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Abstract

Filter banks on spectrums play an important role in many audio applications. Traditionally, the filters are linearly
distributed on perceptual frequency scale such as Mel scale. To make the output smoother, these filters are often
placed so that they overlap with each other. However, fixed-parameter filters are usually in the context of
psychoacoustic experiments and selected experimentally. To make filter banks discriminative, the authors use a neural
network structure to learn the frequency center, bandwidth, gain, and shape of the filters adaptively when filter banks
are used as a feature extractor. This paper investigates several different constraints on discriminative frequency filter
banks and the dual spectrum reconstruction problem. Experiments on audio source separation and audio scene
classification tasks show performance improvements of the proposed filter banks when compared with traditional
fixed-parameter triangular or gaussian filters on Mel scale. The classification errors on LITIS ROUEN dataset and
DCASE2016 dataset are reduced by 13.9% and 4.6% relatively.
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1 Introduction
Filter banks have been used for a long time to make time-
frequency analysis of audio signals. The most commonly
used short-time Fourier transform (STFT) [1] or wavelet
transform [2] can decompose audio signals into sub-band
components with certain time-frequency locations and
resolutions. Filter banks implemented in the time domain
[3] are usually shown as Fig. 1. Audio signals are convolved
withM frequency-constrained filters, followed by averag-
ing over an nk-length window. For audio recognition tasks,
such as speech recognition [4, 5], automatic speaker verifi-
cation [6, 7], and audio scene classification [8, 9], the filter
banks are used as a front-end feature extractor followed
by a back-end classifier. For audio enhancement tasks,
such as source separation [10, 11] and speech de-noising
[12, 13], a perfect or near perfect reconstruction proce-
dure combined with an up-sampling module and dual fil-
ter banks is needed. These fixed-parameter filters are usu-
ally in the context of psychoacoustic experiments, which
need task-related expertise. To discriminatively learn
parameters of filter banks remains a difficult problem.
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1.1 Related work
In early pattern recognition studies [14], the input is first
converted into some features, which are usually defined
empirically by experts and believed to be suitable with
recognition targets. Then, a design named discriminative
feature extraction (DFE) [4, 15] is proposed to systemat-
ically train the overall recognizer in a manner consistent
with the minimization of recognition errors. For audio
signals, a DFE method with learnable filter banks is first
investigated in [16]. In principle, the filter banks are com-
posed of a finite or infinite number of filters. However,
this needs careful investigation for the stability of the fil-
ters. Besides, the convolution operation in filter banks in
the time-domain is time-consuming. Filter banks on FFT-
based spectrums [17] have been studied for simplicity,
which can be modeled as Eq. 1, where n is the discrete
index of different filters, f is the frequency in hertz.

wn(f ) = αng(cn(p(f )); sn(p(f ))) (1)

Filter banks are parameterized in the frequency domain
with the frequency center cn, bandwidth sn, gain αn, shape
g, and frequency scale p. The result wn is a continuous
function defined in the frequency domain. When p is a
linear function, filter banks are uniformly distributed in
the frequency domain. However, there is a strong desire
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Fig. 1 Non-uniform filter banks. The terms Hk(z) and Rk(z) correspond to the z-transforms of the kth filter and dual filter, i.e., Hk(z) = z−lk for some
integers lk and Rk(z) = zlk

to analyze audio signals similar to human ears, which
means a non-linear function named auditory filter banks
[18–20]. Based on psychoacoustics experiments, three
non-linear mappings between the frequency and percep-
tual domain are commonly used, including the Bark scale
[21], ERB scale [22], and Mel scale [23]. The parameters
αn, cn, and sn in Eq. 1 represent the frequency properties
of wn, which simulate the frequency selectivity in human
ears. In [16], g is selected as a gaussian function because of
its smoothness and tractability, correspondingly, the Mel
filter banks use triangular filters [17]. When g is totally
independent and not limited to any specific shape, wn
for each filter can be parameterized as a fully connected
mapping from all frequency bins to a value.
Auditory filters of different shapes have been trained

discriminatively for robust speech recognition [24]. Fil-
ter banks can also be trained discriminatively using Fisher
discriminant analysis (FDA) method [25]. In recent years,
deep neural networks (DNN) have achieved significant
success in the field of audio processing and recogni-
tion because of its advantages in discriminative fea-
ture extraction. Standard filter banks computed in the
time domain have been simulated using unsupervised
convolutional restricted Boltzmann machine(ConvRBM)
[26]. The speech recognition performance of ConvRBM
features is improved compared to the Mel-frequency cep-
strum coefficients (MFCCs), and the relative improve-
ments are 5% on TIMIT test set and 7% onWSJ0 database
using GMM-HMM systems. Discriminative frequency fil-
ter banks can also be learned together with the recogni-
tion error using a time-convolutional layer and a temporal
pooling layer over the raw waveform [27]. The results in
[27] show that the filter size and pooling operation play an
important role in the performance improvement, but the
temporal convolutional operation is time-consuming.
Filter banks implemented in the frequency domain are

also studied with DNNs in recent years. When g in Eq. 1
is parameterized in all frequency bins, and the parame-
ters are restricted to be positive using exponential func-
tion exp [28] or sigmoid [29], filter banks with multiple
peaks and complicated shape are learned for specific

tasks. However, further experiments show that the pos-
itive constraint is too weak to learn smooth and robust
filter banks. When g in Eq. 1 is restricted to a gaussian
shape, the gain, frequency center, and bandwidth in Eq. 1
can be learned using a neural network [30]. The trian-
gular filter shape (commonly used to compute Mel scale
features) is not investigated since it is piecewise differen-
tiable and difficult to be incorporated into the scheme of
a back-propagation algorithm.

1.2 Contribution of this paper
In this paper, we use a neural network structure to learn
the frequency center, bandwidth, gain, and shape of filter
banks adaptively, and investigate several different con-
straints on filter banks and the dual spectrum reconstruc-
tion problem.
Filter banks are said to bemaximally decimated [3] if the

channel decimation rates nk in Fig. 1 are integers satisfying
Eq. 2.

1 =
M−1∑

i=1

1
ni

(2)

This condition means that there are more transformed
sub-band coefficients per second than the original data
points. In this case, the filter banks are overcomplete [31]
and a perfect reconstruction from the sub-band coef-
ficients is possible. However, in some scenarios, audio
reconstruction from incomplete information is neces-
sary because of the limitation of storage and computing
resources, especially when the signals are sampled at a
higher rate greater than or equal to 44.1 kHz. Speech
reconstruction from MFCCs has been studied by predict-
ing the fundamental frequency and voicing of a frame as
intermediation [32–34]. The simplest case is that ni in
Eq. 2 equals to the frame length N, which is equivalent to
filter banks implemented in the frequency domain in this
paper.
As shown in Eq. 1, when filter banks are parameterized

and learned using neural networks, a major concern is the
constraint to the shape of its responses in the frequency
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range. When the constraint is weak [28, 29], the number
of parameters is too large to learn smooth and robust filter
banks in some scenarios. When the constraint is a basic
shape function and this function is piecewise differen-
tiable such as the triangular shape [30], the model cannot
be trained using a back-propagation algorithm.
At the same time, the sub-band processing module

in Fig. 1 may introduce distortions, particularly if the
sub-bands are not equally processed, in this case, signal
reconstruction in the frequency domain is not analytical.
In this paper, the major contributions are summarized

as follows:

- Approximate continuous shape function: shape
constraints play an important role in discriminative
frequency filter banks. Few investigations have been
conducted to compare different shape constraints,
because that commonly used shapes such as
triangular shapes are piecewise differentiable. We use
steep sigmoid functions and other basic functions to
approximate desired shapes. This makes a further
study on shape constraints possible.

- Comparison of different constraints: in Eq. 1,
different selections of trainable parameters can result
in different implementations of filter banks. In this
paper, we select six different constraints to
investigate their applicable condition. When all
parameters are constant, we adopt triangular and
gaussian shapes whose frequency centers distribute
uniformly in the Mel-frequency scale. For weak
constraints, we conduct experiments similar to
[28, 29]. For strong constraints, both gaussian and
triangular constraints are used to train the frequency
center, bandwidth, and gain in Eq. 1.

- Reconstruction from incomplete filter bank
coefficients: in this paper, the amount of filter bank
coefficients is much less than original data points, so
the reconstruction can be seen as a process of solving
overdetermined linear equations. We use a neural
network to implement this reconstruction process,
and a well-designed regularization method is used to
make sure that the filter banks are bounded input
bounded output (BIBO-stable).

The paper is organized as follows. Next section briefly
describes the Mel-frequency scale used in this paper and
introduce the uniformly distributed filter banks with con-
stant parameters as the baseline. Section 3 introduces the
analytical and experimental settings of our proposed filter
bank learning framework. Then, network structures used
in our proposed methods are introduced in Section 4.
Section 5 conducts several experiments to show the per-
formance of discriminative frequency filter banks in terms
of source separation and audio scene classification tasks.

Finally, we conclude our paper and give directions for
future work in Section 6.

2 Background
Filter banks are used to model the frequency selectivity
of an auditory system in many applications. Traditionally,
the design of filter banks is motivated by psychoacous-
tic experiments, such as the detection of tones in noise
maskers [35], or by physiological experiments such as
observing the mechanical responses of the cochlea when
a sound reaches the ear [36, 37]. The frequency center,
bandwidth, and energy gain in the frequency response of
filter banks are consistent with the position and vibra-
tion patterns in the ear. In the history of auditory filter
banks [35], rounded exponential family [38] and gamma-
tone family [39] are the most widely used families. We use
the simplest form of these two families, triangular case
for the rounded exponential family and gaussian case for
the gammatone family, to construct our filter banks in
the frequency domain. In this section, we introduce the
commonly used Mel-frequency filter banks.

2.1 Mel-frequency scale
The perceptual frequency scale is usually a mapping
between the linear frequency domain and the nonlinear
perceptual frequency domain. The Mel-frequency scale
is the result of a classic psychoacoustical test conducted
by Stevens and Volkman [40], which provides the relation
between the real frequency and hearing pitch. The con-
version from the linear frequency to Mel-scale [41] is as
follows, where f is frequency in hertz.

Mel(f ) = 1127log2
(
1 + f

700

)
(3)

2.2 Mel-frequency filter banks
The commonly used MFCC features in the field of speech
recognition are computed based on Mel-frequency filter
banks. It is a common practice to construct filters dis-
tributing uniformly in the Mel-frequency scale, and the
bandwidth is often 50% overlapped between neighboring
filters.
When the filter shape is restrained using Eq. 4, trian-

gular filter banks are constructed in the Mel-frequency
scale. For gaussian filter banks, the bandwidth is 4σ of a
gaussian distribution as Eq. 5. These two types of filter
banks are the baselines in this paper, respectively named
TriFB and GaussFB. Although they are combinations of
existing works, we implement our own implementation of
these two methods in this paper. In Eqs. 4 and 5, cn rep-
resents the frequency center, sn represents the bandwidth,
mel is the unit of Mel-frequency scale, Tri and Gauss are
the triangular and gaussian filter banks defined in the
Mel-frequency scale.
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Tri(n) =
⎧
⎨

⎩

2
sn (mel − cn) + 1, cn − sn

2 ≤ mel ≤ cn
2
sn (cn − mel) + 1, cn ≤ mel ≤ cn + sn

2
0, elsewhere

(4)

Gauss(n) = exp
(

−8(mel − cn)2

s2n

)
(5)

3 Discriminative filter bank learning
For generality, we consider in this section a discriminative
filter bank learning framework based on a neural network
as shown in Fig. 2.
The input audio signal is first transformed to a sequence

of vectors using STFT, the STFT result can be represented
as X1...T = {x1, x2, ..., xT }. T is determined by the frame
shift in STFT, corresponding to the time resolution in the
frame theory [42]. The dimension of each vector x can be
labeled as N, which is determined by the frame length.
The discriminative frequency filter banks in Fig. 2

can be simplified as linear transformations fθ , the out-
put of this module can be represented as Y 1...T =
{fθ (x1), fθ (x2), ..., fθ (xT }). θ are the parameters of filter
banks defined similar to Eq. 1. The dimension of each
yt = fθ (xt) here is equal to M, which is the number of
filters.
The back-end application modules in Fig. 2 vary from

different applications. For audio scene classification task,
they will be deep convolutional neural networks followed
by a softmax layer to convert the feature maps to the
corresponding categories. However, for audio source sep-
aration task, the modules will be composed by a binary
gating layer and some spectrogram reconstruction layers.
We simplify all these situations and define the back-end
application modules as non-linear functions fβ . The filter

bank parameters θ can be trained jointly with the back-
end parameters β using a back-propagation method in
neural networks.
In this framework, filter banks work as a set of weights

on a spectrum vector xt as Eq. 6. Each wk is a filter with
positive values and a bounded range.

yt = fθ (xt) =
{
wT
1 xt ,w

T
2 xt , ...,w

T
mxt

}
(6)

In this paper, we consider two types of constraints on
filter banks.

- Shape constraint : in this case, the amplitude of filter’s
frequency response is constrained to be a special
shape, and only the frequency center, bandwidth, and
gain of the filter remain to be trained. The gaussian
shape has been investigated in [16, 30]. We will focus
on the piecewise differentiable situation such as the
triangular shape.

- Positive constraint : when all the weights of filters are
independent but only constrained to be positive, more
complicated filter banks can be learned. Exponential
functions such as exp [28] and sigmoid [29] have been
used together with a bandwidth constraint for the
filters. We investigate two new positive constraints
ReLU and square, and discuss their performances
associated with the bandwidth constraint.

3.1 Shape constraints of discriminative frequency filter
banks

Triangular filters are commonly used to compute Mel-
scale filter bank features in many audio applications such
as speech recognition. However, when we use a triangu-
lar shape described in Eq. 4 to restrict the discriminative
frequency filter banks in Fig. 2, the backward propagation

Fig. 2Discriminative filter bank learning framework. The left part of the framework is the feature analysis procedure including STFT and discriminative
filter banks. The right part is the application example of the extracted feature map, such as audio scene classification and audio source separation.
Discriminative filter banks in the feature analysis procedure and the back-end application modules are stacked into a deep neural network
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process is blocked because of the discontinuous point in
the triangular shape.
Instead of using the piecewise continuous form of a tri-

angular shape, we decompose it into piecewise continuous
step functions and linear functions as Fig. 3a. We define
the piecewise step function as Eq. 7. Then, a mathemat-
ical representation of the decomposition can be shown
as Eq. 8. αn is the gain parameter, cn, sn, and mel in this
formula have been defined in Eq. 4.

rec(x, x0) =
{
1, x > x0
0, elsewhere (7)

f1(mel) = rec
(
mel, cn − sn

2

)
(1 − rec(mel, cn))

l1(mel) = 2
sn

(mel − cn) + 1

f2(mel) =
(
1 − rec

(
mel, cn + sn

2

))
rec(mel, cn)

l2(mel) = 2
sn

(cn − mel) + 1

wn(mel) = αn(f1l1 + f2l2) (8)

We use a sigmoid function sig(x, x0) = 1
1+e−r0(x−x0) to

approximate the step function and get an approximate
triangular decomposition as Eq. 9. In this formula, r0 rep-
resents the steep rate of the sigmoid function. Figure 3b is
an example when r0 is 10.

f1(mel) = sig
(
mel, cn − sn

2

)
(1 − sig(mel, cn))

l1(mel) = 2
sn

(mel − cn) + 1

f2(mel) =
(
1 − sig

(
mel, cn + sn

2

))
sig(mel, cn)

l2(mel) = 2
sn

(cn − mel) + 1

wn(mel) = αn(f1l1 + f2l2) (9)

The trainable parameters in Eq. 9 are the frequency
center cn, bandwidth sn, and gain αn. The goal of the
training procedure is to minimize some objective loss ε.
The derivative of an objective loss given trainable
parameters can be calculated by back-propagating error
gradients.

3.2 Positive constraint of discriminative frequency filter
banks

Another selection of discriminative frequency filter banks
is a set of independent weights W = {w1,w2, ...,wm}.
The only constraint is that these weights should
be positive to keep their physical meaning of the
filters. There are a couple of options to keep them
positive:

- Exponent : for every parameter wij, we make it
positive by transform it to vij = exp(wij)[28]. If
wij ∼ N(μ, σ), vij satisfies the log-normal

distribution, where the mean of vij is eμ+ σ2
2 and the

variance of vij is
(
eσ 2 − 1

)
e2μ+σ 2 .

- Sigmoid : for every parameter wij, we use the sigmoid
function vij = 1

1+exp(−wij)
[29] to ensure the

parameters positive. If wij ∼ N(μ, σ), vij satisfies a
logit-normal distribution, where the moments of vij is
not analytical, but the numerical calculating results
have been discussed in [43].

- ReLU: for every parameter wij, we simply make
vij = 0, when wij < 0 and vij = wij, when wij ≥ 0.
This will lead to a folded normal distribution. When
wij ∼ N(μ, σ), the mean of vij is σ

√
2
π
e−

μ2
2σ2 and the

variance of vij is μ2 + σ 2−[mean(vij)]2.
- Square: the last option to make the parameters

positive is that vij = w2
ij. Then, vij is a variable

satisfying a chi-squared distribution. The mean of vij
is σ 2 (

1 + μ2), and the variance of vij is σ 4 (
2 + 4μ2).

(a) (b)

Fig. 3 Triangular-shape decomposition. a The accurate decomposition using piecewise continuous step functions and linear functions. b The
approximate decomposition using sigmoid functions and linear functions
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Without loss of generality, if we initialize the parameters
with a gaussian distribution wij ∼ N(0, 0.1), the moments
of the four positive transformations can be calculated as
follows:

- Exponent: mean = 1.0, variance = 0.01.
- Sigmoid: mean = 0.5, variance ≈ 0.01.
- ReLU: mean ≈ 0.08, variance ≈ 0.01.
- Square: mean ≈ 0.01, variance ≈ 0.0002.

In this section, we consider two variants of discrimi-
native frequency filter banks. If the frequency center cn
and bandwidth sn in Eq. 1 are constant and the filter
weights are restrained to be positive, the filter weights are
limited in the range of bandwidth. All the above distribu-
tions can be good solutions. Another case is that the filter
weights are totally independent. In this case, the result-
ing distributions of the exponent and sigmoid constraints
mean that most filter weights are not zero, which vio-
lates the physical meaning of filter banks. In order to fulfill
the physical meaning, the moments of positive transfor-
mations should be around N(0.1, 0.01), which is approx-
imately calculated using the Mel-frequency triangular
filter banks defined in Section 2.2. The inverse calcula-
tion of these positive transformations shows that when the
parameters are initialized w ∼ N(−3.0, 2.0), the exponent
and sigmoid constraints may result in meaningful
distributions.
Thus, when the filter banks are constrained by con-

stant bandwidths and frequency centers, all these positive
constraints are suitable. But when the filter weights are
totally independent, only ReLU and square constraints are
suitable, unless we can perform elaborate initialization
for different positive transformations. Our experiments in
Section 3.3 demonstrate our conclusion.

3.3 Reconstruction from filter bank coefficients
In the traditional design of filter banks as Fig. 1, the
completeness of filter banks is determined by the num-
ber of filters M and the channel decimation rate nk . In
our proposal of discriminative frequency filter banks, nk
is equivalent to the frame length N. And in general, M
is less than N for the purpose to reduce the computa-
tional cost and extracting significant features. In this case,
the filter banks are incomplete and hence, the perfect
spectral reconstruction from the filter bank coefficients is
impossible.
As described before, the spectrum xt is first transformed

to the Mel-frequency scale using a transformation matrix
derived from Eq. 3. Then, the filter banks work as a set of
weights on it as Eq. 6. Thus, the conversion from spectrum
vectors to filter bank coefficients can be represented as
Eq. 10. M is the Mel-frequency transition matrix, and F
are the discriminative frequency filter banks.

yt = xtMF (10)

The spectrum reconstruction process can be simplified
as a reconstruction transformation as Eq. 11. R is the
reconstruction matrix, and the parameters in R can be
trained jointly with the parameters of filter banks in F .

x̂t = ytR (11)

The problem of finding the optimal reconstruction
matrix R and filter bank matrix F is equivalent of find-
ing the solution of a linear system [44] as Eq. 12. R+ is
the Moore Penrose pseudoinverse [45] of R and has an
approximate numerical representation of MF . Here, we
define the condition number [46] for R as Eq. 13.

RR+xt = x̂t (12)

cond(R) =‖ R ‖ · ‖ R+ ‖≤ (‖ R ‖ + ‖ R+ ‖)2 (13)

In Eq. 13, cond(R)means the condition number ofR and
‖ · ‖ means the Frobenius norm of a matrix.
A large condition number implies that the linear sys-

tem is ill-conditioned in the sense that small errors in the
input can lead to huge errors in the output. So, we mod-
ify the reconstruction loss by adding an L2-regularization
constraint to keep the linear system stable. This is also
known as the bounded-input, bounded-output (BIBO)
stability [47].
The L2-regularization for different types of filter banks

in Sections 3.1 and 3.2 are discussed respectively as
follows.

- Shape constraint : for shape constraints in Section 3.1,
parameters such as the frequency center cn and
bandwidth sn, do not contribute to the regularization.
Regularization of the gain αn should be added up
across the bandwidth.

- Positive constraint : for positive constraints in
Section 3.2, all parameters contribute to the
regularization. The positive weights vij should replace
the filter bank parameters wij to calculate the
regularization, but the regularization of
reconstruction parameters rij remain unchanged.

3.4 Reconstruction vs classification
For spectrum reconstruction-related tasks as described in
Eq. 11, the output size of the reconstruction system is NT,
whereN is the FFT length, and T is the number of frames.
Thus, the number of equations in optimizing the recon-
struction matrix R and filter bank matrix F isDNT, where
D is the number of audio samples. Meanwhile, for positive
constraints, the number of parameters in R and F is about
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2NM, where M is the number of filter banks. For shape
constraints, the number of parameters is about 3M+NM.
M is usually much less thanDT, so the reconstruction usu-
ally can be seen as a process of solving overdetermined
linear equations.
Correspondingly, when the output of filter banks is fol-

lowed by a classifier, the number of equations in solving
the classification task is DC, where C is the number of
classes. The number of parameters is MN + MC for pos-
itive constraints, and 3M + MC for shape constraints. In
some small-scale applications, DC is less than MN. The
classification is equivalent of solving underdetermined
linear equations for positive constraints. Over-fitting is a
notorious issue in this scenario. This phenomenon can be
seen in Section 5.5.

4 Model description
As described in Section 3, the discriminative frequency
filter banks we proposed here can be integrated into a
neural network (NN) structure. The parameters of the
models are learned jointly with the target of a specific
task. In this section, we introduce two NN-based struc-
tures respectively for audio source separation and audio
scene classification tasks.

4.1 Audio source separation
In Fig. 4a, the NN structure for audio source separation
tasks is divided into three steps. The module of discrim-
inative filter banks is implemented as Eq. 6, which can
be denoted as h1. The reconstruction layer is constructed
using a fully connected layer and can be denoted as h3.

We attempt the audio separation from an audio mix-
ture using a simple masking method [48], which can be
represented as a binary masking module in Eq. 14 and
denoted as h2. In Eq. 14, ytj is an element of the feature
map Y , mji is a trainable parameter of this layer. The out-
put of this layer is a linear projection modulated by the
gates gt . These gates multiply each element of the matrix
Y and control the information passed on in the hierar-
chy. Stacking these three layers on the top of input X
gives a representation of the separated clean spectrogram
X̂ = h3 ◦h2 ◦h1(X), the symbol ◦ is used here to represent
the connection between different layers.

gti = sigmoid
(∑N

j=1 ytjmji
)

oti = ytigti
(14)

Neural networks are trained on a frame error (FE) min-
imization criterion, and the corresponding weights are
adjusted to minimize the square errors over the whole
training dataset. The error of the mapping is given by
Eq. 15, where xt is the targeted clean spectrum, and
x̂t is the corresponding separated representation. As
commonly used, L2-regularization is typically chosen to
impose a penalty on the complexity of the mapping,
which is the λ term in Eq. 15. However, when the layer
of discriminative filter banks is implemented with shape
constraints, the elements of w1 have definitude phys-
ical meanings. Thus, the L2-regularization is operated
only on the upper two layers in this model. In this case,

Fig. 4 NN-based structures with proposed methods. a is the NN structure for audio source separation tasks. b is the NN structure for audio scene
classification tasks
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the network in Fig. 4a can be optimized by the back-
propagation method.

ε =
T∑

t=1
‖ xt − x̂t ‖2 +λ

3∑

l=2
‖ wl ‖2 (15)

4.2 Audio scene classification
In Fig. 4b, a feature extraction structure including the dis-
criminative frequency filter banks is proposed to system-
atically train the overall recognizer in a manner consistent
with the minimization of recognition errors.
The NN structure for audio scene classification tasks

can be divided into five steps, where the first layer of dis-
criminative frequency filter banks is implemented using
Eq. 6. The convolutional and pooling layers are conducted
using the network structure described in [49]. In gen-
eral, let zi:i+j refer to the concatenation of frames after
discriminative filter banks yi, yi+1, ...yi+j. The convolution
operation involves a filter w ∈ Rh, which is applied to a
window of h frames to produce a new feature. For exam-
ple, a feature ci is generated from a window of frames
yi:i+h−1 by Eq. 16, where b ∈ R is a bias term and f is
a non-linear function. This filter is applied to each pos-
sible window of frames to produce a feature map c =[
c1, c2, ...cT−h+1

]
. Then, a max-overtime pooling opera-

tion [50] over the featuremap is applied and themaximum
value ĉ = max(c) is taken as the feature corresponding to
this filter. Thus, one feature is extracted using one filter.
This model uses multiple filters with varying window sizes
to obtain multiple features.

ci = f (w · yi:i+h−1 + b) (16)

The features extracted from the convolutional and pool-
ing layers are then passed to a fully connected layer and
a softmax layer to output the probability distribution over
categories. The classification loss of this model is given by
Eq. 17, where n is the number of audios, k is the num-
ber of categories, li,j is the category label, and pi,j is the
probability distribution produced by the NN structure. In
this case, the network in Fig. 4b can be optimized by the
back-propagation method.

ε =
n∑

i=1

k∑

j=1
li,j · log(pi,j) + λ

4∑

l=2
‖ wl ‖2 (17)

5 Experiments
To illustrate the properties and performance of the dis-
criminative frequency filter banks proposed in this paper,
we conduct three experiments respectively on spectrum
reconstruction, audio source separation and audio scene
classification tasks. In the first experiment, several groups
of comparisons are made on reconstruction errors to
verify the assumption and conclusion we proposed in

Section 3. Moreover, we have two more experiments to
test the applications of the discriminative frequency fil-
ter banks to audio source separation and audio scene
classification tasks.

5.1 Filter bank settings
All experiments conducted below make a comparison
between the discriminative frequency filter banks that can
be trained using neural networks and the fixed-parameter
filter banks described in Section 2.2. The detailed settings
are as follows:

- TriFB : frequency centers of the filters distribute
uniformly in the Mel-frequency scale, bandwidths are
50% overlapped between neighboring filters, the gain
is 1, and the shape is restrained with Eq. 4.

- GaussFB: frequency centers of the filters distribute
uniformly in the Mel-frequency scale, bandwidths are
4σ of an gaussian distribution as Eq. 5, the gain is 1,
and the shape is restrained with Eq. 5.

- TriFB-DN: in order to achieve a fair comparison with
TriFB, the initialization of the frequency centers,
bandwidths, and gain of the filters are the same as
TriFB, the shape is restrained with Eq. 9, and the gain
and bandwidths are guaranteed to be positive with a
square constraint described in Section 3.2.

- GaussFB-DN: in order to achieve a fair comparison
with GaussFB, the initialization of the frequency
centers, bandwidths, and gain of the filters are the
same as GaussFB, the shape is restrained with Eq. 5.
Other settings are the same as TriFB-DN.

- BandPosFB-DN: frequency centers and bandwidths
are the same as GaussFB, all parameters are
initialized using N(0, 0.1), and are guaranteed to be
positive with the square constraint described in
Section 3.2. The shape is not restrained.

- PosFB-DN: the parameters are initialized using
N(0, 0.1) and are guaranteed to be positive with the
square constraint described in Section 3.2. There are
no constraints for the frequency centers, bandwidths,
and shape of the filters.

5.2 Dataset and experimental setup
In this section, we employ three datasets to conduct the
experiments.MIR-1K dataset [51] is utilized to implement
the spectrum reconstruction and audio source separa-
tion experiments. LITIS ROUEN [52] and DCASE2016
[53] datasets are used for audio scene classification
experiments.
Details of these datasets are listed as follows:

- MIR-1K dataset : this dataset consists of 1000 song
clips recorded at a sample rate of 16,000 Hz, with
durations ranging from 4 to 13 s. The dataset is then
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utilized with four training/testing splits. In each split,
700 examples are randomly selected for training and
the others for testing. We use the mean average
accuracy over the four splits as the evaluation
criterion.

- LITIS ROUEN dataset : this is the largest publicly
available dataset for ASC to the best of our
knowledge. The dataset contains about 1500 min of
audio scene recordings belonging to 19 classes. Each
audio recording is divided into 30-s examples without
overlapping, thus obtaining 3026 examples in total.
The sampling frequency of the audio is 22,050 Hz.
The dataset is provided with 20 training/testing
splits. In each split, 80% of the examples are kept for
training and the other 20% for testing. We use the
mean average accuracy over the 20 splits as the
evaluation criterion.

- DCASE2016 dataset : the dataset is released as task 1
of the DCASE2016 challenge. We use the
development data in this paper. The development
data contains about 585 min of audio scene
recordings belonging to 15 classes. Each audio
recording is divided into 30-s examples without
overlapping, thus obtaining 1170 examples in total.
The sampling frequency of the audio is 44,100 Hz.
The dataset is divided into fourfolds. Our
experiments obey this setting, and the average
performance will be reported.

In all experiments, the audio signal is first transformed
using STFT with the frame length of 1024 and the frame
shift of 10 ms, so the size of audio spectrums is 513× 128.
The mini-batch size is set to be 50, and the learning rate is
initialized with 0.001.
In our audio source separation experiments, the number

of discriminative filters is set to be 64, other parameters
are set as described in Section 4.1. When the spectrum
reconstruction is needed, the regularization coefficient is
set to be 0.0001. Training is done using the Adam [54]
update method and is stopped after 500 training epochs.
In our audio scene classification experiments, the num-

ber of discriminative filters is also set to be 64. For both
LITIS ROUEN and DCASE2016 datasets, we use rectified
linear units; the window sizes of convolutional layers are
64 × 2 × 64, 64 × 3 × 64, and 64 × 4 × 64, and the fully
connected layers are 196×128×19(15). For DCASE2016
dataset, we use the dropout rate of 0.5. Training is done
using the Adam update method and is stopped after 100
training epochs.

5.3 Properties of discriminative frequency filter banks
In this experiment, we analyze the properties of the dis-
criminative frequency filter banks using the clean music
audios in MIR-1K dataset. The binary gating layer in

Fig. 4a is left out for simplicity. To quantify the perfor-
mance of our method, we evaluate the reconstruction
performance using the metric of signal to distortion ratios
(SDR). In Eq. 18, x̂ is the reconstructed signal and x is the
source signal.

SDR(x, x̂) = 10log10
( ||x||2

||x − x̂||2
)

(18)

Table 1 shows the reconstruction SDR under differ-
ent positive constraints. In order to exclude the influence
of filter numbers, these experiments are configured with
M = 32 and M = 64, respectively. The consistent
results in Table 1 demonstrate that exponent, sigmoid,
ReLU, and square positive constraints show similar per-
formances when parameters are constrained by fixed
frequency center and bandwidth, but ReLU and square
positive constraints perform much better than exponent
and sigmoid constraints when parameters are totally
independent and initialized with N(0, 0.1). As we have
discussed in Section 3.2, in this case, ReLU and square
constraints can result in a similar parameter distribution
with the traditional Mel-frequency triangular filter banks,
but exponent and sigmoid constraints will result in an
entirely different distribution, which violates the physical
meaning of the filter banks. However, when the initial-
ization for exponent and sigmoid constraints are finely
designed to be N(− 3.0, 2.0), the results improve a lot for
totally independent situations. Taken together, the perfor-
mance of ReLU and square positive constraints are more
stable, and their performances are similar, so we can select
the square constraint in follow-up experiments because of
its differentiability.
For audio scene classification tasks, we use DCASE2016

dataset to examine the rationality of our selection. Table 2
is the classification performance on the validation part of
DCASE2016 dataset. The NN structure is implemented

Table 1 Reconstruction SDR under different positive constraints
in decibel

Initialization Constraint
M = 32 M = 64

F-B T-I F-B T-I

N(0, 0.1) Exponent 8.57 6.72 13.10 6.74

Sigmoid 8.54 8.89 12.84 9.43

ReLU 8.45 14.44 12.84 18.54

Square 8.57 14.44 12.84 18.24

N(− 3.0, 2.0) Exponent 9.02 14.44 13.25 17.70

Sigmoid 8.36 14.31 12.84 17.97

F-B represents the parameters with fixed frequency center and bandwidth; T-I
represents the totally independent parameters;M represents the number of filters;
Nmeans Gaussian distribution
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Table 2 Audio scene classification performance under different
positive constraints

Initialization Constraint
F-B T-I

Accuracy MCC Accuracy MCC

N(0, 0.1) Exponent 77.21 75.85 71.20 69.48

Sigmoid 77.87 76.60 70.75 68.97

ReLU 77.37 76.05 76.92 75.59

Square 77.89 76.63 75.96 74.62

N(− 3.0, 2.0) Exponent 77.97 76.70 73.52 72.04

Sigmoid 77.16 75.82 71.44 69.81

F-B represents the parameters with fixed frequency center and bandwidth; T-I
represents the totally independent parameters; Nmeans Gaussian distribution

as Fig. 4b, and the training process is stopped after 180
epochs. Accuracy and Matthews correlation coefficient
(MCC) are employed to make the comparison. The results
are consistent with Table 1. For all these positive con-
straints and initialization schemes, the classification per-
formances are similar when parameters are constrained
by fixed frequency center and bandwidth. However, when
parameters are totally independent, ReLU and square pos-
itive constraints are more stable. If the parameters are
initialized with N(0, 0.1), it is difficult to converge to an
optimal solution for exponent and sigmoid constraints.
Therefore, our selection of square positive constraint also
works for audio scene classification tasks.
Table 3 is the reconstruction SDRs with and with-

out regularization. The results in the last two columns
show the performance improvement by adding proper
L2-regularization constraint as described in Section 3.3.
Comparing with TriFB and GaussFB, the results of the
four discriminative frequency filter bank models improve
a lot. MF is the Moore Penrose pseudoinverse of R in
Eq. 12; thus, R is the dual matrix determined by F .
Thus, the L2-regularization constraint in Eq. 13 comes
down to ‖ R ‖ or ‖ F ‖. In TriFB and GaussFB, F

Table 3 Reconstruction SDR with/without regularization in
decibel

Method M = 32, R = T M = 64, R = T M = 64, R = F

TriFB 8.45 13.01 12.92

GaussFB 8.12 12.44 12.44

TriFB-DN 10.32 14.69 13.28

GaussFB-DN 9.55 12.92 12.22

BandPosFB-DN 8.57 12.84 12.15

PosFB-DN 14.44 18.24 17.21

M represents the number of filters, R represents the regularization option, T
represents true, and F represents false

is fixed experimentally, ‖ F ‖ is constant, so the regu-
larization constraint makes no difference. The results in
the first two columns show the performances of differ-
ent filter bank methods. Totally independent parameters
with only positive constraints get the best result, gaussian
and triangular shape constraints follow closely. Triangu-
lar shape constraint performs a little better than gaussian
constraint. Fixed-bandwidth parameters with positive
constraint make no obvious improvement in contrast with
traditional TriFB and GaussFB.
A direct perspective of the six types of filter banks can

be seen in Fig. 5. Comparing with TriFB in Fig. 5a, the
filter banks of TriFB-DN in Fig. 5c show great difference
along theMel axis. The frequency centers and bandwidths
in TriFB-DN distribute relatively regular at low frequen-
cies, but out of order at high frequencies. Comparing with
GaussFB in Fig. 5b, the bandwidths of GaussFB-DN in
Fig. 5d are less overlapped between neighboring filters.
The filter banks of BandPosFB-DN come to be multi-
modal in the fixed bandwidth. The results in Table 3 show
that the frequency center and bandwidth are more impor-
tant than the shape in music reconstruction tasks. As we
have discussed in Section 3.4, the reconstruction tasks
usually can be seen as a process of solving overdetermined
linear equations, which means that the more parame-
ters the better. Result for PosFB-DN demonstrates this
assumption, PosFB-DN has much more parameters than
other methods, thus get a much better reconstruction
result.
Finally, in this experiment, in order to compare the

learned frequency centers and traditional auditory scales,
we have shown several frequency center plots in Fig. 6.
In Fig. 6a, frequency centers learned in the audio separa-
tion task on MIR-1K dataset are compared with the Mel
scale. We have also compared frequency centers learned
in the audio classification task on both DCASE2016 and
LITIS ROUEN datasets with the Mel scale in Fig. 6b, c.
For DCASE2016 dataset as shown in Fig. 6b, learned
frequency centers coincide well with the Mel scale. The
frequency centers almost keep the initial value; this may
be due to the lack of data. In Fig. 6a, we can see that
the changes of frequency centers can only be observed
in high-frequency regions, which means that the learned
frequency centers tend to give a different representa-
tion of high-frequency components in audio separation
tasks. This result is consistent with our experiments in
Section 5.4. However, the frequency centers in Fig. 6c
change only in relatively low-frequency regions. This
observation shows the difference between separation and
classification tasks.

5.4 Audio source separation
In this experiment, we investigate the application of
discriminative frequency filter banks in audio source



Zhang and Wu EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:1 Page 11 of 16

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Shape of different filter banks. a, b The traditional fixed-parameter filter banks. c–f The discriminative frequency filter banks we proposed and
learned in the simple music spectrum reconstruction task

Fig. 6 Comparison of frequency centers learned from network with the Mel scale. a Audio separation task on MIR-1K dataset. b Audio classification
task on DCASE2016 dataset. c Audio classification task on LITIS ROUEN dataset



Zhang and Wu EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:1 Page 12 of 16

Table 4 Reconstruction SDR of audio source separation in
decibel. M/V represents the energy ratio between music and
voice

M/V 0.1 1 10

TriFB 4.47 8.30 12.01

GaussFB 4.85 8.39 12.22

TriFB-DN 5.19 8.51 12.92

GaussFB-DN 5.13 8.45 13.01

BandPosFB-DN 5.33 8.39 12.84

PosFB-DN 5.70 9.14 16.99

separation tasks using the MIR-1K dataset. We attempt
the music separation from a vocal and music mixture
using Fig. 4a.
Table 4 shows the reconstruction SDR in the music

separation task. In order to achieve a fair comparison
between different filter bank methods, we mix the vocal
and music tracks under various conditions, where the
energy ratio between music and voice takes 0.1, 1, and
10 respectively. The results of discriminative frequency
filter banks in Table 4 show consistent performance
improvements in comparison with TriFB and GaussFB.
As an example, when we use the PosFB-DN method,
and the energy ratio between music and voice is 1, the
reconstruction SDR is improved by 0.75 dB compared

to GaussFB. When the energy ratio is 0.1, which means
that the voice is much louder than music, BandPosFB-
DN performs better than TriFB-DN and GaussFB-DN,
because the relatively independent parameters can limit
the voice amplitude effectively. However, when music is
louder, the flexible frequency center and bandwidth in
TriFB-DN and GaussFB-DN give better separation results
than BandPosFB-DN. In keeping with Table 3, TriFB-DN
performs a little better than GaussFB-DN when voice is
louder, but the advantage is much smaller than the results
in Table 3.
Figure 7 shows the clean music spectrum (a), mixed

spectrum (b), and separated spectrums (c–h) when the
energy ratio is 1. For this example, the separated spectrum
can be discussed in the following aspects. In high-
frequency regions, TriFB-DN, GaussFB-DN, and PosFB-
DN perform much better than the others, which is
consistent with Fig. 6a. For these three types of dis-
criminative frequency filter banks, the shape and positive
constraints allow the filter banks to learn a more precise
representation of high-frequency components. While for
fixed-bandwidth methods such as TriFB, GaussFB, and
BandPosFB-DN, the representations of high-frequency
components are confused. In low-frequency regions,
TriFB and GaussFB tend to result in a smooth energy
distribution, thus give better performance for spectrum
reconstruction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Reconstructed spectrums of audio source separation tasks. The clean music spectrum in a is randomly selected from the dataset. b The
corresponding music and vocal mixture. c–h The reconstructed music spectrums from the mixture spectrums using different filter bank methods
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Fig. 8 Training and validation curves on LITIS ROUEN dataset. a 1 s clip classification error on training set. b 1 s clip classification error on validation
set. c 30 s audio classification error on validation set

5.5 Audio scene classification (ASC)
When filter banks are used as a feature extractor, the fil-
ter banks proposed in this paper can extract more salient
features. In this section, we apply the discriminative fre-
quency filter banks to the ASC task. The NN structure is
implemented as Fig. 4b. We employ LITIS ROUEN and
DCASE2016 datasets in our experiments.
In the data preprocessing step, we first divide a 30-s

example into 1-s clips with 50% overlap. Then each clip
is processed as Fig. 2 for feature extraction. The classifi-
cation results of all these clips will be averaged to get an
ensemble result for the 30 s example.
Training and validation curves on LITIS ROUEN

dataset are shown in Fig. 8. All these methods are stopped
after 100 training epochs. In Fig. 8a and b, 1-s clip
classification errors on the training and validation set
are compared between different methods. We can see
that GaussFB-DN performs better than GaussFB along
all training epochs, so is TriFB-DN and TriFB. The
performance of BandPosFB-DN is almost the same as
GaussFB on the validation set. The poor performance of
PosFB-DN may be due to the difficulty to learn so many
parameters using this dataset. We have also compared 30
s audio classification errors on the validation set in Fig. 8c.
The results are almost exactly the same as Fig. 8b, except
that BandPosFB-DN becomes one of the best performing
methods.
Table 5 is the performance comparison of LITIS

ROUEN dataset after 100 training epochs. Evaluation cri-
teria such as accuracy, F-measure and MCC are employed
to make the comparison. CNN-Gam [9] is the best per-
forming single-feature model to the best of our knowl-
edge. However, owning to elaborate implementation of
the sub-band processing module and classification mod-
ule in Fig. 2, our baseline model with traditional TriFB and
GaussFB perform much better than it. Among these four
types of filter banks, shape constrained GaussFB-DN and
fixed-bandwidth constrained BandPosFB-DN get the best

classification performance, BandPosFB-DN reduces the
classification error by relatively 13.9%. While the positive
constrained PosFB-DNmake no difference in comparison
with TriFB and GaussFB.
Training and validation curves on DCASE2016 dataset

are shown in Fig. 9. After 100 training epochs, all these
methods encounter the overfitting problem. This obser-
vation is different from Fig. 8. Table 6 is the performance
comparison after 100 training epochs. In order to achieve
a fair comparison, we use the same NN structure on both
DCASE2016 and LITIS ROUEN datasets, including the
hyper-parameters. In keeping with the results in Table 5,
TriFB-DN, GaussFB-DN, and BandPosFB-DN get better
classification performances as well. The performance of
PosFB-DN gets much worse. In comparison with recon-
struction related tasks, classification tasks have fewer out-
put dimensions, so when parameters are not constrained
by specific shapes, the number of parameters is too large
to converge to a stable and smooth classification model.

Table 5 Performance comparison on LITIS ROUEN dataset

Method Accuracy F-measure MCC Error

TriFB 96.24 96.19 96.01 3.76

GaussFB 96.33 96.44 96.11 3.67

TriFB-DN 96.61 96.50 96.39 3.39

GaussFB-DN 96.83 96.71 96.63 3.17

BandPosFB-DN 96.84 96.71 96.64 3.16

PosFB-DN 96.15 96.04 95.91 3.85

CNN-Gam [9] 95.8 95.8 – 4.2

CNN-MFCC [9] 94.0 93.7 – 6.0

CNN-Log [9] 95.1 95.0 – 4.9

RNN-Gam [8] 96.4 96.6 – 3.6

RNN-MFCC [8] 95.4 95.8 – 4.6

RNN-Log [8] 95.9 96.2 – 4.1



Zhang and Wu EURASIP Journal on Audio, Speech, andMusic Processing          (2019) 2019:1 Page 14 of 16

Fig. 9 Training and validation curves on DCASE2016 dataset. a 1-s clip classification error on training set. b 1-s clip classification error on validation
set. c 30 s audio classification error on validation set

We also investigate the classification result when we
use less than 30 s audios. Figure 10 is the classification
error on the two datasets when audios extend from 1 s to
30 s. With long audios, we expect to extract more infor-
mation by accumulating more statistics. As a result, for
DCASE2016 dataset, GaussFB-DN can obtain an accuracy
of 75.2% at 15 s, which is better than TriFB at 30 s.

6 Conclusion
The construction of discriminative frequency filter banks
that can be learned by neural networks has been pre-
sented in this paper. The filter banks are implemented on
FFT-based spectrums and can be constrained under dif-
ferent conditions to express different aspects of physical
meanings. For shape-related constraints, a piecewise dif-
ferentiable triangular shape is approximated using several
differentiable basic functions. For positive constraints,
ReLU and square constraints are proposed to fulfill the
demand for the probability distribution of weights. Then,
a spectrum reconstruction method from incomplete filter
bank coefficients is implemented using neural networks.
A well-designed regularization strategy is also studied to
guarantee the filter banks to be BIBO-stable. Overall, this

Table 6 Performance comparison on DCASE2016 dataset

Method Accuracy F-measure MCC Error

TriFB 76.88 76.08 75.55 23.12

GaussFB 77.31 76.55 76.01 22.69

TriFB-DN 78.09 77.39 76.83 21.91

GaussFB-DN 78.36 77.44 77.10 21.64

BandPosFB-DN 77.89 77.07 76.63 22.11

PosFB-DN 75.96 74.93 74.62 24.04

MFCC-GMM [53] 72.5 – – 27.5

Mel-DNN [56] 76.4 – – 23.6

Mel-CNN [57] 76.0 – – 24.0

paper provides a practical and complete framework to
learn discriminative frequency filter banks for different
tasks.
The discriminative frequency filter banks proposed in

this paper are compared with traditional fixed-parameter
filter banks using several experiments. The results show
performance improvements for both music reconstruc-
tion and audio classification tasks. However, not all vari-
ants of discriminative frequency filter banks are suitable
for all situations. In our experiments, positive constrained
filter banks perform best on music reconstruction tasks,
and shape constrained filter banks obtain the best results
on ASC tasks.
Discriminative frequency filter banks on FFT-based

spectrums have the ability to get adaptive resolution on
the frequency domain. To achieve adaptive resolution on
the time domain, the future work will include introduc-
ing temporal information into filter banks, for example,
the filter banks may span several frames. We will also per-
form cross-domain experiments to learn filter banks on
one dataset and use it for classification tasks on another
dataset to see if the generalized filter banks can be learned
as done in [55].

Fig. 10 Early classification error
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