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Abstract

In this paper, an adaptive averaging a priori SNR estimation employing critical band processing is proposed. The
proposed method modifies the current decision-directed a priori SNR estimation to achieve faster tracking when SNR
changes. The decision-directed estimator (DD) employs a fixed weighting with the value close to one, which makes it
slow in following the onsets of speech utterances. The proposed SNR estimator provides a means to solve this issue
by employing an adaptive weighting factor. This allows an improved tracking of onset changes in the speech signal.
As a consequence, it results in better preservation of speech components. This adaptive technique ensures that the
weighting between the modified decision-directed a priori estimate and the maximum likelihood a priori estimate is a
function of the speech absence probability. The estimate of the speech absence probability is modeled by a sigmoid
function. Furthermore, a critical band mapping for the short-time Fourier transform analysis-synthesis system is
utilized in the speech enhancement to achieve less musical noise. In addition, to evaluate the ability of the a priori SNR
estimation method in preserving speech components, we proposed a modified objective measurement known as
modified hamming distance. Evaluations are performed by utilizing both objective and subjective measurements. The
experimental results show that the proposed method improves the speech quality under different noise conditions.
Moreover, it maintains the advantage of the DD approach in eliminating the musical noise under different SNR
conditions. The objective results are supported by subjective listening tests using 10 subjects (5 males and 5 females).

Keywords: Single-channel speech enhancement, A priori SNR estimation, Decision-directed approach, Adaptive
smoothing factor, Auditory system

1 Introduction
Noise suppression and speech enhancement are essen-
tial techniques employed in many products, for instance,
mobile phones, hearing aids, and assistive listening
devices. Particularly, hearable devices have been poised
to assist people with difficulties in hearing in social envi-
ronments [1]. For noise suppression and speech enhance-
ment to work in the environments where acoustic noise
becomes more intrusive, it is vital to maintaining weak
speech components while still balancing the amount of
noise reduction. Accordingly, techniques that can enhance
speech signals while preserving weak speech components
under a large variety of acoustic scenarios are key to suc-
cessful products [2–4]. In this context, it is important to
consider not only the speech but also the quality of noise
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after suppression.Unnatural sounding background noise is
bothersome for users of hearable devices or hearing aids.
Traditionally, speech enhancement techniques have

been utilizing the frequency domain for processing where
the short-time Fourier transform (STFT) has been used as
a tool to process the input data using frame-based over-
sampling techniques [3, 5–7]. When deploying STFT, the
bandwidth is constant for each frequency bin, which is
not the case for the human auditory system. Thus, a nat-
ural extension has been to use human auditory models in
speech enhancement to improve the speech quality and
intelligibility [8–11].
The human auditory spectrummodel consists of a bank

of bandpass filters, which follows a spectral bark scale or
the so-called critical bands [11, 12]. In [11], a standard
subtractive speech enhancement method is presented to
eliminate the musical artifacts in very noisy situations.
Themasking properties of the auditory system are utilized
to compute the subtraction parameter. In [13], a spectral
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subtraction noise reduction method is proposed using a
spatial weighting technique based on the inhibitory prop-
erty of the auditory system, which results in improving the
estimated speech while reducing the musical noise.
Speech enhancement algorithms calculate a gain func-

tion, which is in most cases a function of a posteriori
signal to noise ratio (SNR) or a combination of a posteriori
and a priori SNR [14]. One exemplary speech enhance-
ment algorithm is the spectral subtraction (SS) method
proposed by Boll [15]. This algorithm is the most com-
monly used mainly due to its straightforward implemen-
tation and low computational complexity. In this method,
a clean speech estimate is obtained by subtracting an
estimated noise power spectrum from the noisy speech
power spectrum while keeping the phase of the degraded
speech signal. The spectral subtraction method embeds
erroneous estimation of noise statistics resulting in an
annoying artifact in the estimated speech signal com-
monly known as musical noise, which can be masked
using perceptual thresholds [11, 16].
In contrast, the minimum mean-square error log

spectral amplitude (MMSE-LSA) estimator proposed by
Ephraim [17] avoids the appearance of the musical noise
artifact. This estimator uses a priori SNR estimation
based on a decision -directed estimation, which involves
a weighted sum of two terms, the a priori SNR estimate
from the previous frame and the maximum likelihood
(ML) SNR estimate from the current frame. This estima-
tion technique reduces the variance of the a priori SNR
estimates particularly during noise frames, and as a result,
the musical noise artifact is eliminated [18]. However, the
emphasis of the previous frame in the DD estimation has
a consequence that it leads to a slow adaptation towards
speech onsets and offsets. Moreover, as DD approach
depends on the a priori SNR estimation in the previous
frame, an extra one frame delay is obtained during speech
transients and results in a degradation of the speech
quality [7].
The a priori SNR estimation algorithm has been

improved in many ways, e.g., Breithaupt et al. [19] pro-
posed the temporal cepstrum smoothing (TCS) technique
for speech enhancement. This technique improves the
accuracy of the a priori SNR estimation by exploiting the
a priori knowledge of speech and noise signal and selec-
tively smoothing the maximum likelihood estimate in the
cepstral domain. This allows the preservation of speech
components while simultaneously achieving high noise
attenuation. However, this method has limitations under
low SNR conditions where the noise components cannot
be separated from the speech components. Suhadi [20]
suggested a data-driven technique employing two trained
neural networks to estimate the a priori SNR, one for
speech and one for noise. The use of neural networks
requires a substantial training process for estimating the a

priori SNR since the proposedmethod is not a robust esti-
mator under different noise environments, which results
in a degradation of the estimated speech quality under
non-stationary noise conditions. Plapous [21] presented a
two-step noise reduction technique (TSNR) to refine the
estimation of the a priori SNR and increase the estima-
tor adaptation speed. The main disadvantage when using
this TSNR method is its sensitivity to the selection of
the gain function. A different choice of the gain function
gives very different estimation results [22, 23]. A modified
decision-directed approach (MDD) proposed by Yong et
al. [7] matches the current noisy speech spectrumwith the
current a priori SNR estimate rather than the delayed one.
This reduces the one frame delay for speech onsets, but
the tracking speed of the a priori SNR estimation is still
slow compared to the true SNR change since the recursive
smoothing factor is constant and close to one.
In this paper, we extend the research in [24], which

includes an improved a priori SNR estimation based
on modeling the speech absence probability with a sig-
moid function. This sigmoid function was used to control
the adaptation speed of the a priori SNR estimation.
The sigmoid function operates as an adaptive weight-
ing function that emphasizes either the DD term or
the ML estimate in the a priori SNR estimate update.
The rationale used when developing the weighting func-
tion was that for positive SNR values; the a priori and
the a posteriori SNR estimates are almost the same.
Accordingly, by adding flexibility to select either of the
two terms for SNR values below or above a certain
threshold, we provide a way to emphasize both esti-
mates. By utilizing a threshold and the sigmoid shape,
an improved adaptation of the a priori SNR estimate is
obtained.
The choice of gain function plays an important role

since it is included in the DD estimation resulting in
different performance. Previously, only the Wiener gain
function was considered. In this work, we propose an
improved a priori SNR estimation [24] using different
gain functions, namely, Wiener filter (WF) [25] and
MMSE-LSA gain function [17]. A new evaluation tech-
nique referred to as the modified Hamming distance (HD)
has also been proposed. In common objective measures,
speech components are not emphasized since they have
small amplitudes or small energy. The proposed modi-
fiedHamming distance is based on voice activity detection
(VAD) decision information in each time-frequency bin.
Since this information is binary, data scaling that depend
on amplitude or energy is avoided; thus, we can compare
to ideal VAD decisions. Also in this work, we utilize a criti-
cal bandmapping for an STFT analysis-resynthesis system
in the speech enhancement framework for human percep-
tual processing. Moreover, the utilized critical band pro-
cessing helps to reduce computational complexity since
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it combines K FFT frequency bins into I critical bands
instead (I� K).
The remainder of this paper is organized as follows. In

Section 2, a single-channel speech enhancement frame-
work with critical band processing is developed. Section 3
shows the decision-directed based a priori SNR esti-
mators. Section 4 develops the proposed a priori SNR
estimation approach together with an investigation on
the effect of the key parameters of the sigmoid func-
tion. Section 5 demonstrates the evaluation methodology.
Section 6 presents the experimental results and discussion
while Section 7 concludes the paper.

2 Critical band speech enhancement
A natural way to process speech signals is to use a percep-
tual filter bank [26]. By employing the inhibitory property
of the human auditory system and combining with the
speech enhancement algorithms [11], the performance of
the speech processing system can be improved. There
are many perceptual frequency warping scales used for
speech processing [27, 28]. In this work, we employed a
bark scale filter bank with a non-uniform resolution and
incorporated it in a speech enhancement framework with
the proposed a priori SNR estimationmethod.We assume
that the noise and speech are additive and uncorrelated;
thus, the noisy speech signal is given by

y(n) = s(n) + v(n) (1)

where s(n) and v(n) denote the clean speech signal and
noise, respectively. The block diagram for critical band
speech processing is described in Fig. 1. In the sequel, we
will outline the details of the processing.
In the first step, the noisy signal is transformed to the

time-frequency domain by applying STFT with K fre-
quency bins

Y (k,m) = S(k,m) + V (k,m) (2)

where k is the frequency bin index andm is the time frame
index. Then, in order to transform the output from the
STFT Y (k,m) into the critical band, an analytical function
is used to express the transformation between frequency f
(in Hz) and critical band z (in bark scale), which is defined
by [29]

f = 600 sinh
( z
6

)
. (3)

The noisy spectrum is expressed in terms of the critical
band numbers i and frame indexm by combining the FFT
frequency bins into I critical bands as follows:

YCB(i,m) =
K/2+1∑
k=1

M(i, k) |Y (k,m)| (4)

where i =[ 1, 2, · · · , I]. The number of critical bands I is
chosen with respect to the bark scale [29]. Here, M(i, k)

are the critical bandpass filter coefficients, which are
defined as

M(i, k)=

⎧
⎪⎨
⎪⎩

10(z(k)−zc(i)+0.5) z(k) < zc(i) − 0.5
1 zc(i)−0.5<z(k)<zc(i)+0.5
10−2.5(z(k)−zc(i)−0.5) z(k) > zc(i) + 0.5

(5)

where zc(i) represents the center frequency of the ith crit-
ical band. A MATLAB implementation of the bark scale
critical band processing is described in [30]. The main
task of the speech enhancement scheme is to enhance the
speech signal by applying a specific spectral gain function
to the noisy spectrum. LetGCB(m) denotes the gain vector
in the critical band for themth frame

GCB(m) =[GCB(1,m),GCB(2,m), ...,GCB(I,m)]T .

There are many different gain functions proposed in the
literature. Common gain function often can be expressed
as a function of the a priori SNR ξ(i,m), such as the WF
method, which can be defined as [25]

GWF,CB(i,m) = ξ(i,m)

1 + ξ(i,m)
(6)

with ξ(i,m) denoting the a priori signal-to-noise ratio
SNR, which is defined as

ξ(i,m) = λs(i,m)

λv(i,m)
(7)

where λv(i,m) = E
[|V (i,m)|2] and λs(i,m) =

E
[|S(i,m)|2] are the power spectral density of noise and

clean speech, respectively.
MMSE-LSA [17] is another widely used speech estima-

tor, which is obtained by minimizing the logarithm of the
mean square error between original and enhanced speech
spectra, and can be defined as a function of the priori SNR
and the posteriori SNR, given by

GLSA,CB(i,m) = ξ(i,m)

1 + ξ(i,m)
exp

⎧
⎨
⎩
1
2

∞∫

νk

e−t

t
dt

⎫
⎬
⎭ (8)

where the lower bound νk of the integral is given by

νk = ξ(i,m)

1 + ξ(i,m)
γ (i,m) (9)

and γ (i,m) denotes the a posteriori SNR defined as

γ (i,m) = |YCB(i,m)|2
λv(i,m)

. (10)

Once the gain vector GCB(m) in a critical band is calcu-
lated, it is interpolated back to the gain vector in the STFT
domain G(m) through an interpolation matrix A,

G(m) = AGCB(m) (11)
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Fig. 1 Block diagram for the critical band processing

where theAmatrix can be defined by least square approx-
imation as A = (MTM)−1MT and M denotes the matrix
with elements M(i, k). From empirical findings, better
results are obtained by simplifying the reconstruction
matrix as

A = diag
(

1
1M

)
MT

where 1 is 1 × I row vector. The estimated speech in the
STFT domain is then reconstructed by applying the inter-
polated gain functionG(k,m) on the noisy signal in Eq. (2)

Ŝ(k,m) = G(k,m)Y (k,m). (12)

Finally, the speech estimate is obtained by taking the
inverse STFT of the enhanced speech and using the
overlap-add method

ŝ(n) = ISTFT
(
Ŝ(k,m)

)
. (13)

3 Conventional a priori SNR estimation
In many speech enhancement algorithms, a priori SNR
estimation is a dominant part of the gain function calcu-
lation as in Eqs. (6) and (8). Inaccuracies in the estimation
of the a priori SNR can lead to audible speech distortion
and musical noise. The state-of-the-art method to esti-
mate the a priori SNR from noisy speech while avoiding
musical noise is the DD approach [31]. In this method, the
a priori SNR estimation is expressed as a weighting aver-
age of the amplitude estimate at the previous frame and
the maximum likelihood estimate of the a priori SNR at
the current frame. This method is defined by

ξ̂DD(i,m) = β
|Ŝ(i,m − 1)|2
λ̂v(i,m − 1)

+ (1−β)P
[
γ̂ (i,m) − 1

]
(14)

where Ŝ(i,m − 1) and λ̂v(i,m − 1) denote the amplitude
estimate and the noise estimate at the previous frame,

respectively. P is the half wave rectification to keep the
a priori SNR value positive, and 0 < β < 1 denotes a
weighting factor that controls the trade-off between the a
priori SNR from previous frame and the posteriori SNR at
current frame, which can be defined as

β = exp(−R/fsts) (15)

where R is the frame rate, ts and fs denote the time aver-
aging constant and the sampling frequency, respectively.
By setting the weighting factor close to 1, two different
behaviors of the a priori SNR estimation can be observed
as explained in [18]. In the noise frames, the a priori SNR
estimate corresponds to a scaled version of the a posteriori
SNR since the second term of the DD approach is equal to
zero. Thus, a priori SNR estimation can be expressed by

ξ̂
↓
DD(i,m) ≈ βG2

CB(i,m − 1)γ̂ (i,m − 1).

This behavior reduces the variations in the a priori SNR
estimate and thus reduces the amount of musical noise
produced. In the frames with speech onsets, the a pri-
ori SNR follows the a posteriori SNR from the preceding
frame as given by

ξ̂
↑↑
DD(i,m) = β

G2
CB(i,m − 1)|YCB(i,m − 1)|2

λ̂v(i,m)

+ (1 − β)P
[
γ̂ (i,m)− 1

]

≈ βG2
CB(i,m − 1)γ̂ (i,m − 1)

+ (1 − β)P
[
γ̂ (i,m) − 1

]

where the second term that indicates the ML estimate
would only have little impact on the estimation process
since β is close to 1. In this case, the tracking of change
in the a priori SNR estimate is slow since the a priori
SNR estimation mainly depends on the posteriori SNR
estimation in the previous frame. This behavior can lead
to speech transient distortion. In order to overcome this
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problem, the authors in [7] proposed a modified decision-
directed (MDD) approach. In that method, the a priori
SNR estimate at the current frame is matched with the a
posteriori SNR in the current frame instead of the pre-
vious one. Thus, the one-frame delay is reduced, which
results in less speech distortion compared to the conven-
tional DD approach. The MDD a priori SNR estimate is
given by

ξ̂MDD(i,m) = β
G2
CB(i,m − 1) |YCB(i,m)|2

λ̂v(i,m)

+ (1 − β)P
[
γ̂ (i,m) − 1

]
. (16)

In addition, to maintain the advantage of the DD
approach in eliminating the musical noise, the magnitude
square of the noisy signal has been smoothed by using
first-order recursive smoothing procedure as given by [7]
to reduce the variance of the a priori SNR estimate. The
first-order recursive averaging of the noisy signal is given by

λy(i,m) = αyλy(i,m − 1) + (1 − αy) |YCB(i,m)|2 (17)

where αy is a smoothing constant. The smoothed
|YCB(i,m)|2 is replacing the instantaneous power estimate
in the a posteriori SNR Eq. (10).

4 Proposed a priori SNR estimation
The drawback of theMDD approach is that the fix weight-
ing factor β in Eq. (15) reduces the influence from the
second term towards the a priori SNR update resulting in

a scaled down a priori SNR estimate when compared to
the true a priori SNR. In light of this, we can conclude that
the fix weighting factor β gives low variability of the gain
function during noise-only periods but does not provide a
fast change of the gain function when a speech utterance
comes. Thus, it is desirable to replace the fix weighting
factor β with an adaptive weighting factor β(i,m).
Recognizing that the speech absence probability is a

key for the weighting according to Eq. (16), we model
the speech absence probability based on a sigmoid func-
tion. As a remark, if the cumulative distribution function
(CDF) is a sigmoid function, the probability density func-
tion (pdf) is similar to a Gaussian pdf but with larger tails,
which is plausible for speech applications. The sigmoid
consists of two parameters, σ to control transition speed
and ρ to determine the threshold of active speech signal
and noise [32]. The selection of these parameter values is
based on the observation that the a priori SNR equals the
posterior SNR for high SNRs. An adaptive weighting func-
tion β̂(i,m) is proposed based on the a posteriori SNR and
is given by

β̂(i,m) = β0
1 + exp[−σ(γ̃ (i,m) − ρ)]

(18)

where β0 is a constant slightly larger than β . The modified
a priori SNR estimation approach is then defined by

ξ̂prop(i,m) = β̂(i,m)
G2
CB(i,m − 1) |YCB(i,m)|2

λ̂v(i,m)

+(1 − β̂(i,m))P
[
γ̃ (i,m) − 1

]
(19)

Fig. 2 Block diagram of the spectral gain function computation using the proposed a priori SNR estimation method
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where γ̃ (i,m) is the a posteriori SNR estimate employing
the smoothed estimate of the noisy speech from Eq. (17).
Figure 2 describes the computation of the gain function
by using the proposed method with an adaptive weighting
function. In the following, we investigate the effect of two
parameters σ and ρ on the proposed adaptive weighting
function β̂(i,m).
To retain a similar property as a constant weighting fac-

tor β for speech-only and noise-only frames, we impose
constraints on β̂(i,m) as:

β̂(i,m)

=
{
β , for noise-only frames or when γ̃ (i,m) = 1
1−β , forspeech-only framesorwhen γ̃(i,m)=γu, γu>>1.

(20)

which lead to⎧
⎨
⎩

β0
1+exp(−σ(1−ρ))

= β

β0
1+exp(−σ(γu−ρ))

= 1 − β
(21)

or ⎧
⎨
⎩

σ (1 − ρ) = − ln
(

β0
β

− 1
)

σ (γu − ρ) = − ln
(

β0
1−β

− 1
)
.

(22)

We now calculate the parameters σ and ρ directly for
different levels of γu. From Eq. (22), we have

1 − ρ

γu − ρ
=

ln
(

β0
β

− 1
)

ln
(

β0
1−β

− 1
) . (23)

As such, the parameter ρ can be obtained from γu as

ρ =
1 − γu

ln
(

β0
β

−1
)

ln
(

β0
1−β

−1
)

1 − ln
(

β0
β

−1
)

ln
(

β0
1−β

−1
)

. (24)

The parameter σ can be calculated as

σ =
− ln

(
β0
β

− 1
)

1 − ρ
. (25)

Figure 3 shows the pdf of a posteriori SNR for differ-
ent noise types for β =0.98 and β0=0.983, mapped with
different adaptive smoothing factors calculated at sev-
eral posteriori SNR values, γu: (i) at γu=5 dB SNR with
σ = −4.469, ρ = 2.295; (ii) at γu = 7 dB SNR
with σ = −2.408, ρ = 3.402; (iii) at γu = 9 dB SNR
with σ = −1.391, ρ = 5.159; and (iv) at γu = 15 dB
SNR with σ = −0.315, ρ = 19.344. Adaptive smooth-
ing factors with different parameters (slopes and means)
can control the trade-off between the musical noise and
the ability to preserve speech components. In pink noise
case, the SNR estimate in noise-only case is distributed

approximately between 0 and 1. According to Eq. (20),
the adaptive smoothing factor is approximately β during
this period to reduce the SNR variance. This can be noted
from the figure (first plot on the left), where the adap-
tive smoothing factor is almost 0.983, which explains the
ability of the proposed method to maintain the advantage
of the conventional decision-directed method in reduc-
ing musical noise at low SNRs. Moreover, in the factory
noise case where the SNR estimate is distributed between
0 and 2 during noise-only periods, the proposed smooth-
ing factors designed at γu = 9 dB and γu = 15 dB
reached the imposed constraint (0.983) during the noise
variance, whereas adaptive factors designed at γu = 5 dB
and γu = 7 dB are lower than 0.983 during noise periods,
which leads to an increase in musical noise.
For the babble noise case, the figure on the left shows

the pdf of a posteriori SNR estimate during a noise-only
period. It can be observed that the pdf has a large spread
because of the non-stationary character of the babble
noise, which means that an adaptive smoothing factor
designed at higher a posteriori SNR γu is required to
reduce the SNR variance during noise-only frames and
reducing the effect ofmusical noise. From the figure, it can
be clearly noted that adaptive smoothing factor designed
at γu = 15 dB is the best among the designed factors
since it attained a higher value over the a posteriori SNR
distribution during the noise-only frames.
In addition, it can be noted that the weighting factor is

inversely proportional to the a posteriori SNR γ . Thus,
during the noise frames, γ takes small values. Conse-
quently, the resulting weighting factor β̂(i,m) is close to 1,
whichmeans that the proposedmethod will have identical
behavior as the DD and the MDD methods. This explains
the ability of the proposed method to maintain the advan-
tage of the DD method in reducing musical noise in the
low SNRs. Since the second term is zero, the a priori SNR
estimate in noise frames will be given by

ξ̂↓
prop(i,m) = β̂(i,m)G2

CB(i,m − 1)γ̂ (i,m). (26)

During speech activity frames, the resulting weighting
factor takes values close to 0. In that scenario, the first
term of Eq. (19) is almost negligible, and the a priori SNR
estimate in speech activity frames will correspond to a
smoothed version of the maximum likelihood estimate as
given by

ξ̂↑↑
prop(i,m) = (1 − β̂(i,m))P[ γ̃ (i,m) − 1] . (27)

During a speech transition, the weighting factor
decreases with each increment of the instantaneous SNR.
As a consequence, the a priori SNR estimation corre-
sponds to a combination of the first and second terms in
Eq. (19) as given by
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Fig. 3 Histograms of a posteriori SNR estimate for different background noises (1st row) for pink noise, (2nd row) for factory noise, and (last row) for
babble noise at the 9th critical bandmapped with adaptive smoothing factor calculated with different sets of parameters (adaptive smoothing factor
calculated at (i) γu=5 dB, (ii) γu=7 dB, (iii) γu=9 dB, and (iv) γu=15 dB). Left figures for noise-only periods and right figures for speech-and-noise periods

ξ̂↑
prop(i,m) = β̂(i,m)G2

CB(i,m − 1)γ̂ (i,m)

+ (1 − β̂(i,m))P
[
γ̃ (i,m) − 1

]
. (28)

From (19), it can be noticed that the second term will
have a varying impact on the a priori SNR updating pro-
cess depending on the instantaneous SNR estimate. It is
here the proposed method makes a difference in tracking
any abrupt SNR changes. The apparent result is that more
speech components are preserved as well as a reduction
in the speech transient distortion.

5 Evaluationmethodology
Speech quality evaluation can be classified into two
categories: objective measurement and subjective mea-
surement [3]. The first category is based on a mathemat-
ical comparison between the original and the enhanced
speech signals. Many objective measurements have been
proposed in the literature, such as the perceptual eval-
uation of speech quality measure (PESQ) [33, 34], seg-
mental SNR measure SNRseg [35, 36], and kurtosis ratio
measure (KurtR) [37]. In addition, we propose a new
evaluation method based on the Hamming distance as a
speech preservation measure. The Hamming distance is a
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measure that takes into account speech presence or not
for each time-frequency point. By measuring the differ-
ence between a clean speech binary mask and a processed
speech binary mask, the measure takes into account the
presence of speech in each time-frequency bin without
amplitude weighting.
The perceptual evaluation of speech quality measure

(PESQ) is the speech quality assessment recommended
by ITU-T P.862 for its ability to predict the speech qual-
ity with a high correlation versus subjective listening tests
[38]. PESQ implementation consists of first, estimating
the bark spectrum of the input and the degraded signals
by using a perceptual model in order to compute the loud-
ness spectra and then compare between them to predict
the perceived quality of the degraded signal. This objec-
tive means of quality assessment is expressed in terms of
the mean opinion scores (MOS), measured from 1 to 5,
where higher scores indicate higher quality. Here, we are
using the implementation provided by Loizou [3].
Time domain-based segmental SNR is one of the widely

used objective measures to evaluate the performance of
speech enhancement algorithms, which is formed by aver-
aging the frame level of SNR estimate [36] as given by

SNRseg = 10
M

M−1∑
m=0

log10
‖s(m)‖2∥∥s(m) − ŝ(m)

∥∥2 (29)

where M denotes the number of frames, while ŝ(m)

and s(m) are the estimated and original speech vectors,
respectively, in time domain. The segmental SNR values
are limited in the range of [−10, 35] dB in order to exclude
frames with no speech.
In addition, to further investigate the performance of

the a priori SNR estimation methods, we utilized the seg-
mental speech preservation SNRseg,sp and segmental noise
reduction SNRseg,noise as in [39]. These two measures give
indications whether the improvement in SNRseg is due to
more noise reduction or more speech preservation and
they can be defined as follows:

SNRseg,sp = 10
M

M−1∑
m=0

log10
‖s(m)‖2∥∥s(m) − s̃(m)

∥∥2 (30)

SNRseg,noise = 10
M

M−1∑
m=0

log10
‖v(m)‖2
‖ṽ(m)‖2 (31)

where s̃(m) and ṽ(m) denote themth frame of the filtered
clean speech and noise signals with the same gain function
used to enhance the noisy signal.
The Kurtosis ratio measure is a mathematical measure

used to calculate the musical noise. Such measure

defines by the estimated speech signal and the noisy
speech signal during noise frames only [37]. In order
to detect the speech silence and presence, a VAD deci-
sion was employed [40], given two hypotheses H0(k,m)

and H1(k,m) indicate the speech absence and presence,
respectively. VAD decision is given by

D(k,m) =
{
1 if H1(k,m)

0 if H0(k,m)
(32)

and V (k,m) = 1 − D(k,m) denotes the activity detection
of the noise periods. In order to avoid the miss-detection
of speech components, the reference VAD were generated
with 50 dB global SNR. Kurtosis ratio can be defined by

KurtR = E
{

κŝ(k)
κy(k)

}
(33)

where κŝ(k) and κy(k) indicate the kurtosis of the
enhanced signal and the noisy signal at the kth frequency
bin, respectively. They are defined as follows:

κŝ(k) =

M∑
m=1

∣∣∣Ŝs(k,m)V (k,m)

∣∣∣
4

{ M∑
m=1

∣∣∣Ŝs(k,m)V (k,m)

∣∣∣
2
}2 − 2 (34)

and

κy(k) =

M∑
m=1

|Y (k,m)V (k,m)|4
{ M∑
m=1

|Y (k,m)V (k,m)|2
}2 − 2. (35)

We proposed an evaluation method to measure the
capability of the speech enhancement technique for pre-
serving more weak speech components, referred to as
the modified Hamming distance. It is determined by the
difference of the time-frequency points detected using
VAD decision [41] applied on the clean speech signal
and the estimated speech signal. The detection of the
VAD decisions for the noisy speech signal and estimated
speech signal was performed only based on full-bandVAD
decisions for clean speech frames. The rationale for devel-
oping this new measure is that the result is amplitude
invariant, which is important when measuring speech
components. Those speech components otherwise would
be overshadowed by strong amplitude components. The
modified Hamming distance measure is calculated as

HD = 2
KM

M∑
m=1

K/2∑
k=1

(
D̂(k,m) ⊕ D(k,m)

)
. (36)

where ⊕ performs a logical exclusive OR operation that
returns output containing elements set to either logical 1
(true) or logical 0 (false). Here, D(k,m) denotes the voice
activity detection of the clean signal and D̂(k,m) denotes
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the VAD of the estimated speech signal conditioned on
clean speech detected, which is computed initially by test-
ing each sub-band independently for speech activity using
the decision device and then analyzed by further logic
to reduce false alarms. A lower HD score indicates more
speech components are preserved.
The second category of evaluations is based on subjec-

tive listening tests, which are considered more accurate
and reliable [42]. For the subjective listening test, 10 sub-
jects (5 males and 5 females) were recruited to compare
and rate the estimated speech signals, the noisy signals,
and the clean speech signals under different SNR con-
ditions. Three different utterances were concatenated to
be used for this test. They were corrupted with differ-
ent sources of noise at 10 dB SNR. In this paper, we used
pink noise source which is a shaped and filtered version of
the white noise, and babble noise source that represents a
group of people speaking in a canteen. The listening test
was performed in a quiet office room using a DT-880 Bey-
erdynamic headphones. A laptop was connected through
the USB interface to the headphones via a Topping VX-
1 amplifier to provide good quality audio and consistent
sound level. The sound clips were embedded in a Pow-
erPoint document, which was also used for recording the
results. The listeners were required to listen to the sen-
tences enhanced by the different methods (DD,MDD, and
the proposed method) and rated them on a scale from 1
to 5 by steps of 1. This rating takes into account three
criteria: speech quality, background noise, and the musi-
cal noise levels [3] and [7]. The ranking instruction can
be found in Table 1, which describes the scale of the cri-
teria used in the listening test. This methodology helps
to reduce the listeners uncertainty in rating which speech
enhancement method is better in terms of the aforemen-
tioned criteria and referce to the clean speech signals and
the noisy signals.

6 Experimental results and discussion
6.1 Experimental setup
In this section, extensive experiments were conducted to
evaluate the performance of the proposed approach in dif-
ferent scenarios. First, the performance of the proposed
method was compared to the performances of the DD
approach [31], the MDD approach [7], and the TSNR
approach [21]. Second, we demonstrated the robustness of
the proposed a priori SNR estimator by employing differ-
ent gain functions. The speech sequences and noise were
extracted from the NOISEUS and NOISEX databases,
respectively [3]. In this work, 30 speech sentences were
used (15 male speakers and 15 female speakers). Four dif-
ferent background noise types employed, which include
pink noise, F16 Cockpit noise, factory noise, and babble
noise. The noisy signal was obtained by combining the
speech sequences with background noise at input SNRs of

Table 1 Scale description of the listening test criteria [43]

Rating Description

Speech

5 Not degraded

4 Little degraded

3 Somewhat degraded

2 Fairly degraded

1 Very degraded

Background noise

5 Not noticeable

4 Somewhat noticeable

3 Noticeable but not intrusive

2 Fairly conspicuous, somewhat intrusive

1 Very conspicuous, very intrusive

Musical noise

5 Not noticeable

4 Somewhat noticeable

3 Noticeable but not intrusive

2 Fairly conspicuous, somewhat intrusive

1 Very conspicuous, very intrusive

0, 5, and 10 dB. All the sequences had been re-sampled
to fs = 8000 Hz. The values of the a priori SNR estima-
tions had a floor (ξ0 = −25 dB). In order to limit the noise
reduction, we employed a noise residual floor ε = −20 dB.
For the TSNR approach, by using the DD approach to

estimate the a priori SNR in the first step, we computed
the gain function by using WF as in Eq. (6). In the second
step, we used different gain functions to enhance the noisy
speech signal. A minimum mean-square error (MMSE)
noise power estimator based on the speech presence prob-
ability [44] was employed to estimate the noise PSD for
all the a priori SNR estimators, starting with a noise only
period of 1 s. The value of the smoothing constant in
Eq. (17) was chosen as αy = 0.3. Three different STFT
analysis window cases had been considered for the evalu-
ation of the proposed a priori SNR estimation method as
shown in Table 2.

6.2 Case 1
Consider STFT analysis window with length K = 256
(32 ms) and a frame rate of R = 128 (50% overlap) with
square-root Hanning window [7].

Table 2 Smoothing parameters of the a priori SNR estimation for
different STFT analysis specifications

Case Window length K Window overlap β β0

Case 1 256 50% 0.960 0.963

Case 2 256 75% 0.980 0.983

Case 3 512 50% 0.922 0.925
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Based on these values, the frequency bins of the noisy
spectrum were then grouped into I = 17 critical bands
as shown in Eq. (4). The fixed weighting constants for DD
and MDD approaches were chosen as β = 0.96 as shown
in Table 2. The time averaging constant ts is calculated
as 0.391 s, by using Eq. (15) and STFT analysis param-
eters. As discussed in Section 4, the level γu in Eq. (20)
for the adaptive smoothing factor is chosen according to
the noise characteristics. As such, for pink noise, white
noise, and factory noise, an adaptive smoothing factor is
obtained with γu = 9 dB, resulting in σ = −1.28 and ρ =
5.496. For highly varying background noise such as bab-
ble noise, the adaptive smoothing factor is obtained with
γu = 15 dB resulting in σ = −0.290 and ρ = 20.831 to
keep the weighting factor close to 1 during noise frames,
which helps to increase the robustness of the a priori SNR
estimation against the SNR fluctuations.

6.2.1 Evaluation of a priori SNR estimation
Figure 4 demonstrates the behavior of the DD, the MDD,
the TSNR, and the proposed a priori SNR estimators at 10
dB input SNR and under pink, factory, and babble back-
ground noise conditions, respectively. Speech enhance-
ment is performed by using a WF [25] as shown in the
subfigures on the left side and MMSE- LSA [17] as shown
in the subfigures on the right side. It is clearly visible that
during noise-only periods where the a posteriori SNR is
sufficiently low, the DD, the MDD, and the TSNR meth-
ods represent a smoothed version of the a posteriori SNR.
The proposed method has identical behavior as DD and
MDD since β̂ is very close to 1, which is aligned with
Eq. (20). This explains the ability of the proposed method
to eliminate the musical noise. During the speech onset,
the proposed a priori SNR estimation with different gain
functions responds more quickly to abrupt changes in the
a posteriori SNRwhen compared to the other a priori SNR
estimators. In terms of tracking ability, in pink and factory
noise cases, it can be observed that the DD, the MDD, and
the TSNR a priori SNR estimations follow the a posteriori
SNRwith a delay in the speech onset frames, which results
in a speech distortion, whereas the proposed a priori SNR
estimation reduces the delay and preserves speech com-
ponents. For babble noise case, the MDD, the TSNR, and
the proposed methods achieve slightly higher adapting
speed than the DD approach during speech transitions.
Furthermore, we calculate mean square error (MSE)

between the smoothed version of the true a priori SNR
and the aforementioned estimation methods as depicted
in Table 3. The results show the averageMSE over the total
number of frames and frequency bins. It can be clearly
seen that the proposed estimator has the lowest estima-
tion error compared to the DD, the MDD, and the TSNR
estimators. Hence, the proposed a priori SNR estimator
results in less estimation errors.

6.2.2 Objective results
The performance of the proposed a priori SNR estimation
method is evaluated and compared to the performance
of different a priori SNR estimators such as the DD, the
MDD, and the TSNR methods for different noise types
and under various SNR conditions. The clean speech is
corrupted by pink, F16 cockpit, factory, and babble noise
at 0, 5, and 10 dB input SNRs.
Tables 4, 5, 6, and 7 show the mean objective results

for the stationary background noise case (pink), and
non-stationary background noise cases (F16 cockpit, fac-
tory, and babble), respectively, with the DD, the MDD,
the TSNR, and the proposed a priori SNR estima-
tion methods combined with WF or MMSE-LSA gain
functions.
The improvement in terms of speech quality of the

proposed method is affirmed by the perceptual evalua-
tion of speech quality PESQ measures. The proposed a
priori SNR estimator outperforms the aforemention esti-
mators in terms of speech quality, indicated by higher
PESQ measures as depicted in Tables 4, 5, and 6. In the
babble noise case, PESQ measures reveal that the pro-
posed estimator achieves significantly better results than
the TSNR method and approximately the same speech
quality improvement as the MDD approach when com-
bined with MMSE-LSA gain function. However, in WF
gain function case, all a priori SNR estimators achieve
approximately the same results.
The Kurtosis ratio results show the ability of the

proposed method to maintain the advantage of DD
and MDD methods in reducing the musical noise.
Under different types of noise and SNR conditions,
the proposed a priori SNR estimation method deliv-
ers lower Kurtosis ratio scores than the conventional
DD approach. Although the TSNR method combined
with the WF gain function achieves lower Kurtosis ratio
compared to other estimators, it prones to generate
more musical noise when combined with the MMSE-
LSA gain function. This indicates that the performance
of the TSNR method is not steady with different gain
functions.
Beside PESQ and Kurtosis ratio measures, we also eval-

uate the speech preservation performance of the different
a priori SNR estimation methods. For WF gain function
case, the HD measure results indicate that the proposed
method has slightly lower HD scores than the compared
methods. For MMSE-LSA gain function, although results
show that the proposed method achieves lower HD scores
than the MMD and TSNR methods, it has slightly higher
scores than the DD approach especially for babble noise
case.
Moreover, the results show that the proposed method

achieves better noise reduction as it outperforms the
conventional DD, MDD, and TSNR methods in terms of
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Fig. 4 Comparison of the a priori SNR estimation over a short-time period between the true a priori SNR ξ (black solid line with a marker), ML a priori
SNR estimate (green dashed line), ξ̂DD (blue solid line), ξ̂MDD (cyan dot solid line), ξ̂TSNR (magenta solid line) and ξ̂prop (red solid line with a marker), at
9th critical band and 10 dB SNR under different background noise: 1st row for pink noise, 2nd row for factory noise, and last row for babble noise
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Table 3 Mean square error comparison of different a priori SNR
estimation methods for different noise types

Noise type DD MDD TSNR Proposed

Pink 32.18 30.48 32.09 30.16

Factory 48.53 47.36 47.50 47.20

Babble 41.19 40.46 40.93 40.33

Bold values denote the best performance

segmental SNR for all noise types and SNR conditions. In
addition to the qualitymeasure of the speech components,
we further evaluate the ability of the a priori SNR estima-
tion methods in maintaining soft speech components and
noise reduction by utilizing the segmental speech SNR
and the segmental noise SNR. Figures 5 and 6 show the
SNRseg,sp and SNRseg,noise scores for babble and factory
noise and under varying input SNRs. It can be clearly
seen that the proposed a priori SNR estimation method
in general has better speech preservation capability as
indicated by the higher scores of SNRseg,sp compared to
the DD approach especially at high SNR (>10 dB), due
to its improving tracking speed to abrupt changes in the
speech onset. In terms of noise reduction performance,
the results reveal that all the a priori SNR estimators
achieve approximately same scores in babble noise case.

6.2.3 Spectrograms
Figures 7 and 8 highlight the ability of the proposed a
priori SNR estimator in preserving more speech com-
ponents than the decision-directed (DD) and modified
decision-directed (MDD) a priori SNR estimators for dif-
ferent noise types. The clean speech signal is corrupted
by either pink noise or factory noise with a 10 dB SNR
condition. It can be observed that the proposed a priori
SNR estimator preserves more speech components than
DD and MDD a priori SNR estimators.

6.3 Case 2
Consider the case of STFT analysis window with length
K = 256 (32 ms) and a frame rate R = 64 (75% overlap)
together with Hamming window.

Based on [31], the fixed weighting constants for DD and
MDD approaches used as β = 0.98 as shown in Table 2,
which corresponds to a time averaging constant ts =0.396
s. Accordingly, the adaptive smoothing factor for factory
noise is obtained with γu = 9 dB, resulting in σ = −1.391
and ρ = 5.159.
Table 8 shows the mean objective results for fac-

tory noise at different input SNRs. According to the
speech quality results, the proposed method has bet-
ter performance in terms of higher PESQ scores for
evaluated gain functions. In addition, it can be clearly
observed that the proposed method results in bet-
ter noise reduction compared to the other a priori
SNR estimators, indicated by higher segmental SNR
scores. In terms of speech preservation, results of HD
measure reveal that the proposed method has slightly
better scores than the other a priori SNR estima-
tion methods especially when combined with WF gain
function.
On the other hand, results demonstrate that the pro-

posed method always maintain the advantage of the DD
approach in reducing the musical noise generation. For
low SNR (< 5 dB) with WF gain function, the pro-
posed method has slightly higher KurtR scores than the
DD approach due to its sensitivity towards noise variance.
In theMMSE-LSA gain function case, the TSNR approach
has the highest KurtR scores for varying input SNRs when
compared to the DD, the MDD, and the proposed a priori
SNR estimators.

6.4 Case 3
Consider STFT analysis window with length K = 512
(64 ms) and a frame rate of R = 256 (50% overlap) with
square-root Hanning window [7].
In this case, the fixed weighting constant for DD and

MDD approaches is chosen as β = 0.922 as shown in
Table 2. Accordingly, the adaptive smoothing factor for
pink noise is obtained with γu = 9 dB, resulting in
σ = −1.168 and ρ = 5.902. For babble noise with γu = 15
dB , the parameters of the smoothing factor are as follows:
σ = −0.264 and ρ = 22.620.

Table 4 Mean objective results for pink noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop

WF 0 1.887 1.874 1.879 1.965 0.253 0.257 0.057 0.662 0.405 0.417 0.407 0.403 1.030 1.014 1.013 1.026

5 2.355 2.344 2.327 2.399 2.671 2.710 2.948 3.379 0.389 0.394 0.399 0.381 1.173 1.067 1.057 1.102

10 2.735 2.725 2.696 2.782 5.616 5.683 6.037 6.388 0.364 0.372 0.375 0.326 1.554 1.231 1.208 1.339

LSA 0 1.978 1.969 1.768 2.043 0.184 0.364 −0.399 0.387 0.399 0.397 0.395 0.390 1.245 1.052 3.724 1.077

5 2.405 2.437 2.266 2.497 2.608 2.899 2.532 3.396 0.360 0.381 0.369 0.361 1.795 1.141 3.799 1.200

10 2.762 2.805 2.670 2.869 5.637 5.966 5.837 6.720 0.320 0.354 0.350 0.343 2.708 1.367 3.941 1.512

Bold values denote the best performance
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Table 5 Mean objective results for F16 Cockpit noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop

WF 0 1.893 1.883 1.888 1.966 −0.233 −0.181 −0.037 0.363 0.404 0.406 0.407 0.400 1.031 1.010 1.011 1.022

5 2.338 2.330 2.318 2.384 2.509 2.581 2.746 3.132 0.389 0.390 0.392 0.382 1.200 1.066 1.056 1.102

10 2.714 2.705 2.687 2.755 5.392 5.488 5.687 6.112 0.356 0.366 0.376 0.341 1.626 1.226 1.209 1.355

LSA 0 1.969 1.970 1.813 2.038 0.033 0.211 −0.381 0.564 0.382 0.397 0.387 0.384 1.303 1.056 3.559 1.083

5 2.376 2.414 2.268 2.496 2.361 2.660 2.348 3.132 0.351 0.376 0.365 0.355 1.958 1.154 3.845 1.218

10 2.732 2.798 2.654 2.831 5.223 5.576 5.462 6.134 0.309 0.346 0.342 0.338 2.839 1.375 3.996 1.545

Bold values denote the best performance

Table 6 Mean objective results for factory noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop

WF 0 2.447 2.441 2.423 2.489 1.564 1.589 1.792 2.178 0.368 0.377 0.379 0.356 1.666 1.251 1.211 1.402

5 2.795 2.791 2.772 2.830 4.444 4.499 4.843 5.206 0.331 0.344 0.345 0.328 2.429 1.654 1.582 1.970

10 3.170 3.204 3.180 3.220 7.586 7.660 7.965 8.368 0.299 0.303 0.316 0.283 3.475 2.385 2.203 2.979

LSA 0 2.484 2.529 2.388 2.565 1.388 1.670 1.565 2.117 0.320 0.356 0.355 0.344 2.712 1.499 2.854 1.704

5 2.803 2.880 2.754 2.902 4.312 4.645 4.665 5.127 0.273 0.319 0.323 0.299 3.416 1.942 3.337 2.299

10 3.091 3.257 3.114 3.260 7.564 7.874 7.833 8.374 0.227 0.278 0.285 0.259 3.816 2.624 3.914 3.159

Bold values denote the best performance

Table 7 Mean objective results for babble noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop

WF 0 1.934 1.931 1.922 1.936 −0.325 −0.305 −0.650 −0.266 0.398 0.401 0.402 0.400 1.257 1.181 1.171 1.192

5 2.280 2.285 2.273 2.285 1.628 1.679 1.795 1.887 0.374 0.381 0.382 0.379 1.509 1.273 1.232 1.293

10 2.598 2.605 2.593 2.670 4.350 4.459 4.664 4.687 0.338 0.350 0.351 0.347 2.056 1.576 1.479 1.612

LSA 0 1.966 1.979 1.842 1.981 −0.426 −0.273 −0.963 −0.243 0.361 0.383 0.382 0.380 1.620 1.408 2.205 1.423

5 2.290 2.332 2.199 2.335 1.528 1.788 1.490 1.870 0.326 0.358 0.360 0.357 2.041 1.539 2.252 1.556

10 2.611 2.673 2.561 2.674 4.288 4.636 4.473 4.796 0.281 0.323 0.322 0.321 2.504 1.819 2.575 1.849

Bold values denote the best performance
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Fig. 5 Speech distortion measure for noisy speech corrupted with different noise types and under different SNR levels enhanced by Wiener filter
speech estimation technique

6.4.1 Objective results
The performance of the proposed a priori SNR estimation
method is evaluated and compared to the performance of
the DD and the MDD methods for different noise types
and under various SNR conditions. The clean speech is
corrupted by pink and babble noise at 0, 5, and 10 dB input
SNRs.
Tables 9 and 10 show the mean objective results for

the stationary background noise case (pink) and non-
stationary background noise case (babble), respectively,
with the DD, the MDD, and the proposed a priori SNR

estimation methods combined with WF or MMSE-LSA
gain functions.
From the PESQ measures, it can be clearly noticed

that the proposed a priori SNR estimator results in
better speech quality than the conventional DD and
the MDD approaches, indicated by higher PESQ mea-
sures. However, in babble noise case, PESQ mea-
sures reveal that the proposed estimator achieves
approximately the same speech quality improvement as
MDD approach and better than the conventional DD
approach.

Fig. 6 Noise reduction measure for noisy speech corrupted with different noise types and under different SNR levels enhanced by Wiener filter
speech estimation technique
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Fig. 7 Speech spectrograms for noisy speech corrupted with pink noise at 10 dB enhanced by Wiener filter speech estimation technique

In addition, the proposed method achieves better noise
reduction as it outperforms the conventional DD and
MDD approaches in terms of segmental SNR for all noise
types and SNR conditions.
In terms of speech preservation performance, HD

measure results indicate that the proposed method has
slightly lower scores than the conventional DD and MDD
approaches. In babble noise case, although it achieves bet-
ter results than MDD approach, it has slightly higher HD
measures than DD approach.
Moreover, Kurtosis ratio results show the ability of the

proposed method to maintain the advantage of DD and
MDDmethods in reducing the musical noise under differ-
ent types of noise and SNR conditions.

6.4.2 Evaluation of listening tests
Tables 11 and 12 demonstrate the average results of the
listening test in terms of speech quality, background noise,

musical noise, and the overall performance of each esti-
mation method by determining the mean of the rating
scores. Ten normal hearing participants in the age of (20–
35) took part in this test. They were asked to rate speech
signals estimated by three different a priori SNR estima-
tors in terms of speech, background noise, and musical
noise as explained in the previous section. The speech and
background results show that the proposed method out-
performed the DD and the MDD methods, which aligned
with the objective results of PESQ and segmental SNR.
Moreover, for the musical noise ratings, the proposed
method combined with different gain functions and dif-
ferent background noise scored approximately the same
as the MDD method, which is slightly better than the
DDmethod. This means that the proposed method main-
tains the advantage of the DD approach in generating less
musical noise which can be observed from the objective
measurement Kurtosis ratio.
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Fig. 8 Speech spectrograms for noisy speech corrupted with factory noise at 10 dB enhanced by WF speech estimation technique

Furthermore, the overall results of the 10 participants
have been evaluated using a statistical analysis to assess
the differences between the ratings obtained for each a
priori SNR estimation method in terms of overall quality.
For this purpose, we used analysis of variance (ANOVA)
to indicate a significant difference between scores if the
level of significance is smaller than 0.05. A significant

difference between scores has been noted when the
MMSE-LSA was combined with all the different a priori
SNR estimation methods under different noise conditions
as shown in Table 13. Moreover, a significant difference
noted when the WF was employed with all the different
a priori SNR estimation methods in pink noise case. The
90% confidence interval (CI) for the overall scores of the

Table 8 Mean objective results with 75% overlap for factory noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop DD MDD TSNR Prop

WF 0 2.356 2.354 2.341 2.398 1.201 1.260 1.358 1.652 0.357 0.375 0.355 0.348 1.075 1.064 1.0621 1.081

5 2.693 2.687 2.670 2.738 4.035 4.096 4.182 4.504 0.339 0.340 0.339 0.330 1.178 1.138 1.137 1.158

10 3.099 3.091 3.066 3.118 7.089 7.159 7.250 7.655 0.314 0.317 0.326 0.300 1.483 1.340 1.327 1.435

LSA 0 2.392 2.406 2.238 2.452 1.169 1.374 1.067 1.674 0.345 0.352 0.362 0.344 1.153 1.079 1.383 1.112

5 2.722 2.749 2.641 2.799 4.029 4.237 3.970 4.556 0.323 0.332 0.315 0.320 1.401 1.165 1.677 1.231

10 3.067 3.144 3.023 3.169 7.142 7.335 7.149 7.747 0.287 0.305 0.297 0.296 1.917 1.402 1950 1.507

Bold values denote the best performance
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Table 9 Mean objective results for pink noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.960 1.944 2.004 −0.202 −0.138 0.326 0.441 0.451 0.401 1.064 1.009 1.028

5 2.401 2.412 2.462 2.530 2.662 3.148 0.399 0.395 0.358 1.253 1.070 1.103

10 2.748 2.776 2.799 5.461 5.606 6.085 0.348 0.363 0.325 1.660 1.235 1.436

LSA 0 2.018 2.054 2.099 −0.291 0.149 0.505 0.371 0.396 0.328 1.416 1.073 1.096

5 2.388 2.497 2.513 2.334 2.992 3.344 0.326 0.368 0.318 1.857 1.181 1.242

10 2.715 2.861 2.870 5.378 5.948 6.346 0.271 0.329 0.316 2.331 1.406 1.528

Bold values denote the best performance

Table 10 Mean objective results for babble noise

Gain SNR
PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.971 1.978 1.998 −0.775 −0.693 −0.604 0.392 0.401 0.400 1.264 1.148 1.152

5 2.289 2.316 2.328 1.537 1.665 1.723 0.354 0.396 0.369 1.531 1.279 1.287

10 2.603 2.632 2.694 4.229 4.411 4.523 0.303 0.323 0.321 1.902 1.534 1.554

LSA 0 1.954 2.009 2.011 −1.007 −0.604 −0.570 0.319 0.362 0.360 1.481 1.344 1.347

5 2.253 2.344 2.399 1.251 1.801 1.864 0.271 0.328 0.309 1.715 1.450 1.456

10 2.572 2.669 2.696 4.032 4.658 4.743 0.217 0.282 0.208 1.936 1.634 1.648

Bold values denote the best performance

Table 11 Listening test results for pink noise at 10 dB input SNR

Gain Categories
Pink noise

DD MDD Prop

WF Speech 3.4 3.8 3.8

Background noise 3.1 3.7 3.8

Musical noise 4.5 4.8 4.9

Over all 3.7 4.1 4.2

LSA Speech 3.2 4.2 4.3

Background noise 3.1 3.8 4.0

Musical noise 4.1 4.6 4.5

Over all 3.5 4.2 4.3

Table 12 Listening test results for babble noise at 10 dB input SNR

Gain Categories
Babble noise

DD MDD Prop

WF Speech 3.6 3.9 4.1

Background noise 3.2 3.5 3.6

Musical noise 4.0 4.2 4.4

Over all 3.6 3.9 4.0

LSA Speech 3.2 4.0 4.2

Background noise 2.8 3.5 3.8

Musical noise 3.9 4.4 4.5

Over all 3.3 4.0 4.2

Table 13 Statistical analysis for subjective listening test under different noise conditions

Noise Gain function p-Value
DD MDD Proposed

Lower Upper Lower Upper Lower Upper

Pink
WF 0.041 3.51 3.81 4.03 4.17 4.12 4.26

LSA 0.001 3.24 3.68 4.14 4.27 4.27 4.33

Babble
WF 0.060 3.49 3.63 3.77 3.92 3.91 4.11

LSA 0.001 3.11 3.45 3.86 4.06 4.08 4.25
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subjective listening test provides further statistic analy-
sis for performance comparison among different speech
enhancement techniques and under varying noise types
as depicted in Table 13. It is noted that the 90% CI of
the proposed a priori SNR estimation method combined
with MMSE-LSA gain function does not overlap with the
other compared methods under varying noise conditions.
Moreover, the 90% CI of the proposed method with dif-
ferent gain functions does not overlap with DD approach.
This means that the proposed method statistically outper-
forms DD approach in different noise cases. Hence, the
proposed method has better performance than the other
methods in terms of overall quality.

6.5 Evaluation of the effect of the bark scale frequency
warping on the noise characteristics

An experiment is conducted to prove the efficiency of
the proposed bark scale-based frequency warping method
in eliminating the musical noise. For this experiment,
we have utilized the normal (Gaussian) distribution [45]
and the Weibull distribution [46] is used to compare the
noise distribution before and after the frequency warping.
Figure 9 shows comparisons between the distribution of
different types of noise before frequency warping at fre-
quency 546.87 Hz and after the frequency warping at the
6th critical band. In the pink and factory noise cases, it
can be clearly seen that the noise histograms fit well to a

Fig. 9 Evaluation of bark scale-based frequency warping at the 6th critical band under different background noise: 1st row for pink noise, 2nd row
for factory noise, and last row for babble noise
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Table 14 Noise variance comparison before and after frequency
warping and for different noise types

Noise type Variance before frequency
warping

Variance after frequency
warping

Pink 0.1077 0.0387

Factory 0.0820 0.0343

Babble 0.2535 0.1590

Gaussian distribution, which is the common assumption
inmost noise estimationmethods. This can help to reduce
the musical noise by reducing the bias and provide a more
precise estimate. Whereas in babble noise case, although
a Gaussian distribution does not really fit the noise dis-
tribution after the frequency warping, it becomes more
concentrated with a shorter tail compared to the noise
distribution before the frequency warping.
In order to highlight the ability of the bark scale based

frequency warping in reducing the effect of the musi-
cal noise, a variance comparison of the noise PDF before
and after the frequency warping is presented for different
noise types as shown in Table 14. It can be clearly observed
that the bark scale based frequency warping has the abil-
ity to significantly reduce the noise variance. This helps to
reduce the musical noise effect and make it unnoticeable.

6.6 Evaluate the benefit of the critical band processing
In order to demonstrate the benefit of using critical band
processing as a preprocessor to the speech enhancement
framework, we present a comparison of objective mea-
surement before and after applying the critical band pro-
cessing with the proposed a priori SNR estimationmethod
combined with different gain functions. Table 15 presents
the performance comparison in terms of KurtR and PESQ
under different input SNRs. Objective results reveal that
CB processing significantly outperforms STFT in reduc-
ing the musical noise with the lowest scores of KurtR
under different input SNRs. This is due to its ability in
reducing the noise variance. In terms of speech quality,
PESQ scores indicate improved speech quality for the CB
processing in low SNR, while in high SNR, it approxi-
mately achieved the same reults as STFT.

Table 15 Objective results comparison as a function of input
SNR for babble noise

Gain function Input SNR (dB)
KurtR PESQ

CB STFT CB STFT

WF 0 1.192 3.708 1.936 1.884

5 1.293 3.811 2.285 2.297

10 1.612 3.874 2.670 2.602

LSA 0 1.423 3.231 1.981 1.908

5 1.556 3.326 2.335 2.308

10 1.849 3.399 2.674 2.694

7 Conclusions and future work
In this paper, an adaptive a priori SNR estimator has been
extended and evaluated for different speech enhancement
gain functions. As a basis for the adaptation, the a priori
SNR estimation employs a model of speech absence prob-
ability based on a sigmoid function. The sigmoid function
can be tuned to provide a trade-off between the speech
onset sensitivity and the annoying noise artifacts also
known as musical noise. Moreover, we have developed an
objective measurement to evaluate the capability of the
speech enhancement technique in preserving soft speech
components known as modified hamming distance. In
combination with different gain functions including the
WF and the MMSE-LSA, the objective results show that
the proposed method outperforms the conventional DD
and MDD approaches with higher scores in PESQ and
SNRseg. Furthermore, the proposed bark scale-based fre-
quency warping helps to reduce the effect of the musical
noise and make it unnoticeable because of the significant
reduction in the noise variance, which helps in the noise
estimation needed for the SNR estimation. The obtained
objective evaluation results are supported by the averaged
results from the subjective listening tests, as the proposed
method was preferred by the listeners. Future work will
include different choices of filter banks and also a possible
low delay implementation.
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