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Abstract

Current automatic speech recognition (ASR) systems achieve over 90–95% accuracy, depending on the methodology
applied and datasets used. However, the level of accuracy decreases significantly when the same ASR system is used
by a non-native speaker of the language to be recognized. At the same time, the volume of labeled datasets of
non-native speech samples is extremely limited both in size and in the number of existing languages. This problem
makes it difficult to train or build sufficiently accurate ASR systems targeted at non-native speakers, which,
consequently, calls for a different approach that would make use of vast amounts of large unlabeled datasets. In this
paper, we address this issue by employing dual supervised learning (DSL) and reinforcement learning with policy
gradient methodology. We tested DSL in a warm-start approach, with two models trained beforehand, and in a semi
warm-start approach with only one of the two models pre-trained. The experiments were conducted on English
language pronounced by Japanese and Polish speakers. The results of our experiments show that creating ASR
systems with DSL can achieve an accuracy comparable to traditional methods, while simultaneously making use of
unlabeled data, which obviously is much cheaper to obtain and comes in larger sizes.
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1 Introduction
Speech recognition has been the subject of extensive
research since the second half of the previous century.
Its main purpose is to allow communication between a
human and a machine, using the most natural way for a
human to convey a message—speech.
The speech recognition techniques and methodologies

that have been developed recently can work with up to
90–95% accuracy, depending on the dataset and bench-
mark test used [1]. However, such accuracy levels can
be reached only when the system is used for recognizing
the speech of native speakers (e.g., English language for
North American people). In the case of non-native speak-
ers, even the most advanced speech recognition systems
can only achieve an accuracy of up to 50–60%. The main
reason for such a drop is that non-native speakers have a
different mother tongue than the one that is being recog-
nized. Usually, the language used most often by a person
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is his or her mother tongue, and the pronunciation of this
language, with its patterns and characteristics, affect the
pronunciation of a foreign language, causing the failure
of speech recognition systems. However, global integra-
tion creates the need to properly recognize non-native
speakers, who nowadays represent the vast majority of
users.

2 Methods
2.1 Problems with traditional methodology
The easiest way for speech recognition systems to achieve
higher accuracy with non-native speakers would be to
train a classifier for speech recognition for a specific lan-
guage and nationality/ethnic group of non-native speakers
of that language [2, 3].
However, this idea is not feasible in most real world

cases. The reason for this is the size of available speech
datasets. In traditional methods of training speech recog-
nition classifiers, supervised learning techniques are usu-
ally applied. Those require labeled datasets of a large
size. While perfectly fitted for recognizing the speech of
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tens of the most popular languages worldwide, super-
vised learning techniques do not provide classifiers of
a decent quality for non-native speech. The main rea-
son for this problem concerns the size of speech datasets
for a certain language. Even if they exist, the number of
samples is usually not large enough to build an acoustic
model which could reflect the real-world distribution of
speech signal characteristics in one particular language.
Additionally, the vocabulary in such databases comprises
usually not more than a few thousand words, while a typi-
cal dictionary contains at least tens of thousands of words.
Moreover, attempting to train a speech recognition classi-
fier for one language and one nationality/ethnic group of
non-native speakers would require a new database, which
would involve a large workforce and budget. For these
reasons, traditional methods of training classifiers for the
purpose of speech recognition are usually not applicable
for non-native speech [4–11].
In comparison to labeled datasets, unlabeled datasets

are both much more easily available and larger in size for
many ethnic groups speaking a second language. This vast
amount of unlabeled data could theoretically be used to
develop amethod for training classifiers in the recognition
of non-native speech.
Our research hypothesis states that it is possible to cre-

ate a method that uses unlabeled datasets of two speech-
related domains: speech samples without corresponding
transcripts and text corpora without corresponding
speech samples, to train speech recognition classifiers in
a way which is as efficient and accurate as training meth-
ods provided by traditional solutions. The unlabeled data
used in our method is far cheaper and easier to obtain
and it usually comes in larger amounts than labeled data
required by the traditional methods that have been widely
used until now. The methodology we used in our exper-
iments is based on the dual supervised learning (DSL)
technique [12]. It exploits the fact that speech recognition
and speech synthesis are complementary to each other.

2.2 Methodology used in this research
DSL is a concept introduced by Xia [12]. It is based on
the acknowledgement that numerous supervised learn-
ing tasks emerge in dual forms (e.g., English-to-French
and French-to-English translation, speech recognition
and synthesis, image classification and image generation,
etc.). The dual tasks have intrinsic connections to each
other due to the probabilistic correlation between their
models.
To exploit the duality, a new learning scheme which

involves two tasks—a primal task and its dual task—can
be formulated. The primal task takes a sample from space
X as input and maps to space Y, and the dual task takes
a sample from space Y as input and maps to space X.
Using the language of probability, the primal task learns

a conditional distribution P(y|x; θxy) parameterized by
θxy, and the dual task learns a conditional distribution
P(x|y; θyx) parameterized by θyx, where x ∈ X and y ∈ Y .
In the new scheme, the dual tasks are jointly learned and
their structural relationship is exploited to improve the
learning effectiveness.
DSL for machine translation (e.g., English to French)

has already been tackled successfully [12]. The researchers
have shown that it is possible to create a similar algorithm
which could train a fully functional and accurate transla-
tion system using the dual characteristics of the problem.
In our study, we employed and adjusted this methodology
to the domain of text and sound: text to speech (TTS) and
speech to text (STT).
The idea is based on reinforcement learning algo-

rithms, which do not require data in the same form that
supervised learning does. All we need are two unlabeled
datasets. One dataset is a set of speech recordings by non-
native speakers of L language who belong toN nationality.
The second one is text corpora of the L language.

2.3 Applied models
We are going to exploit the easy access to unlabeled
datasets in order to train two separate models. One model
is a language one (ML). It is created solely with a text
corpus. There are two required functionalities: (1) the
possibility to generate a new sentence in textual form in
that language and (2) the possibility to estimate a prob-
ability score for a given sentence in that language (i.e.,
how natural a given sentence is, according to the language
model).
The second model is an acoustic one (MS). It is created

with only unlabeled speech recording datasets. We would
like it to have a similar functionality as the first model,
but for the speech domain. Namely, we want it to be
able to synthesize a new recording from the represented
sound distribution as well as estimate the probability score
for a given sound sequence, saying how accurately the
sound sequence can be recognized as speech according
to the acoustic model. The two models were trained sep-
arately, in isolation from any other models, during the
separate tasks of language modeling and acoustic model-
ing, respectively. The DSL methodology was not yet used
at this point. In the training processes of the two mod-
els, only unlabeled datasets were utilized. In the language
model, a text corpus was used. In the acoustic model, a
set of speech recordings was used. After training, each
of those models had the ability to generate a random
sample from the learned probability distribution and to
estimate a likelihood score of a sample, with respect to the
learned probability distribution. In the language model,
the sample becomes a textual sentence, and in the acous-
tic model, the sample is a soundwave, a recording of a
speech.
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The setup of this method contains two more models.
The first one is a speech recognition model (MSTT ), which
can recognize phonemes for a given sound sequence. The
other one, complementary to the first, is a speech gener-
ation model (MTTS), with the functionality of generating
a speech signal for a given textual sentence. In the pro-
cess of training using the DSL approach (described later),
these two latter models (MSTT andMTTS) will be the only
trainable ones. They will be initialized bymeans of either a
warm-start or a semi warm-start mode and will have their
weights updated according to a gradient descent-based
algorithm.
The two former models (ML and MS) were trained

before starting the DSL-based training process. They were
trained in isolation from any other models, using unla-
beled datasets. Therefore, they did not take part in the
DSL-based training process.
Our method uses all four aforementioned models,

closed in a feedback loop.
The role of each model is crucial, because each of

them is responsible for either synthesizing new data sam-
ples, evaluating the results yielded by the previous model,
or converting the data between the textual and acoustic
domain. Having stated that, we find that both the language
and acoustic models have an ability to generate a new data
sample in the form of a textual sentence or recording,
respectively. Moreover, they can estimate the correctness
(by giving a likelihood score) for a given sample using the
learned probability distribution of data in their domain
(either a text corpus or recording datasets). Due to that,
these models can give feedback to the model which con-
verts the data between domains, making it possible for the
model to learn weights which will lead to better (in terms
of the feedback-giving model) conversion results during
the next iteration of the training process.

2.4 Feedback loop
In the process of training, we decided to make use of two
kinds of loop.
The first type (called loop L) is depicted in Fig. 1. The

loop begins from a language model ML generating a t
sentence in text form.
Then, speech generationmodel (MTTS) generates sound

samples which can potentially represent how the t sen-
tence may sound when pronounced, according to MTTS.
MTTS generates K different soundwaves TTS(t)k from t
sentence, using a beam search algorithm.
The third step is a probability estimation for each of

the K generated samples. This is achieved by utilizing the
acoustic modelMS. The score for each sample equals:

aimk = MS(TTS(t)k) (1)

where:

aimk =immediate reward score for k sample
of soundwaveTTS(t) for loopL

MS(TTS(t)k) = likelihood score fork sample

This says how “probable” it is that the synthesized record-
ing could be an actual speech sample in a particular
language.
Lastly, the speech recognition model (MSTT ) transfers a

previously synthesized sample TTS(t)k into textual form.
At this step, we also calculate a probability score for each
of the K synthesized samples that says how correctly
the MSTT model recognizes the k sample as the original
sentence t. The score equals:

altk = logP(t|TTS(t)k ;MSTT ) (2)

where:

Fig. 1 Feedback loop design. Loop starts with generating a sentence (loop L)
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altk =long-term reward score fork
speech sample ofTTS(t) for loopL

P(t|TTS(t)k ;MSTT ) = probability score for receiving
sentencet fromk speech sample
TTS(t), when recognizing usingMSTT

The second kind of loop is similar to the first, but starts
at another point. It is shown in Fig. 2 and is called loop S.
This loop begins from the acoustic modelMS generating

a speech sample s.
Then, MSTT recognizes a generated sample as textual

sentences which are potentially transcripts for s sample,
according toMSTT .MSTT produces K most probable sen-
tences STT(s)k from s sample, also using a beam search
algorithm.
The third step is a probability score estimation for each

of the K recognized sentences. This is achieved by apply-
ing the language model ML. The score for each sentence
equals:

bimk = ML(STT(s)k) (3)

where:
bimk =immediate reward score fork

sentence ofSTT(s) for loopS
ML(STT(s)k) = likelihood score fork sentence

This says how “probable” it is that the recognized sentence
could be an accurate sentence in a particular language.
Lastly, the MTTS model synthesizes the previously rec-

ognized sentence STT(s)k into speech form. At this step,
we also calculate the probability for each K recognized
sentence. The probability gives information on how cor-
rectly the MTTS model generates a speech sample for
k sentence with s being the original sample. The score
equals:

bltk = logP(s|STT(s)k ;MTTS) (4)

where:

bltk =long-term reward score fork
sentence ofSTT(s) for loopS

P(s|STT(s)k ;MTTS) =probability score for receiving
speech samples fromk
sentenceSTT(s), when synthesized
usingMTTS

2.5 Making use of calculated scores
One iteration in the learning process contains the sin-
gle performance of both aforementioned loops. After the
iteration is completed, we are left with a pair of scores(
aimk , altk

)
for each of the K generated speech samples and

a pair of scores
(
bimk , bltk

)
for each of the K recognized

sentences.
The scores are then used in a policy gradient algo-

rithm as immediate rewards
(
aimk and bimk

)
and long-term

rewards
(
altk and bltk

)
. We can set the total reward for the

k sentence (or sample), as:

ak = αaimk + (1 − α)altk
or

bk = αbimk + (1 − α)bltk

(5)

where:

α =a factor specifying the weight of the immediate
reward in our DSL approach

Having done that, we can formulate the problem as opti-
mizing the ak and bk functions. As described before, we

Fig. 2 Second kind of loop. Loop starts from generating a speech sample (loop S)
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will optimize this function by modifying the weights of
two trainable models MSTT and MTTS. We use gradient-
based methods of optimization. We can calculate gra-
dients of the estimator of the total reward’s expected
value, with respect to those models. In Eqs. (6) and (7)
we depict the calculation for loop L (loop starting from
the language model). The calculations for loop S are
analogical.

�MTTS E[ak]=
E

[
ak �MTTS logP (TTS(t)k|t;MTTS)

]

�MSTT E[ak]=
E

[
(1 − α) �MSTT logP (t|TTS(t)k ;MSTT )

]

(6)

�MTTS Ê[a]=
1
K

K∑
k=1

[
ak �MTTS logP (TTS(t)k|t;MTTS)

]

�MSTT Ê[a]=
1
K

K∑
k=1

[
(1 − α) �MSTT logP (t|TTS(t)k ;MSTT )

]

(7)

where:

E[ak] = expected reward for ak sample
�MTTSE[ak]= gradient of the expected reward perk

sample, with respect toMTTS model
�MSTT E[ak]= gradient of the expected reward perk

sample, with respect toMSTT model

�MTTS Ê[a]= gradient of the expected reward, with
respect toMTTS model

�MSTT Ê[a]= gradient of the expected reward, with
respect toMSTT model

After calculating the gradients, we can update models
MSTT andMTTS according to the following formulas:

MTTS = MTTS + ηTTS �MTTS Ê[a]

MSTT = MSTT + ηSTT �MSTT Ê[a]
(8)

MTTS = MTTS + ηTTS �MTTS Ê[b]

MSTT = MSTT + ηSTT �MSTT Ê[b]
(9)

where:
ηTTS = learning rate forMTTS model
ηSTT = learning rate forMSTT model

After one iteration is complete, we start another one,
containing both types of loops, and starting from ML and
MS generating different samples from learned distribu-
tion. The proposed DSL process is depicted in Fig. 3.
In this feedback loop setup, bothMTTS andMSTT mod-

els are trained. For our purpose of non-native speech
recognition, we pay most attention to MSTT and its accu-
racy. After the training process, the speech recognition
modelMSTT , adjusted to pronunciation features of partic-
ular non-native speakers, will be created. Also, MTTS as a
speech synthesizer becomes a by-product of the training
process. It produces speech biased to the pronunciation
patterns of non-native speakers of the language that was
in the training dataset.

Fig. 3 DSL process for non-native speech recognition
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2.6 Experiment setup
2.6.1 Algorithms chosen and tested for eachmodel
We decided to choose several algorithms for each model
and test how well the DSL methodology acts in different
setups.
Language modelsML in our approach [13]:

• Vanilla recurrent neural network (RNN)
• RNN with a long short-term memory (LSTM) cell
• 3-gram model

The RNN and LSTM language models were created on
a character level. A single one-hot encoded row of data
which was fed to the network during training was related
to one particular character. Then again, during inference
time, the network was also fed data samples related to
one character. On the other hand, the 3-grammodel oper-
ates on trigrams of consecutive characters. One aspect
of our research was testing whether DSL methodology
could be applied and actually useful in different kinds
of setups, with different kinds of architectures for each
model. That was why we decided to use a 3-gram-based
language model in one of our experiments [14, 15].
For acoustic model MS, we chose the following models

[16–18]:

• Vanilla RNN
• RNN with an LSTM cell

The speech recognition modelsMSTT which we decided
to examine are as follows:

• Vanilla RNN
• RNN with an LSTM cell

We decided to examine only Deepmind’s Wavenet as
speech synthesis model MTTS, because speech synthe-
sis was not a primary issue we tried to address in our
research.
Table 1 depicts an overview of the architecture of the

models.
We tested three different setups of the above models.

The architecture of the models in these setups was chosen
using local search algorithms in isolated tasks of language
modeling, acoustic modeling, and speech recognition.
The first setup (setup 1) contained a 3-layer vanilla RNN

with 512 hidden units per layer, for the language model.
The same network was used for the acoustic model. As per
MSTT model, we decided to choose a 2-layer RNN, with

Table 1 Model architecture for each setup

Setup ML MS MSTT MTTS

1 RNN 3 × 512 RNN 3 × 512 RNN 2 × 1024 Wavenet

2 LSTM 3 × 512 LSTM 3 × 512 LSTM 2 × 1024 Wavenet

3 3-gram LSTM 3 × 512 LSTM 2 × 1024 Wavenet

1024 hidden units per layer. Descriptions for setup 2 and
setup 3 are analogical to setup 1 and are shown in Table 1.
The reason for choosing the RNN-based neural net-

works (vanilla RNN and RNN with an LSTM cell) is their
performance results on the type of datasets being used
in this research. The datasets represented by textual and
acoustic domains contain sequences of interdependent
data samples. The letters (or words) in any textual sen-
tence that belongs to any text corpus are not to be under-
stood as completely independent of each other. There are
sequences of letters where the former ones have a signif-
icant impact on which letter may appear as a latter one.
Analogical sequential dependency exists in the acoustic
domain. An RNN is a straightforward adaptation of the
standard feed-forward neural network to allow it to model
sequential data. At each timestep, the RNN receives an
input, updates its hidden state, and makes a prediction.
The RNN’s high-dimensional hidden state and nonlinear
evolution enable the hidden state of the RNN to integrate
information over many timesteps and use it to make accu-
rate predictions. Even if the non-linearity used by each
unit is quite simple, iterating it over time leads to very
rich dynamics. The standard RNN is given a sequence
of input vectors, then it computes a sequence of hid-
den states and a sequence of outputs. A RNN with an
LSTM cell addresses the exploding and vanishing gradient
problem, therefore making it possible to track long-time
dependencies in the sequential data [19–22].
The aforementioned Wavenet model was designed in a

similar manner to Deepmind’s original Wavenet [23]. The
general idea of the model is to predict the audio sam-
ple based on the series of previous audio samples [24]. In
order to realize the actual functionality of TTS, following
the authors’ method, we added the possibility to condi-
tion the model’s prediction locally, on the textual sentence
corresponding to a speech sample. In our experiments,
we decided to use the Wavenet that consists of three
stacks of dilated layers (10 layers per stack, dilation rate
up to 512) and two fully connected layers. Other param-
eters included a filter width of 2, 32 residual channels, 32
dilation channels, and 256 quantization channels.

2.6.2 Types of experiment performed
The purpose of the conducted experiments was to con-
firm the hypothesis described in Section 2.1 as well as to
estimate the accuracy of this method on different setups.
In order to assess the quality of this methodology, we
designed several experiments (Tables 2, 3, 4, 5, and 6).

Table 2 Results of conducted experiments for setup 1

English by Japanese English by Polish

Warm-start 84.12% 83.23%

Semi warm-start 82.92% 81.04%
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Table 3 Results of conducted experiments for setup 2

English by Japanese English by Polish

Warm-start 89.43% 88.14%

Semi warm-start 88.21% 86.92%

In the first experiment, we decided to check and evalu-
ate the influence of a warm start on the overall accuracy of
MSTT model. Warm start refers to a training mode where
MSTT and MTTS models are initially trained with a small
amount of labeled data, before we start to train them in a
dual supervised manner.
In the second experiment, we checked a semi warm-

start approach, training only MSTT model with a small
amount of labeled data before switching to DSL.
These two experiments were conducted for each of the

three model setups.
The last experiment we conducted became a base-

line method in our research. This baseline experiment
does not make any use of the method we present in
this research but instead uses the traditional supervised
learning approach, where there is only one, fully labeled
dataset.
In this case, we trained a 2-layer RNN with 1024 hid-

den units in a LSTM cell as MSTT model, in a traditional
way. In this approach, we trained an end-to-end speech
recognition setup that consisted of one network perform-
ing conversion from the acoustic domain to the textual
one. Because we decided to use the end-to-end model,
we used a Connectionist Temporal Classification (CTC)
loss function. This loss function does not require a frame-
level alignment (matching each input frame to the output
token). Therefore, it allows the use of the labeled speech
datasets, without the need to align the text with the
soundwave frames [25–31].
There was only one model (MSTT ) in the whole setup,

and it was trained in the experiment. We performed the
training in a normal, supervised manner, using only a
labeled dataset, so that we can show that the results of
this traditional approach and the DSL-based one (from
previous experiments) are actually comparable.

2.6.3 Datasets used in the experiment
We conducted the first two abovementioned experiments
on two cases of Japanese and Polish people pronouncing
English sentences.

Table 4 Results of conducted experiments for setup 3

English by Japanese English by Polish

Warm-start 86.43% 84.51%

Semi warm-start 85.21% 83.92%

Table 5 Results of conducted experiments for the traditional
method (baseline)

English by Japanese

Traditional method 87.24%

For training language models ML, we used the Corpus
of Contemporary American English (COCA).
For training acoustic models MS, we used pieces

of recordings scraped from Youtube website resources
(mostly either Japanese people teaching Japanese to an
English audience, or Japanese expatriates living abroad
and creating videos in English). The same source was
used in the case of Polish people pronouncing English
sentences.
During the warm-start and semi warm-start approach,

for trainingMSTT andMTTS models, we used 10% (around
7000 recordings) of the English Speech Database Read
by Japanese Students (UME-ERJ) for Japanese people,
and 10% (a similar quantity) of recordings scraped from
Youtube for Polish speakers, which we labeled ourselves.
The rest of the data was used for verification.
In the last, baseline experiment, we used only theUME-

ERJ dataset since the amount of time necessary to label
the whole scraped dataset for Polish people pronouncing
English was too long. In this case, we used 80% (around
56,000 recordings), 10% (around 7000), and 10% of data as
training, validation, and testing sets respectively.
A random shuffle strategy was used for selecting each

subset of training, testing, and validation sets.

2.6.4 Evaluation of DSLmethod accuracy
As measure of error, we chose character error rate, or
length normalized character-level edit distance. Accuracy
is obviously 1 − error.
Since there are not many popular benchmarks for ASR

of either Japanese or Polish pronunciation of English sen-
tences, we decided to evaluate the DSL approach for the
speech recognition problem by comparing the accuracy
result of MSTT model created using the methodology
described in our paper (DSL) to the accuracy of MSTT
created using the traditional approach, based on super-
vised learning (the last of the conducted experiments).
In this way, we show that the result yielded by the DSL
methodology is comparable to the one achieved by the tra-
ditional method. Having said that, we state that the result
achieved in the last experiment becomes a baseline result,

Table 6 Average time necessary for training each setup

Setup 1 Setup 2 Setup 3 Baseline setup

Time 5 weeks 5 weeks 5 weeks 4 days

Epochs 3000 2800 3200 380
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against which we compare the results from the first two
experiments.

3 Results
The results of our experiments are presented in the table
below in Tables 2, 3, 4, 5 and 6. The scores show the
best accuracy of MSTT model that we managed to obtain
during the training process. In order to make the results
more reliable, each of the scores shown in the table is
an averaged score of six runs of any particular setup. As
stated before, during each run, the datasets used for train-
ing, testing, and validation were chosen using the random
shuffle strategy.
Below, we present how the error rates changed during

the training time for the warm-start approach (Fig. 4) with
setup 2 and the traditional approach (Fig. 5) for English
pronounced by Japanese people.
The warm-start approach chart clearly reflects the

moment whenwe switch from (initial) pre-training to DSL
(around the 130th epoch). The convergence rate for the
MSTT model declines from that point. That means more
time is required to achieve comparable results. How-
ever, the final accuracy achieved by the warm-start DSL
approach is higher.
Even though the DSL method yields better results, they

are achieved at a cost of training time. On average, a single
run of an experiment using the traditional method took
us 4 days to complete using a single GTX 1080 Ti graph-
ics card. The average time needed for a single run of the
DSL-based approach to finish was 5 weeks. However, the
use of multiple cards allowed us to run the experiments in
parallel, and, consequently, to save time. Below, we depict
the average necessary time, together with the number of
epochs it took to achieve the best result.
While the time necessary for the DSL-based method to

achieve the desired results is clearly much longer, it is still

Fig. 4 Training process of warm-start approach. Error rate during the
warm-start approach training

Fig. 5 Training process of traditional approach. Error rate during the
traditional approach training

acceptable for the purpose of running the experiments
and evaluating the methodology.

4 Discussion
4.1 Convergence point
Training two networks in such a way that both models
learn from one another can bring the risk of the mod-
els converging to a point that is not desired. For instance,
in the speech recognition and speech synthesis domain,
we used MSTT and MTTS models. There is a possibil-
ity that MTTS may learn pronunciation of a different w
word (or sentence), while the language model ML comes
up with a completely different t word. Yet, the immedi-
ate reward associated with MS(TTS(t)) may be actually
significant since the pronunciation itself is correct accord-
ing to the acoustic model. If this happens, there is a risk
of the MSTT model learning to associate the pronuncia-
tion of w word with a textual form of t word. The learning
process will try to maximize the long time reward associ-
ated with logP(t|TTS(t);MSTT ), and in such an event, the
MSTT model understands that t word becomes a label for
an incorrect TTS(t) speech sample (which was mistakenly
generated by MTTS earlier). This may lead to a situa-
tion where both models learn the incorrect association
between speech features and text sentences. Particularly,
MTTS can learn the incorrect distribution of P(TTS(t)|t)
(i.e., it can learn distribution which would normally repre-
sent w sentence). A similar situation may occur for MSTT
model.

4.1.1 Warm start and its influence
Pre-training, or the warm-start approach in a chosen
methodology, is helpful for preventing models from
learning incorrect associations between speech fea-
tures and text sentences. It is very useful for speed-
ing up the learning process and increases the chance
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of achieving a desired convergence point as it pro-
vides a good starting position for the optimization
algorithm. Due to the application of pre-trained MSTT
and MTTS models, we start the DSL process from the
point where distributions of P(TTS(t)|t) and P(STT(s)|s)
are partially learned from the labeled dataset. Assum-
ing the correctness of the dataset itself, the distribu-
tions are correct, but do not represent the full feature
space yet.
As we shift from pre-training using labeled datasets

into DSL, MSTT and MTTS models could expand previ-
ously learned distribution using unlabeled data while the
learning process continues.
This allows us to both make use of a vast amount of

unlabeled datasets and make sure the models are converg-
ing towards a desired direction.

4.1.2 Warm start with only one of two pre-trainedmodels
According to the results of our experiments, it appears
that the warm start with both models initially trained is
not a prerequisite for the models to be correctly trained.
One pre-trained model is enough for the whole setup to
achieve a desired convergence point.

5 Conclusions
In this research, we explained the problem of non-native
speech recognition and the issues that appear if we decide
to use traditional approaches for building ASR systems for
such cases.
We also described in detail the idea behind DSL

methodology and explained why this method is suitable
for solving this problem.
Then, we performed experiments, employing different

algorithms in different setups, in order to show that DSL
methodology can produce ASR systems with an accuracy
comparable to currently used ASR products, while at the
same time making use of far cheaper and larger unlabeled
datasets.
We tested warm-start and semi warm-start approaches,

and the results of experiments show that they work well.
However, until we have developed the solution to the
non-native speech recognition problem in a fully unsuper-
vised manner (without warm start), there is still room for
improvement.
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