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Abstract

The emerging field of computational acoustic monitoring aims at retrieving high-level information from acoustic
scenes recorded by some network of sensors. These networks gather large amounts of data requiring analysis. To
decide which parts to inspect further, we need tools that automatically mine the data, identifying recurring patterns
and isolated events. This requires a similarity measure for acoustic scenes that does not impose strong assumptions
on the data.
The state of the art in audio similarity measurement is the “bag-of-frames” approach, which models a recording using
summary statistics of short-term audio descriptors, such as mel-frequency cepstral coefficients (MFCCs). They
successfully characterise static scenes with little variability in auditory content, but cannot accurately capture scenes
with a few salient events superimposed over static background. To overcome this issue, we propose a two-scale
representation which describes a recording using clusters of scattering coefficients. The scattering coefficients
capture short-scale structure, while the cluster model captures longer time scales, allowing for more accurate
characterization of sparse events. Evaluation within the acoustic scene similarity framework demonstrates the interest
of the proposed approach.

Keywords: Unsupervised learning, Data mining, Acoustic signal processing, Wavelet transforms, Audio databases,
Content-based retrieval, Nearest neighbor searches, Acoustic sensors, Environmental sensors

1 Introduction
The amount of audio data recorded from our sonic envi-
ronment has grown considerably over the past decades.
In order to measure the effect of human activity and cli-
mate change on animal biodiversity [34], researchers have
recently undertaken a massive deployment of acoustic
sensors throughout the world [27, 33, 37]. In addition,
recent work has explored acoustic monitoring for charac-
terization of human pleasantness in urban areas [11, 29],
as well as the prediction of annoyance due to traffic [10].
Since they bear a strong societal impact and raise many
scientific challenges, we believe that these applications are
of considerable interest for signal processing community.
An important problem is that manually analyzing the

recorded data to identify the quantities of interest is very
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costly. Some sort of pre-screening is therefore required to
reduce the need for human expert listening and annota-
tion. To this aim, the most straightforward approach is to
specify a closed set of sound classes, such as sound classes
expected to appear near the acoustic sensors. Computa-
tional models are then trained for these classes which are
used to automatically annotate recordings [40]. A given
time interval (e.g., a single day) is then represented by
the number of events detected during that interval for
each class. This allows the scientist to drastically reduce
the amount of information requiring manual processing.
However, this approach has two drawbacks. First, it relies
on trained models whose prediction on unseen data—i.e.,
sensors outside of the training set—is prone to errors.
Secondly, and more importantly, it is based on prior
knowledge and thus cannot be considered for exploratory
analysis, in which quantities of interest have yet to be
defined.
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To identify which parts need human inspection, one
needs tools that are able to detect both recurring patterns
and sparsely distributed events. Identifying recurring pat-
terns allows the user to focus on certain time points for
manual annotation, while detection of more rare struc-
tures enables discovery of unforeseen phenomena.
With this aim, we need to design an algorithm for

acoustic similarity retrieval, where the audio fragments
judged “most similar” to a given query recording must be
extracted from some larger dataset. To construct such an
algorithm, we are required to represent an audio record-
ing in a way that captures its distinctive qualities. A
widespread choice of representation is the bag of frames
[3], which describes an auditory scene recording using
summary statistics of short-time features. Unfortunately,
the bag-of-frames approach only captures the average
structure of the scene, so the approach often fails when
presented with highly dynamic scenes or those charac-
terised by a few distinct sound events sparsely distributed
over time. Furthermore, experiments in cognitive psy-
chology [9] and cognitive neuroscience [25] suggest that
human acoustic perception is highly sensitive to such iso-
lated sound events. We believe that the failure to model
such distinct events is one of the reasons why the bag-of-
frames representation is insufficient [15].
Solving the acoustic similarity retrieval first requires

the ability to capture meaningful signal structure at small
time scales. This is often achieved using mel-frequency
cepstral coefficients (MFCCs). Originally developed for
speech processing [7], MFCCs have recently found wider
use in music information retrieval [19] and environmental
audio processing [3]. A richer representation, the scatter-
ing transform, has enjoyed significant success in various
audio [1] and biomedical [6] signal classification tasks.
Its structure is that of a convolutional neural network
[2, 4, 17, 21], but with fixed filters. Specifically, it alternates
convolutions with wavelet filters and pointwise nonlin-
earities to ensure time-shift invariance and time-warping
stability [22].
For our task, one advantage of the scattering transform

is that it does not require a training step, allowing for a
wider range of applications compared to learned features.
Indeed, for data mining of previously unheard datasets,
the properties of relevant audio structures remains to be
defined, leading to an unsupervised setting.
In this work, we propose a new model for acoustic

scenes, where the signal is represented at sub-second
scales by scattering transforms, while larger scales are
captured by a cluster model. This unsupervised model
quantizes the scattering coefficients into a given num-
ber of clusters. These clusters are then used to define a
set of distances for acoustic similarity retrieval. Evaluating
this approach on a scene retrieval task, we obtain sig-
nificant improvements over traditional bag-of-frames and

summary statistics models applied both to MFCCs and
scattering coefficients.
Motivations of the proposed approach and a brief

review of the state of the art in acoustic scene model-
ing are given in Section 2. We describe the scattering
transform in Section 3, discuss feature post-processing
in Section 4, and propose a cluster-based scene descrip-
tion in Section 5. Section 6 describes several experiments
for the acoustic scene similarity retrieval task. Results are
reported in Section 7.

2 Background
Characterization of the similarity between audio record-
ings be they at the scale of the minute, the hour, the day,
or larger, is of interest for many application areas involv-
ing acoustic monitoring such as urban sound environ-
ment analysis and ecoacoustics. In this context, a classical
approach is the bag of frames (BoF), first applied to the
problem by Aucouturier et al. [3]. It models an auditory
scene using high-level summary statistics computed from
local features, typically implemented by Gaussian mixture
models (GMMs) of MFCCs.
It is worth mentionning that this task typically falls into

an unsupervised paradigm where no prior knowledge is
used to model a given scene. For each scene s, a model
Ms is computed. The similarity among the scene s1 and
s2 is computed as the similarity between M1 and M2 (see
Section 6 for further details). The BoF approach is also
widely used in a supervised fashion for solving a classifi-
cation task [32]. In this case, each class of scenes from a
given typology, say {park, boulevard, square}, is modeled
by a GMM trained on scenes taken from a training set. In
order to predict the class of a given scene s, the likelihood
each model given the scene are computed. The scene is
then labeled park if the likelihood of the GMM trained on
park scenes is higher than all other likelihoods.
While BoF has largely been superseded by more sophis-

ticated methods for the task of acoustic scene classifi-
cation [32], it remains the best-performing model for
acoustic scene similarity retrieval, though this representa-
tion was recently shown to perform comparably to direct
averaging of the features for a variety of datasets [15].
This contrasts with the typical morphology of acoustic
scenes, a “skeleton of events on a bed of textures,” where
a few discrete sound events are superimposed upon a
stationary acoustic background [26]. Such events are not
well-characterised by summarizing short-term features,
but are better described by large-scale temporal evolution
of auditory scenes. The latter approach should therefore
provemore fruitful inmeasuring auditory scene similarity.
This statement has some support in auditory psychol-

ogy as well as sound synthesis based on summary statis-
tics [23]. Studies in the cognitive psychology of urban
sound environments have shown that global sound level
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(perceived or measured) is not sufficient to fully charac-
terise an acoustic scene [11, 13]. Instead, cognitive pro-
cesses, such as sound environment quality perception [9]
or loudness judgment [14], seem to rely upon higher-level
cognitive attributes. These typically include the identities
of the sound sources which constitute the scene. It has
been shown that, if available, the complete description
of the scene in terms of event occurrences is powerful
enough to reliably predict high-level cognitive classes. For
example, in urban areas, the presence of birds is likely to
be heard in parks and are therefore strong pleasantness
indicators. Consequently, research in sound perception
is now strongly focused on the contribution of specific
sound sources in the assessment of sound environments
[16, 29]. Although the complete set of events occurring
within a given auditory stream may not be discernable
even to human expects, research has shown that a small
set of events (so-called markers) suffice to reliably predict
many high-level attributes.
From a cognitive psychology perspective, the consensus

is therefore that only a few distinct events are sufficient
to describe an auditory scene, in contrast to BoF models
which treat each observation separately and do not cap-
ture their temporal structure. A method that takes this
knowledge into account could therefore have potential
for great impact in acoustic scene modeling, given a rich
enough representation of these distinct events.

3 Wavelet scattering
Local invariance to time-shifting and stability to time-
warping are necessary when representing acoustic scenes
for similarity measurement. The scattering transform is
designed to satisfy these properties while retaining high
discriminative power. It is computed by applying audi-
tory and modulation wavelet filter banks alternated with
complex modulus nonlinearities.

3.1 Invariance and stability in audio signals
The notion of invariance to time-shifting plays an essen-
tial role in acoustic scene similarity retrieval. Indeed,
recordings may be shifted locally in time without affecting
similarity to other recordings. To discard this superfluous
source of variability, signals are first mapped into a time-
shift invariant feature space. These features are then used
to calculate similarities. Since the features ensure invari-
ance, it does not have to be learned when constructing the
desired similarity measure.
Formally, given a signal x(t), we would like its trans-

lation xc(t) = x(t − c) to be mapped to the same fea-
ture vector provided that |c| � T for some maximum
duration T that specifies the extent of the time-shifting
invariance. We can also define more complicated trans-
formations by letting c vary with t. In this case, we have
xτ (t) = x(t − τ(t)) for some function τ , which performs

a time-warping of x(t) to obtain xτ (t). Time-warpings
model various changes, such as small variations in pitch,
reverberation, and rhythmic organization of events. These
make up an important part of intra-class variability among
natural sounds, so representations must be robust with
respect to such transformations.
The wavelet scattering transform, described below, has

both of these desired properties: invariance to time-
shifting and stability to time-warping. The stability condi-
tion can be formulated as a Lipschitz continuity property,
which guarantees that the feature transforms of x(t) and
xτ (t) are close together if |τ ′(t)| is bounded by a small
constant [22].

3.2 Wavelet scalogram
Our convention for the Fourier transform of a continuous-
time signal x(t) is x̂(ω) = ∫ +∞

−∞ x(t) exp(−i2πωt) dt. Let
ψ(t) be a complex-valued analytic bandpass filter of cen-
tral frequency ξ1 and bandwidth ξ1/Q1, where Q1 is the
quality factor of the filter. A filter bank of wavelets is built
by dilating ψ(t) according to a geometric sequence of
scales 2γ1/Q1 , obtaining

ψγ1(t) = 2−γ1/Q1ψ
(
2−γ1/Q1 t

)
. (1)

The variable γ1 is a scale (an inverse log-frequency) tak-
ing integer values between 0 and (J1Q1 − 1), where J1
is the number of octaves spanned by the filter bank. For
each γ1, the wavelet ψγ1(t) has a central frequency of
2−γ1/Q1ξ1 and a bandwidth of 2−γ1/Q1ξ1/Q1 resulting in
the same quality factorQ1 as ψ . In the following, we set ξ1
to 20 kHz, J1 to 10, and the quality factor Q1, which is also
the number of wavelets per octave, to 8. This results in the
wavelet filters covering the whole range of human hear-
ing, from 20 Hz to 20 kHz. SettingQ1 = 8 results in filters
whose bandwidth approximates an equivalent rectangular
bandwidth (ERB) scale [41].
The wavelet transform of an audio signal x(t) is obtained

by convolution with all wavelet filters. Applying a point-
wise complex modulus, the transform yields the wavelet
scalogram

x1(t, γ1) = |x ∗ ψγ1 |(t). (2)

The scalogram bears resemblance to the constant-Q
transform (CQT), which is derived from the short-term
Fourier transform (STFT) by averaging the frequency
axis into constant-Q subbands of central frequencies
2−γ1/Q1ξ1. Indeed, both time-frequency representations
are indexed by time t and log-frequency γ1. However,
contrary to the CQT, the scalogram reaches a better time-
frequency localization across the whole frequency range,
whereas the temporal resolution of the traditional CQT
is fixed by the support of the STFT analyzing window.
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Therefore, the scalogram has a better temporal localiza-
tion at high frequencies than the CQT, at the expense of
a greater computational cost since the inverse fast Fourier
transform routine must be called for each wavelet ψγ1 in
the filter bank. However, this allows us to observe ampli-
tude modulations at fine temporal scales in the scalogram,
down to 2Q1/ξ1 for γ1 = 0, of the order of 1ms given the
aforementioned values of Q1 and ξ1.
To obtain the desired invariance and stability proper-

ties, the scalogram is averaged in time using a lowpass
filter φ(t) with cut-off frequency 1/T (and approximate
duration T), to get

S1x(t, γ1) = x1(·, γ1) ∗ φ(t), (3)

which is known as the set of first-order scattering coef-
ficients. They capture the average spectral envelope of
x(t) over scales of duration T and where the spectral
resolution is varying with constant Q. In this way, they
are closely related to the mel-frequency spectrogram and
related features, such as MFCCs.

3.3 Extracting modulations with second-order scattering
In auditory scenes, short-time amplitude modulations
may be caused by a variety of rapid mechanical interac-
tions, including collision, friction, turbulent flow, and so
on. At longer time-scales, they also account for higher-
level attributes of sound, such as prosody in speech or
rhythm in music. Although they are discarded while fil-
tering x1(t, γ1) into the time-shift invariant representation
S1x(t, γ1), they can be recovered from x1(t, γ1) by a sec-
ond wavelet transform and another complex modulus.
We define second-order waveletsψγ2(t) in the same way

as the first-order wavelets, but with parameters ξ2, J2, and
Q2. Consequently, they have central frequencies 2−γ2/Q2ξ2
for γ2 taking values between 0 and (J2Q2 − 1). While this
abuses notation slightly, the identity of the wavelets should

be clear from context. The amplitude modulation spec-
trum resulting from a wavelet modulus decomposition
using these second-order wavelets is then

x2(t, γ1, γ2) = |x1 ∗ ψγ2 |(t, γ1). (4)

In the following, we set ξ2 to 2.5 kHz,Q2 to 1, and J2 to 12.
Lastly, the low-pass filter φ(t) is applied to x2(t, γ1, γ2) to
guarantee local invariance to time-shifting, which yields
the second-order scattering coefficients

S2x(t, γ1, γ2) = x2(·, γ1, γ2) ∗ φ(t). (5)

The scattering transform Sx(t, γ ) consists of the
concatenation of first-order coefficients S1x(t, γ1) and
second-order coefficients S2x(t, γ1, γ2) into a feature
matrix Sx(t, γ ), where γ denotes either γ1 or (γ1, γ2).
While higher-order scattering coefficients can be calcu-
lated, for the purposes of our current work, the first and
second order are sufficient. Indeed, higher-order scat-
tering coefficients have been shown to contain reduced
energy and are therefore of limited use [36].

3.4 Gammatone wavelets
Wavelets ψγ1(t) and ψγ2(t) are designed as fourth-order
Gammatone wavelets with one vanishing moment [35]
and are shown in Fig. 1. In the context of auditory
scene analysis, the asymmetric envelopes of Gammatone
wavelets are more biologically plausible than the symmet-
ric, Gaussian envelopes of the more widely used Mor-
let wavelets. Indeed, it allows to reproduce two impor-
tant psychoacoustic effects in the mammalian cochlea:
the asymmetry of temporal masking and the asymme-
try of spectral masking [41]. The asymmetry of tem-
poral masking is the fact that a masking noise has to
be louder if placed after the onset of a stimulus rather
than before. Likewise, because critical bands are skewed
towards higher frequencies, a masking tone has to be

Fig. 1 Gammatone wavelets ψ(t) in the time domain with quality factors a Q = 4 and b Q = 1. Oscillations (red, blue) are the real and imaginary
parts. The envelope (yellow) is the complex modulus
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louder if it is above the stimulus in frequency rather than
below. It should also be noted that Gammatone wavelets
follow the typical amplitude profile of natural sounds,
beginning with a relatively sharp attack and ending with
a slower decay. As such, they are similar to filters discov-
ered automatically by unsupervised encoding of natural
sounds [30, 31]. In addition, Gammatone wavelets have
proven to outperform Morlet wavelets on a benchmark
of supervised musical instrument classification from scat-
tering coefficients [20]. This suggests that, despite being
hand-crafted and not learned, Gammatone wavelets pro-
vide a sparser time-frequency representation of acoustic
scenes compared to other variants. More information can
be found in Additional file 1.

4 Feature design
Before constructing models for similarity estimation,
it is beneficial to process scattering coefficients to
improve invariance, normality, and generalization power.
In this section, we review two transformations which
achieve these properties: logarithmic compression and
standardisation.

4.1 Logarithmic compression
Many algorithms in pattern recognition, including near-
est neighbor classifiers and support vector machines, tend
to work best when all features follow a standard nor-
mal distribution across all training instances [12]. Yet
the distribution of the scattering coefficients is skewed
towards larger values. We can reduce this skewness by
applying a pointwise concave transformation to all coeffi-
cients. In particular, we find that the logarithm performs
particularly well in this respect. Figure 2 shows the distri-
bution of an arbitrarily chosen scattering coefficient over
the DCASE 2013 dataset, before and after logarithmic
compression.
Taking the logarithm of a magnitude spectrum is ubiq-

uitous in audio signal processing. Indeed, it is corrob-
orated by the Weber-Fechner law in psychoacoustics,

which states that the sensation of loudness is roughly
proportional to the logarithm of the acoustic pressure. We
must also recall that the measured amplitude of sound
sources often decays polynomially with the distance
to the microphone—a source of spurious variability in
scene classification. Logarithmic compression linearizes
this dependency, facilitating the construction of powerful
invariants at the classifier stage.

4.2 Standardization
Let Sx(γ , n) be a dataset, where γ and n denote feature
and sample indices, respectively. Many algorithms operate
better on features which have zeromean and unit variance
to avoid mismatch in numeric ranges [12]. To standardize
Sx(γ , n), we subtract the sample mean vector μ[ Sx(γ )]
from Sx(γ , n) and divide the result by the sample stan-
dard deviation vector σ [ Sx] (γ ). The vectors μ[ Sx(γ )]
and σ [ Sx] (γ ) are estimated from the entire dataset.

5 Acoustic scene similarity retrieval
As discussed in Section 2, results in sound perception sug-
gest the appropriateness of source-driven representations
of auditory scenes for predicting high-level properties.
While this can be addressed in the supervised case using
late integration of discriminative classifiers [1], this is not
directly feasible in the unsupervised case. As the detection
of events is still an open problem [32], we consider in this
paper a generic quantization scheme in order to identify
and represent time intervals of the scene that are coherent,
thus likely to be dominated by a given source of interest.
Given a set of d-dimensional feature vectors

Xu = {
xu1 , . . . , x

u
L
}
, extracted from the scene su, where

u = {1, 2, . . . ,U}, we would like to partition Xu into
a set Cu = {

cu1 , . . . , c
u
M

}
of M clusters. This partition

is obtained by minimizing the variance of each cluster
and known as a k-means clustering [18]. Each scene su
is then described by a set of clusters Cu. Note that this
quantization approach differs from unsupervised learning
schemes such as the ones studied in [5], where the scene

Fig. 2 Histogram of values taken by the first-order scattering coefficient Sx(γ ), corresponding to a central acoustic frequency of 302 Hz, a before
and b after logarithmic compression
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features are projected in a dictionary learned from the
entire dataset. Here, with the aim of better balancing the
influence of salient sound events and texture-like sounds
on the final decision, the similarity between two scenes is
computed based on the similarity of their centroids.
The similarity between the scene centroids μu

m over the
entire dataset is computed using a radial basis function
(RBF) kernelK combined with a local scalingmethod [39]:

Kuv
mn = exp

(

− ‖μu
m − μv

n‖2
‖μu

m − μu
m,q‖‖μv

n − μv
n,q‖

)

. (6)

Here, μu
m,q and μv

n,q are the qth nearest neighbors to the
centroidsμu

m andμv
n, respectively, and the double bars ‖·‖

denote the Euclidean norm.
To compute the similarity between two scenes, we con-

sider several centroid-based similarity metrics:

• Relevance-based quantization closest similarity (RbQ-
c): the similarity between two scenes su and sv is
equal to the largest similarity between their centroids

max
m,n

Kuv
mn, (7)

• Relevance-based quantization average similarity
(RbQ-a): the similarity between two scenes su and sv
is equal to the average of their centroid similarities

1
M2

∑

m,n
Kuv
mn (8)

and,
• Relevance-based quantization weighted similarity

(RbQ-w): the similarity between two scenes is
computed using a variant of the earth mover’s
distance applied to the set of centroids each weighted
by the number of frames assigned to its cluster.

For RbQ-w, each scene is represented by a signature

pu = {(
μu
1 ,w

u
1
)
,
(
μu
2 ,w

u
2
)
, . . . ,

(
μu
M,wu

M
)}

, (9)

where each of theM centroids μu
1 , . . . ,μ

u
M are paired with

corresponding weightswu
1 , . . . ,w

u
M. The weightwu

m for the
mth centroid μu

m is the number of frames belonging to a
particular cluster. The similarity between scenes is then
given by a cross-bin histogram distance known as the non-
normalized earth mover’s distance ̂EMD introduced by
[28]. The ̂EMD computes the distance between two his-
tograms by finding the minimal cost for transforming one
histogram into the other, where cost is measured by the
number of transported histogram counts multiplied by a
dissimilarity measure between the histogram bins. Here,
that measure is given by 1 − Kuv

mn.

6 Experiments
To evaluate the representations introduced in the previ-
ous section, we apply it to the acoustic scene similarity

retrieval task. Results demonstrate the improved perfor-
mance of the relevance-based quantization of scattering
coefficients compared to baseline methods using sum-
mary statistics of MFCCs. The implementations of the
presented methods and the experimental protocol are
available online.1

6.1 Dataset
The experiments in this paper are carried out on the pub-
licly available DCASE 2013 dataset [32]. Although the
dataset was constructed for the task of acoustic scene clas-
sification, where the goal is to correctly assign the class
of a given recording, we can use the same recordings
and class labels for the task of acoustic scene similarity
retrieval. The dataset consists of two parts, a public and a
private subset, eachmade up of 100 acoustic scene record-
ings sampled at 44100Hz and 30 s in duration. The dataset
is evenly divided into 10 acoustic scene classes: bus, busy
street, office, open air market, park, quiet street, restaurant,
supermarket, tube, and tube station. The recordings were
made by three different recordists at a wide variety of loca-
tions in the Greater London area over a period of several
months. In order to avoid any correlation between record-
ing conditions and label distribution, all recordings were
carried out under moderate weather conditions, at vary-
ing times of day and week, and each recordist recorded
each scene type. As a result, the dataset enjoys significant
intra-class diversity while remaining of manageable size,
making it suitable for evaluation of algorithmic design
choices [15]. As an illustration, Fig. 3 represents the
wavelet scalogram of one recording within the DCASE
2013, labeled as park.

6.2 Feature design
We perform our experiments using both scattering coef-
ficients and MFCCs. For the scattering transform, each
30-second scene is described by 128 vectors of dimen-
sion 1367 computed with half-overlapping windows φ(t)
of duration T = 372ms, for a total of 24 s. Here, we dis-
card 3 s from the beginning and end of the scene to avoid
boundary artifacts. We also conduct experiments with
and without logarithmic compression of the scattering
coefficients (see Section 4.1).
MFCCs are computed for windows of 50 ms and hops

of 25 ms with full frequency range. The standard config-
uration of 39 coefficients coupled with an average-energy
measure performs best in preliminary tests, so we use this
in the following. We average the coefficients using 250ms
long non-overlapping windows so that each window rep-
resents structures of scales close to that of scattering
coefficients.

6.3 Evaluation and algorithm
The evaluation is performed on the private part of the
DCASE 2013 dataset. As a metric, we use the precision
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Fig. 3Wavelet scalogram x1(t, γ1) of the audio recording park04 in the DCASE 2013 dataset. We observe that this acoustic scene is a mixture of
transient events (chirping birds, footsteps) and stationary texture (flowing water)

at rank k (p@k). This number is computed by taking a
query item and counting the number of items of the same
class within the k closest neighbors, and then averaging
over all query items. We determine these neighbors using
one of the proposed similarity measures RbQ-c, RbQ-a,
or RbQ-w. We compute p@k for k = {1, . . . , 9}, since
each class only has 10 items. Note that p@1 is equal
to the classification accuracy obtained by the nearest-
neighbor classifier in a leave-one-out cross-validation
setting.
The RbQ measures are compared to commonly used

early integration approach early, which consists in aver-
aging over time the feature set of each scene, resulting in
one feature vector per scene. The distance on this aver-
age feature vector is then used to determine p@k. For the
BoF approach of Aucouturier et al. [3], GMMs are esti-
mated for each scene using the expectation-maximization
(EM) algorithm [8, 24]. The similarity between a given pair
of scene GMMs is then calculated through Monte Carlo
sampling approximation. To ensure convergence of the
EM algorithm for the scattering features, we reduce their
dimension from 1367 to 30 by projecting the features onto
the top 30 principal components of the dataset. The num-
ber of Gaussians is optimized for each type of features by
grid search in the range [ 2, 20]. Best p@5 is reached with
8 and 4 Gaussians, respectively, for MFCCs and scattering
features. Recommended number of Gaussians for MFCCs
given in [3] is 10.
The scaling parameter q of the RBF kernels (see Eq. 6) is

set to 10% of the number of data points to cluster. As the
number of Gaussians for the BoF approach, the number
of clusters M controls the level of abstraction. For each
method, unless otherwise stated, the parameter M is set
to 8. It thus allows 8 different types of observations to be
modeled, which seems reasonable given the duration of
the scene (30 s). Note that this is the only free parameter
in the proposed method. However, except for RbQ-a, the
results are not very sensitive to the choice of M, as long

as it is large enough to characterize the seen. A numerical
demonstration is provided at the end of the next section.

7 Results
Results for the acoustic scene similarity retrieval task
demonstrate that logarithmically compressed scattering
features outperform MFCCs. Combining these with the
RbQ cluster model, improvements are obtained over tra-
ditional BoF and summary statistic measures.

7.1 Baselines
As seen in Fig. 4, scattering features significantly out-
perform the baseline MFCCs for both BoF and early
integration schemes. This is expected, as the scattering
transform extends the MFCCs by including supplemen-
tary amplitude modulation information [1]. We also note
that applying principal components analysis reduction to
the scattering transform has little effect for the early inte-
gration scheme. In the context of summary statistics, 30

Fig. 4 Acoustic scene similarity retrieval in the DCASE 2013 private
dataset: precisions at rank k (p@k) obtained for several baseline
approaches, as a function of the rank k
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dimensions are sufficient to discriminate between audi-
tory scenes.
Comparing the BoF to early integration, both

approaches perform similarly for MFCCs and PCA-
reduced scattering features alike. This is in line with
previous results on BoF [15], where it is found to perform
similarly as similarity retrieval on features averaged over
the entire recording.
The early approach being simpler in terms of implemen-

tation and runtime complexity, we retain this method as
baseline for the remainder of the experiments.

7.2 Logarithmic compression
Figure 5 shows that logarithmic compression of the scat-
tering features is beneficial. For clarity’s sake, data is
shown for the early approach only, but an equivalent
gain is achieved for the relevance-based quantization
approaches.

7.3 MFCC vs. scattering transform
Irrespective of the rank k considered, the best result is
achieved for the scattering transform with logarithmic
compression using the RbQ-c approach. Overall, log-
compressed scattering coefficients systematically outper-
form MFCCs (Fig. 6). This is to be expected since the
scattering coefficients capture larger-scale modulations,
as opposed to MFCCs which only describe the short-time
spectral envelope.

7.4 Relevance-based quantization vs. early integration
For the scattering transform, both RbQ-c and RbQ-w out-
perform early, thus confirming the benefits of using a
relevance-based quantization (RbQ) to improve the simi-
larity measures between the scenes. However, it is worth
noting that RbQ-a performs comparably to or worse
than early, showing that the discriminant information is
destroyed by averaging the contributions from all cen-
troids. This result is in line with the findings of [15]. To

Fig. 5 Acoustic scene similarity retrieval in the DCASE 2013 private
dataset: precisions at rank k (p@k) obtained for scattering with or
without logarithmic compression, as a function of the rank k

Fig. 6 Acoustic scene similarity retrieval in the DCASE 2013 private
dataset: precisions at rank k (p@k) obtained for MFCCs and scattering
with logarithmic compression

take advantage of such a representation, we need to select
certain representative centroids when comparing quan-
tized objects. The same behavior is observed for MFCCs,
with RbQ-c and RbQ-w outperforming early, which is
equivalent to the state-of-the-art BoF model, as seen pre-
viously.
Furthermore, it appears that RbQ-c is better able to

characterise the classes compared to RbQ-w. Although
not the only way of incorporating the number of frames
associated to each centroid, the earth mover’s distance is
a rather natural way of doing so. Its worse performance
therefore suggests that including this information may
not always be desirable. Indeed, nothing a priori indicates
that the discriminant information between two scenes lies
within the majority of their frames. On the contrary, two
similar environments may share a lot of similar sound
sources with only a few sources discriminating between
them.
With p@5 as our metric (cf. [3] and [15]), we see that

replacing MFCCs by the logarithmically compressed scat-
tering transform increases performance from 0.31 to 0.49.
In addition, the relevance-based quantization using the
closest similarity (RbQ-c) further improves the perfor-
mance to 0.54 for a global increase of 0.23.

7.5 Sensitivity to number of clustersM
We now study the sensitivity of the precision at rank 5
(p@5) with respect to the number of clusters M. The
results are shown in Fig. 7.
For a small number of clusters (M = 1 or M = 2),

all methods perform worse, since not enough discrim-
inative sound objects are extracted from the recording.
Please note that setting M = 1 is equivalent to the early
approach as this corresponds a summary statistics model.
For M = 4, most methods perform well, since this allows
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Fig. 7 Acoustic scene similarity retrieval in the DCASE 2013 private
dataset: precision at rank 5 (p@5) obtained for different methods as a
function of the number of clustersM

for better characterization of various signal structures in
the scenes. As the number of clusters increases, the RbQ-
amethod performs worse for both scattering features and
MFCCs since any distinct objects are averaged out by clus-
ters representing the background. The RbQ-w and RbQ-c
methods do better in this regard, as they are better able
to emphasize the clusters that discriminate well between
scenes.
Using RbQ-c, therefore, we are not very sensitive to the

choice of M, as long as it is large enough to allow for
separation of the discriminative sound objects from the
background. This motivates our choice of M = 8 for the
previous experiments in this section.

8 Conclusions
This paper presents a new approach for modeling acous-
tic scenes based on scattering transforms at small scales
and cluster-based representations at large scales. Com-
pared to traditional BoF and summary statistics models,
this representation allows for the characterization of dis-
tinct sound events superimposed on a stationary texture,
a concept which has strong grounding in the cognitive
psychology literature. To adequately capture such dis-
tinct events, we develop a cluster-based model and val-
idate it using experiments on acoustic scene similarity
retrieval. For this task, we show significant improvements
over the traditional BoF and summary statistics models
based on both standard MFCCs and scattering features.
These outcomes shall be studied further in future work
by considering larger databases and emerging tasks in
ecoacoustics [34, 38].
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1 https://github.com/mathieulagrange/
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