ±0.53

− 5 83.20±0.87 78.10 ±1.10 81.85 ±0.85

Factory 10 97.25±0.39 96.80 ±0.60 96.60 ±0.56

5 95.96±0.43 95.14 ±0.72 95.48 ±0.77

0 93.18±0.46 91.17 ±0.45 92.53 ±0.67

− 5 85.91±0.29 80.49 ±1.54 84.57 ±0.83

Car 10 99.02±0.11 98.83 ±0.15 97.60 ±0.45

5 98.94±0.11 98.75 ±0.16 97.37 ±0.45

0 98.79±0.09 98.56 ±0.16 97.02 ±0.41

− 5 98.40±0.05 98.06 ±0.02 96.36 ±0.32

Pink 10 97.79±0.39 97.20 ±0.66 96.86 ±0.73

5 96.82±0.59 96.28 ±0.79 95.98 ±0.74

0 95.26±0.70 94.06 ±0.95 94.26 ±0.89

− 5 91.56±1.03 88.01 ±1.54 89.91 ±1.20

The numbers in italics indicate the best results
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Fig. 8 Improvement of VAD performance

To evaluate the effectiveness of the proposed method,
we compare it with the DNN-based VAD method, which
only utilizes the log power spectra, as the baseline of the
evaluation.
To represent the performance of the proposed method,

the receiver operation characteristic (ROC) curve, in
which true positive rate (TPR) is plotted against false
positive rate (FPR), is considered. The TPR, or sensitivity,
and FPR are defined based on the number of true positives
(TPs), false positives (FPs), true negatives (TNs), and false
negatives (FNs) as follows [40]:

TPR = TP
TP + FN

, and (10)

FPR = FP
FP + TN

. (11)

To obtain a quantitative ROC value, the area under the
curves (AUCs) are calculated. These AUCs are the main
metric for evaluation.
Table 1 compares the average of the AUCs achieved

by the DNN-based VAD methods using the log power
spectra alone, the speech period candidates alone, and
the proposed method. As shown in Table 1, the proposed
method may improve the performance of the DNN-based
VAD method using the log power spectra for all cases. As
shown in Fig. 8, a relatively good improvement is obtained
in low SNR cases. The highest improvement occurs at
− 5 dB, for example, the performance improves by 6.52%
for babble noise at − 5 dB.
This method is also applied to SNR environments (7, 3,

− 3, and− 7 dB) that are not known scenarios. The results
for such SNR environments are shown in Table 2. The
results in Tables 1 and 2 are from the known and unknown

Table 2 AUC (%) comparison between the proposed method
and DNN-based VAD methods using speech period candidates
and log power spectra as the baseline for unknown SNR
environments (7, 3, − 3, and − 7 dB)

AUC (%)—mean ± standard deviation

Noise SNR (dB) Proposed Log power
spectra

Speech
period
candidates

White 7 97.57±0.41 97.44 ±0.53 96.82 ±0.44

3 97.10±0.56 96.92 ±0.53 96.25 ±0.55

− 3 95.72±0.69 95.04 ±0.89 94.36 ±0.88

− 7 93.31±0.81 92.43 ±1.01 91.77 ±0.69

Babble 7 95.87±0.58 95.36 ±0.73 95.20 ±0.68

3 93.77±0.54 92.49 ±0.62 93.26 ±0.69

− 3 86.90±0.95 83.37 ±1.14 86.10 ±1.01

− 7 78.49±1.00 73.11 ±0.86 77.55 ±0.81

Factory 7 96.50±0.50 96.11 ±0.53 95.88 ±0.73

3 95.00±0.54 94.11 ±0.59 94.43 ±0.71

− 3 89.05±0.34 85.00 ±0.56 88.40 ±0.48

− 7 80.49±0.72 72.66 ±1.54 79.45 ±0.80

Car 7 98.99±0.15 98.81 ±0.17 97.51 ±0.40

3 98.92±0.16 98.71 ±0.18 97.29 ±0.42

− 3 98.66±0.19 98.39 ±0.23 96.69 ±0.37

− 7 98.10±0.42 97.74 ±0.54 95.89 ±0.43

Pink 7 97.20±0.50 96.64 ±0.66 96.31 ±0.71

3 96.21±0.60 95.48 ±0.67 95.46 ±0.60

− 3 93.57±0.84 91.34 ±0.74 92.22 ±0.69

− 7 89.32±0.65 84.92 ±0.66 86.93 ±0.50

The numbers in italics indicate the best results
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scenarios, respectively. Both tables show that the pro-
posed method is able to enhance the usage of the log
power spectra, even for the unknown SNR environments.
To evaluate the effect of introducing the speech period

candidates, we measure the TPR (sensitivity) and the true
negative rate (TNR or specificity). Sensitivity gives the
percentage of the frames that were correctly classified
as speech from all the speech frames in the signal, and
specificity gives the percentage of the frames that were
correctly classified as non-speech from all the non-speech
frames in the signal [41].
Figure 9 shows the mean TPR (sensitivity) and TNR

(specificity). As shown in the figure, the proposed method
has a high sensitivity and specificity for both the clean
and noisy cases. Interestingly, the performance of the
DNN-based VAD method using speech period candi-
dates approaches and even outperforms the log power

spectra in finding speech, as shown in Fig. 9a, particu-
larly for low SNRs and non-stationary cases. This fact
may imply that the addition of speech period candidates
is useful to find speech periods in low SNRs and non-
stationary cases. Additionally, the specificity of speech
period candidates is higher than the log power spectra
as shown in Fig. 9b. This fact may imply that the speech
period candidates may improve the log power spectra for
finding non-speech periods. Thus, the speech period can-
didates may carry valuable information for judging speech
and non-speech detection. In the proposed method, the
addition of the speech period candidates is effective at
improving the accuracy of the log power spectra at finding
speech and non-speech periods, especially for low SNRs
and non-stationary cases.
Figure 10 shows the ROC curves for the proposed

method and the DNN-based VAD methods using speech

Fig. 9 Sensitivity and specificity comparison between the proposed method and the DNN-based VAD methods using speech period candidates
and log power spectra. a TPR (sensitivity). b TNR (specificity)
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period candidates and log power spectra, respectively,
at an SNR of − 5 dB. As shown in the figure, the pro-
posed method shows an advantage over the DNN-based
VAD method using the log power spectra. The proposed
method is effective for low SNR cases. In the cases of
stationary noise, such as white and pink noise, the work-
ing points of the proposed method are close to those of
the DNN-based VAD method using the log power spec-
tra. These methods achieve a high TPR and a low FPR.
In the cases of non-stationary noise, such as babble and
factory noise, the proposed method is less affected by the
noise than the DNN-based VAD method using the log
power spectra. The performance of the proposed method
is superior to that of the DNN-based VAD method using
the log power spectra mainly due to introducing dynamics

expressed by speech period candidates. To evaluate its
effectiveness, the proposed method is also compared to
other methods (Appendix 2, Table 5).
In addition to the contribution of the speech period

candidates, which may highlight dynamics, we attempt
to find useful subbands for obtaining VAD decisions in
the employed DNN. We evaluate which subbands have
more valuable information than the others, by finding the
similarity between the input (i.e., speech period candi-
dates) and the VAD output. This similarity is evaluated by
employing mutual information (MI), which aims to mea-
sure whether the inputs are dependent on the associated
labels (VAD output). According to [42], the MI between
the discretized feature values a and the class labels y is
evaluated according to the formula

Fig. 10 ROC curves for the proposedmethod and for DNN-based VADmethods using log power spectra and speech period candidates, respectively.
aWhite noise, SNR = − 5 dB. b Babble noise, SNR = − 5 dB. c Factory noise, SNR = − 5 dB. d Car noise, SNR = − 5 dB. e Pink noise, SNR = − 5 dB
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Table 3 Subband (Hz) ranks using mutual information (MI)

Subband (Hz) ranks using MI

Noise SNR (dB) 1 2 3 4

Clean 187.5 218.75 156.25 312.5

White 10 187.5 218.75 156.25 250

5 187.5 218.75 156.25 250

0 187.5 218.75 156.25 250

− 5 187.5 218.75 156.25 250

Babble 10 187.5 218.75 250 156.25

5 187.5 218.75 250 156.25

0 187.5 218.75 250 156.25

− 5 187.5 218.75 250 156.25

Factory 10 187.5 218.75 156.25 250

5 187.5 218.75 156.25 250

0 187.5 218.75 250 156.25

− 5 218.75 187.5 250 312.5

Car 10 187.5 218.75 156.25 250

5 187.5 218.75 312.5 250

0 187.5 218.75 250 312.5

− 5 218.75 187.5 250 312.5

Pink 10 187.5 218.75 156.25 250

5 187.5 218.75 250 156.25

0 187.5 218.75 250 156.25

− 5 187.5 218.75 250 156.25

MI =
∑

a∈A

∑

y∈Y
p(a, y) log

(
p(a, y)
p(a)p(y)

)
, (12)

where p(a, y) is a joint probability function of a and y and
p(a) and p(y) are marginal probability distribution func-
tions of a and y, respectively. Here, the feature values, a,

are the input of the DNN (speech period candidates), and
the class labels, y, are the VAD output. The larger the MI,
the higher the dependency between the feature values,
which represent speech period candidates for individual
subbands, and the class labels (VAD output). Here, we
rank the subbands according to their scores.
Table 3 shows the top 4 subband ranks using MI.

As shown in Table 3, the top 4 ranks for clean, and
noisy signals show a similar tendency for frequency bins
6, 7, 8, and 9 (156.25 Hz, 187.5 Hz, 218.75 Hz, and
250 Hz). Such subband may play some roles in obtain-
ing the VAD decision in the proposed method. To clar-
ify this, we perform experiments in which the four top
subband values in the proposed method are replaced
with zeros, and the resulting VAD performance is shown
in Fig. 11.
As shown in Fig. 11, at a high SNR, the performance of

the proposed method is only slightly degraded when the
subbands of 156.25 Hz, 187.5 Hz, 218.75 Hz, and 250 Hz
are replaced by zeros. In low SNR cases, the subbands are
polluted by noise. Consequently, the performance might
be degraded, and this degradation worsens when these top
4 subbands are not utilized. In contrast, when the four
lowest subband values are replaced by zeros, the output
accuracy can still be maintained. These results indicate
that the top 4 subbands have a relatively important role in
the decision-making process of the proposed method. We
observe that the information carried by these subbands
may correspond to the average of F0 or its neighbors (the
average F0 for the data is 179.97 Hz, the average F0 for
male is 149.09 Hz and 210.84 Hz for female; the F0s are
measured using STRAIGHT algorithm [43]). Thus, in the
proposed method, the DNNmay utilize information com-
ing from the useful subbands which may correspond to F0
and its neighbors.

Fig. 11 VAD performance of the proposed method after replacing the subband values of top 4 ranks and the lowest 4 ranks with zeros
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4 Conclusions
This study presents a DNN-based VAD method for
improving the performance of VAD by introducing
dynamics, which may be highlighted by speech period
candidates. These candidates are derived from heuristic
rules based on the first and second derivatives of the log
power spectrum of the RSF output (LPS-RSF). The speech
period candidates are calculated for individual subbands
and are then input into a DNN together with the log
power spectra to generate the VAD decision. To evalu-
ate the performance of the proposed method, we perform
experiments using clean and noisy speech signals smeared
with five types of noise, namely, white, babble, factory,
car, and pink, with SNRs of 10, 5, 0 and − 5 dB. The pro-
posed method effectively detects speech and non-speech
periods. The experimental results show that the VAD per-
formance based on log power spectra are improved after
combining the log power spectra with the speech period
candidates, particularly for noisy speech signals with low
SNRs and non-stationary cases. The addition of dynam-
ics expressed by the speech period candidates provides
positive information that contributes to the detection of
speech periods.
In this study, we also show that the DNN-based

VAD utilizes subbands that may correspond to F0 and
its neighbors. The VAD performance degrades when
those subbands are eliminated. However, further stud-
ies should be performed to analyze other factors that
influence the behavior of the employed DNN. Moreover,
we intend to make the proposed method work in real
time.

Appendix 1: preliminary experiment
In the preliminary experiment, we compared DNN-based
VADmethods using log power spectra and “hand-crafted”
features that are frequently used in speech processing, i.e.,
MFCC, delta features, and delta-delta features. All of these
features were input into the DNN using the same config-
uration and parameters as mentioned in Section 3. The
MFCCs were calculated using the same window length of
20ms and the same shift of 10ms.We consider 13MFCCs
augmented with delta features and delta-delta features,
resulting in 39 combined features.
As shown in Table 4, the DNN-based VAD performance

that was achieved using the log power spectra is supe-
rior to that achieved using the MFCCs and that using
MFCCs in combination with their delta and delta-delta
cepstra. The log power spectra features capture more
detailed information in the time-frequency domain. Con-
sequently, these features represent a variety of important
information that may be related to the speech characteris-
tics. In contrast, the MFCCs may suffer from information
loss, which may occur due to the dimension reduction
caused by the DCT compression. In the preliminary study,

the DNN-based VAD performance that was achieved
using the MFCCs is slightly improved when temporal
derivatives, i.e., delta and delta-delta features, are consid-
ered in combination with the MFCCs. The enhancement
achieved by using the MFCCs in combination with the
delta and delta-delta cepstra implies that the dynamics
that are expressed by delta and delta-delta cepstra play a
role in improving the VAD performance.

Appendix 2: comparison to conventional methods
To evaluate the effectiveness of the proposed method, we
also compare it with four other methods presented in
[8, 11, 12, 44].
Table 5 shows the AUC results of the proposed method

and the other methods. As shown in the table, the
proposed method outperforms the other methods in
[8, 11, 12, 44] for both clean and noisy signals. The per-
formance of the method in [12], which utilizes a statistical
method, approaches the performance of the method in
[11], which utilizesMFCCs and a Gaussian mixture model
(GMM) as the classifier. Their performance worsens for
non-stationary noise. Alternatively, the method in [44]

Table 4 AUC (%) comparison between DNN-based VAD
methods using log power spectra and MFCCs

AUC (%)—mean ± standard deviation

Noise SNR (dB) Log power
spectra

MFCCs MFCCs +� + ��

Clean 98.72±0.20 98.18 ±0.08 97.79 ±0.41

White 10 97.51±0.49 96.10 ±0.59 96.91 ±0.57

5 97.27±0.48 93.99 ±0.85 95.11 ±0.97

0 96.14±0.76 89.58 ±1.46 90.85 ±1.73

− 5 93.88±1.10 81.43 ±1.11 82.42 ±1.53

Babble 10 96.50±0.55 92.71 ±0.92 93.51 ±0.77

5 94.26±0.66 87.24 ±1.03 87.73 ±0.89

0 88.88±0.74 77.78 ±0 .99 77.86 ±0.82

− 5 78.10±1.10 65.72 ±1.40 65.59 ±1.40

Factory 10 96.80±0.60 95.16 ±0.79 96.04 ±0.74

5 95.14±0.72 91.60 ±1.23 92.55 ±1.06

0 91.17±0.45 84.19 ±1.23 84.81 ±1.13

− 5 80.49±1.54 72.40 ±1.14 72.70 ±0.72

Car 10 98.83±0.15 98.34 ±0.23 98.26 ±0.32

5 98.75±0.16 98.22 ±0.34 98.23 ±0.35

0 98.56±0.16 97.91 ±0.44 98.08 ±0.40

− 5 98.06±0.02 97.27 ±0.54 97.70 ±0.46

Pink 10 97.20±0.66 95.91 ±0.81 96.64 ±0.62

5 96.28±0.79 93.31 ±1.00 94.28 ±0.99

0 94.06±0.95 87.96 ±1.54 88.91 ±1.40

− 5 88.01±1.54 78.30 ±1.81 79.02 ±1.22

The numbers in italics indicate the best results
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Table 5 AUC (%) comparison between the proposed method and other methods (Ramirez et al. [8], Kinnunen et al. [11], Sohn et al.
[12], and Segbroeck et al. [44])

AUC (%)—mean ± standard deviation

Noise SNR (dB) Proposed Ramirez Kinnunen Sohn Segbroeck

Clean 99.06±0.13 71.03 ±1.02 95.65 ±0.43 88.48 ±1.45 84.57 ±1.21

White 10 97.91±0.28 74.09 ±1.50 93.65 ±1.05 93.32 ±0.50 79.63 ±0.24

5 97.44±0.43 73.57 ±1.36 93.02 ±1.31 87.84 ±0.50 77.75 ±0.34

0 96.59±0.50 72.33 ±1.24 91.06 ±1.59 77.34 ±1.14 75.21 ±0.67

− 5 94.69±0.66 68.97 ±1.07 83.85 ±1.28 66.79 ±1.85 71.89 ±0.77

Babble 10 96.84±0.60 68.84 ±1.32 87.71 ±0.91 87.56 ±0.87 81.25 ±0.35

5 95.19±0.71 67.28 ±0.71 84.19 ±0.80 79.97 ±0.70 79.05 ±0.69

0 91.30±0.74 63.62 ±0.91 76.59 ±0.99 70.05 ±0.94 72.99 ±1.13

− 5 83.20±0.87 59.37 ±1.01 66.73 ±1.52 60.33 ±0.93 62.71 ±1.25

Factory 10 97.25±0.39 70.35 ±1.85 88.12 ±1.73 88.04 ±0.67 81.19 ±0.96

5 95.96±0.43 67.54 ±1.57 84.42 ±1.67 79.55 ±0.85 78.99 ±1.06

0 93.18±0.46 62.78 ±1.53 77.70 ±1.07 67.15 ±0.82 74.67 ±0.87

− 5 85.91±0.29 57.81 ±1.71 66.38 ±0.76 56.28 ±0.56 67.23 ±0.52

Car 10 99.02±0.11 69.06 ±1.60 94.62 ±0.36 91.56 ±1.29 84.46 ±0.96

5 98.94±0.11 68.27 ±1.32 93.64 ±0.80 92.15 ±0.83 84.38 ±0.96

0 98.79±0.09 68.50 ±1.02 92.42 ±0.40 92.41 ±0.34 84.08 ±0.91

− 5 98.40±0.05 68.77 ±1.87 90.16 ±0.17 91.81 ±0.10 83.49 ±1.06

Pink 10 97.79±0.39 73.11 ±1.67 90.37 ±1.33 90.54 ±0.40 81.00 ±0.94

5 96.82±0.59 72.36 ±1.63 88.87 ±1.85 82.51 ±1.39 78.96 ±1.21

0 95.26±0.70 70.32 ±1.53 84.13 ±1.76 71.70 ±1.70 76.10 ±1.31

− 5 91.56±1.03 65.69 ±1.40 74.46 ±1.36 62.81 ±1.82 71.78 ±1.04

The numbers in italics indicate the best results

can give better performance for non-stationary and low
SNRs than the method in [8]. The proposed method is
superior to that of the other methods because it uses the
advantages of using a DNN with features as the input, i.e.,
speech period candidates and log power spectra.
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