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Abstract

Phonetic information is one of the most essential components of a speech signal, playing an important role for many
speech processing tasks. However, it is difficult to integrate phonetic information into speaker verification systems
since it occurs primarily at the frame level while speaker characteristics typically reside at the segment level. In deep
neural network-based speaker verification, existing methods only apply phonetic information to the frame-wise
trained speaker embeddings. To improve this weakness, this paper proposes phonetic adaptation and hybrid multi-
task learning and further combines these into c-vector and simplified c-vector architectures. Experiments on National
Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) 2010 show that the four proposed
speaker embeddings achieve better performance than the baseline. The c-vector system performs the best, providing
over 30% and 15% relative improvements in equal error rate (EER) for the core-extended and 10 s–10 s conditions,
respectively. On the NIST SRE 2016, 2018, and VoxCeleb datasets, the proposed c-vector approach improves the
performance even when there is a language mismatch within the training sets or between the training and evaluation
sets. Extensive experimental results demonstrate the effectiveness and robustness of the proposed methods.

Keywords: Speaker verification, Deep neural networks, Speaker embedding, Phonetic adaptation, Multi-task learning,
C-vector

1 Introduction
Automatic speaker verification (ASV) has made great
strides in the last two decades, moving from traditional
Gaussian mixture model (GMM) approaches [1] to the
i-vector framework [2] and neural network-based speaker
embedding [3]. Based on Bayesian factor analysis, the
i-vector framework converts a variable-length speech
utterance into a fixed-length vector representing speaker
characteristics. A variety of backend classifiers can
be applied to suppress session variability and increase
speaker discrimination. Even though the i-vector
approach performed well in previous National Institute
of Standards and Technology (NIST) speaker recognition
evaluations (SREs), it is known to suffer from many
problems in practical applications. The i-vector is a
point estimate of the total variability factor, ignoring the
covariance [2, 4]. The performance of i-vector systems
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deteriorates dramatically when the utterance is short,
because this point estimate does not model the uncer-
tainty [5]. I-vectors are also vulnerable to language and
channel mismatch as shown in recent NIST SREs [6, 7].
Moreover, the performance of the i-vector model tends to
asymptote quickly as the amount of data increases, which
means that it is unable to fully exploit the availability of
large-scale training data [3].
Deep neural networks (DNNs) have been used for

speech processing tasks for a number of years [8–10].
Recently, neural network-based speaker embedding has
drawn much attention in the speaker verification commu-
nity. Motivated by the i-vector concept, speaker embed-
ding encodes the speaker characteristics of an utterance
into a fixed-length vector using neural networks. The first
such method was the d-vector approach, initially pro-
posed for text-dependent speaker verification [11]. The
network was trained frame-by-frame and the d-vector was
extracted by averaging all the activations of a selected
hidden layer from an utterance. This network architec-
ture was extended to text-independent verification in [12].
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Critics of this approach argue that the frame-wise train-
ing is not a good option since speaker information tends
to reside within long-term segments [13, 14].
To address this problem, recurrent neural networks

(RNNs) and convolutional neural networks (CNNs) were
then introduced to directly capture segment information
[13, 15, 16]. Network architectures and training strategies
used in image and face recognitions have been adapted
to speaker verification [17–19]. By using approaches such
as statistics pooling [3], self attention [14] and learn-
able dictionary encoding (LDE) [20], neural networks
are able to extract meaningful low-dimensional vectors
from utterances. More effective loss functions have also
been proposed to further encourage discriminative learn-
ing of speaker embeddings [21–24]. Speaker embedding
has shown state-of-the-art performance comparative to
i-vectors in many conditions. Speaker embedding also
benefits from its ability to utilize big data [25], which
is valuable in commercial applications. Based on these
advantages, speaker embedding is quickly replacing the
i-vector approach as the next generation of speaker verifi-
cation technology.
Of the many components of a speech signal, speaker

traits, and phonetic content, representingwho spoke what,
are two predominant factors for human communication.
The mixing of speaker traits and phonetic contents cre-
ates challenges for speaker verification. Although speaker
embedding has achieved superior performance, most cur-
rent systems still do not take phonetic content into
account. However, in many cases, networks cannot sep-
arate speaker information from the intermingled signal
and different techniques should be applied. For example,
in automatic speech recognition (ASR), speaker adapta-
tion is used to reduce the impact of the speaker factor to
improve accuracy [26]. In a similar way, it should be pos-
sible to reduce the impact of phonetic information on the
speaker embedding.
This is a difficult task, however, because phonetic infor-

mation is dominant at the frame level while speaker
information is typically extracted at the segment level. To
overcome this level mismatch problem, we propose several
methods in this paper to explicitly introduce frame-
level phonetic information into the segment-level speaker
embedding extraction. The first of these is phonetic adap-
tation. Similarly to speaker adaptation in ASR, phonetic
adaptation uses phonetically rich vectors to remove the
influence of phonetic content. This enables the network
to focus on speaker traits which are insensitive to content
variation. The second approach uses hybrid multi-task
learning to extract the information shared between the
speaker and phonetic components. This makes the net-
work more robust against noise and improves the model
generalization. Since these two approaches are designed
from different perspectives, the phonetic adaptation and

the hybrid multi-task learning can be combined into a
novel c-vector (phonetic information combined vector).
A simplified c-vector approach is further presented to
reduce the model size.
This paper is an extension of our previous work pre-

sented in [27]. The new contributions of this paper are as
follows:

• A new c-vector approach has been proposed,
combining phonetic adaptation and hybrid multi-task
learning. A simplified c-vector architecture has also
been presented.

• Extensive experiments on 8-kHz NIST SREs and
16-kHz VoxCeleb [19, 28] have been conducted.
Severe language mismatch has been introduced into
the experiments to assess the generalization of the
proposed approaches.

• Data augmentation has been added and a better
baseline than that reported in our previous work [27]
has been built. In addition, larger datasets have been
used to train the phonetic-related models in this
paper. These modifications evaluate the effectiveness
of the proposed approaches when more training data
is available.

The experiments in this paper demonstrate that our
proposed systems significantly outperform conventional
speaker embedding. The best results are obtained with the
c-vector approach. On the NIST SRE 2010 dataset, the
resulting relative improvement in equal error rate (EER)
is over 30% for the core-extended condition and 15% for
the 10 s-10 s condition. Results on NIST SRE 2016, 2018,
and VoxCeleb further validate the effectiveness of our
methods in the language mismatched condition.
The outline of the paper is as follows. The existing lit-

erature about the use of phonetic information in speaker
verification is briefly reviewed in Section 2. Section 3
describes the baseline system, and Section 4 presents our
proposed approaches to introduce phonetic information
in the speaker embedding neural network. Our experi-
mental setup and results are given in Section 5. The last
section concludes the paper.

2 Phonetic information in speaker verification
From an acoustic perspective, speaker traits, phonetic
content and other components are intermingled through-
out the speech signal. How to separate the speaker
traits from speech content is the key problem in speaker
verification.
Gaussian mixture models have been successfully used in

speaker verification for several decades. In GMM-based
speaker verification, features are required to be softly
aligned to the corresponding Gaussian mixtures to com-
pute the sufficient statistics. This frame alignment plays
an important role in the GMM framework. To improve
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alignment accuracy, fine-grained GMMs were first pro-
posed to model individual phoneme groups [29, 30].
DNN acoustic models were later introduced to improve
the frame alignment in [31]. In the DNN approach, the
phonetic content is modeled by senones, which are sub-
phonetic classes in speech recognition. The posteriors on
these senones are estimated by DNNs and are then used
to compute the statistics for the i-vector modeling. This
model was extended in [32] where broader phonetic units
were investigated. These works showed that comparison
of speakers within the same phonetic category reduces the
impact of the phonetic variability. Bottleneck (BN) fea-
tures extracted from ASR acoustic models, which have
rich phonetic information, have also been used in many
approaches, with and without DNN-based alignment [33].
Overall, the i-vector approach based on DNN alignment
and BN features greatly outperforms conventional sys-
tems. The existing work in i-vector-based systems sug-
gests the importance of considering phonetic information
in speaker verification.
For neural network-based speaker embedding, the

d-vector network in [34] used the concatenation of raw
features and the outputs of an ASR network to repre-
sent phonetic information. In [35], conventional Mel-
frequency cepstral coefficients (MFCCs) were replaced by
ASR BN features to train the speaker embedding extrac-
tor. A collaborative joint training was presented in [36], in
which the speaker and speech recognition networks were
interconnected. Using an RNN architecture, the outputs
of one task were fed into another at the next time step.
This feedback enabled the speaker network to receive the
information from the speech recognition task.
Multi-task learning has also been investigated for

speaker verification. Multi-task learning has been shown
to be useful across many different tasks [37]. Speaker
traits and phonetic information, two key components of
speech, have been combined through the use of multi-
task networks. In [38], phonetically-related classification
was considered as a parallel task to the speaker classifi-
cation network. The extracted features were effective for
text-dependent speaker verification. The same idea has
been used in some other works as well [35]. The ratio-
nale is that by exploring the common information shared
between the speaker and phonetic components, multi-
task learning can prevent overfitting and improve model
generalization.
However, to the best of our knowledge, none of these

networks involving phonetic information consider the
level mismatch problem and can only be trained at the
frame level (i.e. in the d-vector style). This is not appli-
cable to state-of-the-art segment-level speaker embed-
dings. Another problem in current multi-task learning
for speaker verification is that most multi-task networks
share all hidden layers between the speaker and phonetic-

discriminant tasks, which is not ideal since this ignores the
fact that speaker traits and phonetic content are quite dif-
ferent and likely need several individual layers to extract
their own features. Therefore, it is necessary to propose
novel architectures to combine the phonetic information
with the speaker embedding.

3 The x-vector baseline
The baseline speaker embedding used in this paper is x-
vector [3]. X-vector is popular in the speaker verification
community and has been provided as the official sys-
tem on recent NIST SREs. The architecture is illustrated
in Fig. 1.
The x-vector network consists of frame-level and

segment-level sub-networks, connected by a statistics
pooling layer. The frame-level network can be seen as
a speaker feature extractor. Given the input sequence
�X(k) =[ �x(k)

1 , . . . , �x(k)
Tk

] from utterance k with Tk frames, the
frame-level network tries to transform the acoustic fea-
tures �x(k)

t into speaker-discriminant features �f (k)
t . A CNN

variant, time-delay neural network (TDNN) whose input
of each layer is the sliced outputs of the previous layer,
is used. We omit the index k for brevity, denoting the
frame-level network as

�ft = F
(�xt|�f

)
(1)

where F(·) denotes the feed-forward function and �f is
the parameters for frame-level network.

Fig. 1 The x-vector architecture. This architecture can be partitioned
into frame- and segment-level sub-networks
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Next, a statistics pooling layer aggregates the speaker
features �ft and concatenates the mean and standard devi-
ation as a segment-level representation �l.

�l =
[
�mT , �σT

]T
(2)

�m = 1
T

T∑

t=1

�ft (3)

�σ =
(
1
T

T∑

t=1
(�ft − �m)2

)1/2

(4)

Fully-connected layers with parameters�l are then imple-
mented as the segment-level network. The output of the
segment-level network is fed into a softmax layer and the
posterior P(i|k) of speaker i is calculated as

P(i|k) = softmax
(
F

(�l|�l
))

(5)

The x-vector network parameter � = {�f ,�l} is
trained by minimizing the cross entropy loss. After train-
ing, the pre-activation of a hidden layer at the segment-
level network is extracted as the speaker embedding.
The x-vector backend processing is similar to that of
i-vector. Mean normalization is first applied. Then, lin-
ear discriminant analysis (LDA) can be used to reduce the
dimension of the embedding and length normalization is
also performed [39]. Finally, probabilistic linear discrimi-
nant analysis (PLDA) scoring is introduced to generate the
verification scores.

4 Proposedmethods
In this section, we will describe our methods to tackle the
level mismatch problem and introduce frame-level pho-
netic information into the training and extraction of the
segment-level speaker embedding. Both phonetic adapta-
tion and hybrid multi-task learning are proposed, which
are then further combined into an integrated c-vector
network.

4.1 Phonetic adaptation
A pooling strategy is used in the speaker embedding neu-
ral networks to aggregate frame-level speaker features into
segment-level representations. Statistics pooling, which
concatenates the first- and second-order statistics (i.e., the
mean and standard deviation) as outputs, is applied in
the x-vector architecture. In speech signals, speaker fea-
tures are influenced by phonetic contents. To make the
pooling more effective, phonetic information should be
considered in the frame-level network.
Motivated by speaker adaptation as used in speech

recognition, we propose a phonetic adaptationmethod. In
speech recognition, a speaker code (e.g. i-vector) is used as
an auxiliary input to help the network reduce the impact

of speaker changes [26]. Similarly, phonetic adaptation
can be done by feeding phonetically rich vectors into the
x-vector network. With the phonetic vectors, the frame-
level network is able to learn the phonetic-dependent
transforms which is useful for the pooling layer.
In this paper, BN features extracted from an ASR acous-

tic model are selected as the phonetic vectors. As shown
in Fig. 2, a phonetic-discriminant ASR acoustic model
with parameters �a is appended to the original network.
The phonetic vector �pt is the activation extracted from a
hidden layer of the appended model.

�pt = F
(�xt|�′

a
)

(6)

where�′
a denotes the parameters of the sub-network used

to extract the phonetic vector. Since this sub-network is a
part of the ASR acoustic model, �′

a can be derived from
�a. The frame-level network then becomes

�ft = F
(�xt , �pt|�f

)
(7)

For initialization, an ASR acoustic model with a BN
layer is first pre-trained. The activations of the BN layer
are connected to the x-vector frame-level network as
phonetic vectors. The phonetic vectors can be extracted
before the training of the x-vector network. In this case,
the additional acoustic model is only used as a pho-
netic feature extractor. In our experiments, however, we
find that fine-tuning the acoustic model with a small
learning rate during the x-vector training improves the
performance. The unused layers in the acoustic model
are removed and the remaining part is updated with the
x-vector network. The fine-tuning makes the phonetic
vectors more adapted to the speaker verification task. The
procedure is described in Algorithm 1.

Algorithm 1 Training speaker embedding using phonetic
adaptation.
Require: α, the learning rate. c, the learning rate scaling

factor. m, the batch size. ns, the number of the training
steps.
Pre-train an ASR acoustic model �a. Derive the sub-
network �′

a from the pre-trained model.
for n = 1, . . . , ns do

Sample a mini-batch
{ �X(k), y(k)

}m

k=1
where �X(k) is the

feature sequence of utterance k and y(k) is the speaker
label.
L = 1

m
∑m

k=1 CrossEntropy
( �X(k), y(k)|�f ,�l,�′

a

)

�f ← �f − α · ∇�f L
�l ← �l − α · ∇�l L
�′

a ← �′
a − c · α · ∇�′

aL
end for
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Fig. 2 Phonetic adaptation using phonetic vectors. An additional frame-level ASR acoustic model with a BN layer is appended to the conventional
x-vector architecture. The phonetic vectors are extracted from the BN layer

Fig. 3 Hybrid multi-task learning. The phonetic-discriminant network shares layers with the frame-level part of the x-vector architecture
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4.2 Hybrid multi-task learning
Phonetic adaptation filters out the phonetic variability
by introducing auxiliary vectors. However, although the
speaker and phonetic components are different, they still
share some common information. Some factors, such as
formant, pitch trajectory, and spectral energy distribution,
are essential for both speaker traits and phonetic con-
tents. By using phonetic unit classification as a parallel
task, multi-task learning can discover more informative
features which are less sensitive to nuisance factors.
The conventional multi-task learning approach in

speaker verification suffers from a level mismatch prob-
lem, because it requires all the tasks to operate at the
same level. This only works for the frame-wise d-vector
and is not suitable for the x-vector training. To address
this, a hybrid multi-task learning framework is proposed
in this section. In this hybrid framework, only the frame-
level hidden layers in the x-vector network are shared with
the phonetic-discriminant task. This architecture is able
to process the frame-level phonetic information and the
segment-level speaker embedding at the same time.
Multi-task networks also often share all the layers

between different tasks. In our framework, the number of
shared layers is set to be a hyper-parameter. This hyper-
parameter controls the trade-off between the common
and individual information in the speaker and phonetic

tasks. The hybrid multi-task learning network is shown
in Fig. 3.
In Fig. 3, the frame-level network of the x-vector archi-

tecture is partitioned into a shared and a non-shared
parts whose parameters are �s and �ns, respectively.
The parameters of the remaining layers in the phonetic-
discriminant network are denoted as �p. The speaker
feature of the frame-level network is now

�ft = F
(�xt|�s,�ns

)
(8)

The training strategy of our multi-task framework is
similar to the multi-lingual acoustic model training [40].
The training data consists of speaker and phonetic exam-
ples. The speaker examples contain the reference speaker
labels for each utterance while the phonetic examples con-
tain the corresponding phonetic units for frames. The
transcriptions of the phonetic units are obtained by forced
alignment using a hidden Markov model (HMM). The
two tasks are trained alternately. At each step, we ran-
domly choose a mini-batch composed of the speaker
examples from the pooled training data with probability
ps = Ns/(Ns + Np) and select the phonetic mini-batch
otherwise. Here, Ns and Np are the number of remaining
speaker and phonetic examples. When the speaker exam-

Fig. 4 The c-vector architecture. The x-vector networks using phonetic adaptation and multi-task learning are combined into a unified architecture
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ples are selected, the parameters {�s,�ns,�l} are updated
and {�s,�p} are trained when the phonetic examples are
used. It is possible to set different learning rates to bal-
ance the importance of these tasks. The complete training
procedure is described in Algorithm 2.

Algorithm 2 Training speaker embedding using hybrid
multi-task learning.
Require: α1, m1, the learning rate and the batch size for

the speaker task. α2,m2, the learning rate and the batch
size for the phonetic task. ns, the number of training
steps. Ns, Np, the total number of available training
examples for speaker and phonetic tasks.
for n = 1, . . . , ns do

Sample a speaker mini-batch
{ �X(k), y(k)

}m1

k=1
with

probability ps = Ns
Ns+Np

. Sample a phonetic mini-

batch
{ �X(k), z(k)

}m2

k=1
otherwise. y(k) and z(k) are the

speaker and phonetic unit labels, respectively.
if a speaker mini-batch is sampled then

L1 = 1
m1

∑m1
k=1 CrossEntropy( �X(k), y(k)|�s,�ns,�l)

�s ← �s − α1 · ∇�sL1
�ns ← �ns − α1 · ∇�nsL1
�l ← �l − α1 · ∇�l L1
Reduce Ns to Ns − m1

else
L2 = 1

m2

∑m2
k=1 CrossEntropy( �X(k), z(k)|�s,�p)

�s ← �s − α2 · ∇�sL2
�p ← �p − α2 · ∇�pL2
Reduce Np to Np − m2

end if
end for

4.3 The c-vector
In our phonetic adaptation approach, the phonetic con-
tent of an utterance is considered to have negative impact
on the speaker verification task. In contrast, hybrid multi-
task learning exploits the useful phonetic information to
improve the model generalization. The different perspec-
tives of these methods create an opportunity to further
combine them into a unified architecture. In this section,
we propose a c-vector using both techniques to accom-
plish this goal.
Figure 4 shows the c-vector architecture, which is a

straightforward combination of Figs. 2 and 3. The pho-
netic vector extracted from a pre-trained acoustic model
is introduced to the multi-task network. The phonetic
vector is only used in the speaker task while the phonetic-
discriminant network is kept unchanged. The integrated
network can be jointly optimized following a similar strat-
egy to that of Algorithm 2 except that we need to fine-tune

the acoustic model as in Algorithm 1. Since the phonetic
vector is only appended to the speaker task, the parame-
ters of the acoustic model providing phonetic vectors will
not be updated when the phonetic examples are selected.
This will make the ASR acoustic model only focus on the
speaker task. The training procedure of the c-vector is
summarized in Algorithm 3.

Algorithm 3 The c-vector.
Require: α1, m1, the learning rate and the batch size for

the speaker task. α2,m2, the learning rate and the batch
size for the phonetic task. c, the learning rate scaling
factor. ns, the number of training steps.Ns,Np, the total
number of available training examples for speaker and
phonetic tasks.
Pre-train an ASR acoustic model �a. Derive the sub-
network �′

a from the pre-trained model.
for n = 1, . . . , ns do

Sample a speaker mini-batch
{ �X(k), y(k)

}m1

k=1
with

probability ps = Ns
Ns+Np

. Sample a phonetic mini-

batch
{ �X(k), z(k)

}m2

k=1
otherwise.

if a speaker mini-batch is sampled then
L1 = 1

m1

∑m1
k=1 CrossEntropy( �X(k), y(k)|�s,�ns,

�l,�′
a)

�s ← �s − α1 · ∇�sL1
�ns ← �ns − α1 · ∇�nsL1
�l ← �l − α1 · ∇�l L1
�′

a ← �′
a − c · α1 · ∇�′

aL
Reduce Ns to Ns − m1

else
L2 = 1

m2

∑m2
k=1 CrossEntropy( �X(k), z(k)|�s,�p)

�s ← �s − α2 · ∇�sL2
�p ← �p − α2 · ∇�pL2
Reduce Np to Np − m2

end if
end for

In the c-vector architecture, two independent phonetic
branches are used. This is necessary since these two sub-
networks are optimized by different objective functions.
However, there is also a need to limit the model size.
We notice that, in the multi-task learning, the phonetic-
discriminant network also provides frame-wise phonetic
information. Based on the c-vector architecture, a sim-
plified model is proposed in Fig. 5. In the new model,
the pre-trained acoustic model is first removed. A BN
layer is then incorporated in the phonetic-discriminant
network and the phonetic vectors are extracted from this
layer.
Although the speaker-discriminant network in the sim-

plified c-vector uses the activations of the BN layer in the
phonetic-discriminant network in the feed-forward step,
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Fig. 5 The simplified c-vector architecture. The additional acoustic model is removed and the phonetic vectors come from the BN layer of the
phonetic-discriminant network. The gradient-based training is stopped at the interconnected link between the two sub-networks

the gradient from this sub-network should not be back-
propagated through the phonetic-discriminant network.
The reason is that the phonetic-discriminant network is
optimized for phonetic unit classification in themulti-task
learning framework. The speaker information introduced
into the phonetic-discriminant network may affect the
training procedure and weaken the effectiveness of the
multi-task learning. To prevent this impact, when opti-
mizing the speaker-discriminant network, the gradient-
based training is stopped at the connection introduc-
ing phonetic vectors by setting the gradient to zero. It
should be pointed out that, in the simplified version of
the c-vector, the phonetic-discriminant network cannot
be adapted freely; thus, the phonetic vectors are not opti-
mized for the speaker verification task.
In our proposed methods, the ASR acoustic model

and the speaker and phonetic-discriminant networks are
trained alternately. This procedure does not require the
training data to be both speaker and phonetically tran-
scribed which is different than many conventional multi-
task networks. This flexibility is quite desirable in practice
since we may collect the speaker data from one source
and the phonetic data from other sources. Even although
many speaker verification datasets do not have phoneme
or text transcriptions, we can use other ASR datasets
to introduce the phonetic information to our speaker
embeddings.

5 Experiments
5.1 Datasets
The performance of the proposed approaches is presented
on NIST SREs and VoxCeleb datasets.
Experiments are first carried out on the NIST SRE 2010

core-extended and 10 s–10 s condition 5 [41]. Both con-
ditions involve English conversational telephone speech.
The core-extended condition consists of 2-min enroll-
ment and test utterances while the duration of the utter-
ances in the 10 s-10 s condition range from 8 to 12 s. To
validate our proposed methods when utterances of dif-
ferent languages are presented, the NIST SRE 2016 [42]
and 2018 [43] datasets are then used. The NIST SRE
2016 evaluation set contains trials spoken in Tagalog and
Cantonese. Although two sources, namely call my net
2 (CMN2) and video annotation for speech technology
(VAST), are included in NIST SRE 2018, only the CMN2
subset is used in this paper. The CMN2 subset is com-
posed of speech spoken in Tunisian Arabic. The per-
formance on the VAST subset is not reported since it
exhibits quite different attribute from telephone speech.
Different training data and adaptation technologies need
to be investigated to achieve good results on the VAST
subset [7].
For NIST SREs, the training data consists of 5 Switch-

board datasets (Switchboard-2 Phase 1/2/3, Switchboard
Cellular Part 1/2) and NIST SRE 2004–2008 telephone
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Table 1 The number of speakers, target trials, and impostor trials for the test sets

Test set # Speakers # Target trials # Impostor trials

SRE 2010
core-extended

Male 1906 3465 175873

Female 2361 3704 233077

10s-10s
Male 264 262 10570

Female 266 284 12662

SRE 2016 Tagalog 404 17764 1003568

Cantonese 398 19298 946098

Pooled 802 37062 1949666

SRE 2018 CMN2 Dev 125 7830 100265

CMN2 Eval 940 60991 2033832

VoxCeleb1 test set 40 18860 18860

excerpts. Unlike [25], Mixer 6 is excluded in our experi-
ments since it was used in NIST SRE 2010 test sets. This
comprises 64,742 utterances from 6394 speakers, resulting
in 5524 h in total. The NIST SRE 2016 and 2018 unla-
beled data, representing 52 and 72 h of data, is used for
domain adaptation [25]. Two English corpora, the 318-h
Switchboard-1 and 1904-h Fisher English, are used to
extract phonetic information. Since data augmentation is
shown to improve the performance of a speaker verifica-
tion system [44], it has become a standard pre-processing
step. Two noise and reverberation datasets, MUSAN [45]
and RIRs [46], are introduced to augment the training
data. The augmentation follows the same recipe described
in [25].
We also examine our approaches in an independent

dataset out of the NIST SREs. The VoxCeleb dataset is
extracted from videos in YouTube [19, 28]. In this exper-
iment, the results are evaluated on the VoxCeleb1 test
set. The training set includes the dev portion of Vox-
Celeb1 and the entire VoxCeleb2, comprising 2780 h of
data and 7323 speakers. Although the VoxCeleb1 dataset
only contains English data, the VoxCeleb2 dataset con-
sists of speech from speakers of different nationalities,
accents, and languages, making the training set multi-
lingual. Different from NIST SREs, the VoxCeleb dataset
is sampled at 16 kHz. The 960-h Librispeech [47] is used

to introduce phonetic information. This corpus only con-
tains read English speech. The data augmentation is also
applied to the training data.
The statistics of all the test sets are shown in Table 1

and Table 2 summarizes the training data usage in the
experiments.

5.2 Experimental setup
5.2.1 Baseline x-vector system
The x-vector system used in our experiments follows the
standard setup in Kaldi SRE16 V2 recipe [48]. The input
features are 23-dim and 30-dim MFCCs for 8 kHz and
16 kHz audio, respectively. The frame-level network is a
5-layer TDNN with the slicing parameter {−2,−1, 0, 1, 2},
{−2, 0, 2}, {−3, 0, 3}, {0}, {0}whichmeans the input of each
layer is the contextual sliced outputs of the previous layer.
For instance, at time t, MFCCs from time (t−2), (t−1), (t),
(t+1) and (t+2) are concatenated as the input of the first
hidden layer. A statistics pooling layer is then applied fol-
lowed by 2 fully connected layers. Each hidden layer con-
sists of a linear transform, following by a rectified linear
unit (ReLU) activation and a batch-normalization. All the
hidden layers have 512 nodes except for the one before the
statistics pooling, which has 1500 nodes instead. The out-
put is predicted by a softmax layer and the size is equal to
the number of training speakers.

Table 2 Datasets used in the experiments. The adaptation set is only used for NIST SRE 2016 and 2018

Test set Sampling rate Phonetic training
set

Speaker training set Adaptation set

SRE 2010
core-extended &
10s-10s condition 5

8kHz Switchboard-1
Fisher English

Switchboard-2 Phase 1/2/3
Switchboard Cellular Part 1/2 NIST
SRE 2004-2008

-

SRE 2016 SRE16 unlabeled data

SRE 2018 SRE18 unlabeled data

VoxCeleb1 test set 16kHz Librispeech VoxCeleb1 dev set VoxCeleb2 -
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Table 3 Phonetic adaptation results on the male part of the NIST
SRE 2010 core-extended condition

EER(%) minDCF08 minDCF10

x-vector 1.96 0.0109 0.3900

x-vector-pa (c = 0) 1.68 0.0095 0.3585

x-vector-pa (c = 0.1) 1.44 0.0084 0.2979

x-vector-pa (c = 0.2) 1.62 0.0085 0.3166

x-vector-pa (c = 0.3) 1.61 0.0089 0.3290

x-vector-pa (c = 0.4) 1.55 0.0089 0.3324

No pre-training 1.82 0.0095 0.3759

Natural gradient for stochastic gradient descent (NG-
SGD) [49] is used to train the network. The batch size is
64 and the number of training epochs is 3. The learning
rate starts from 0.001 and linearly decreases to 0.0001 at
the end of the training. No dropout is applied. This setup
follows the same recipe described in [25]. Unless other-
wise specified, all the neural networks in this paper are
optimized using this setup.
After training, the pre-activation of the first hidden layer

at the segment-level network is extracted as the x-vector.
Mean normalization is first performed and the dimension
of the x-vector is then reduced through LDA. After LDA,
the dimension of the x-vector is 150 for NIST SREs and
200 for VoxCeleb. The embedding is unit-length normal-
ized and PLDA scoring is finally applied. For NIST SREs,
the SRE 2004–2008 corpora with augmented excerpts are
used to train the LDA/PLDA, while for VoxCeleb, the
entire training set is used.
To deal with the domain mismatch in NIST SRE 2016

and 2018, an unsupervised PLDA adaptation proposed
in Kaldi is applied. Due to domain mismatch, the total
covariance estimated in the new domain is different from
the covariance indicated in the out-of-domain PLDA. In
the experiments, 75% of the excess in-domain covari-
ance is attributed to the within-class covariance of the
PLDA model while the remaining 25% is attributed to the
between-class covariance. The PLDA parameters are then
re-estimated based on the new within- and between-class
covariances. The adaptation is performed on the unla-
beled data of NIST SRE 2016 and 2018. Refer to the Kaldi
source code 1 for more details.

5.2.2 Speaker embeddingwith phonetic information
In our proposed methods, the x-vector architecture is
treated as a speaker-discriminant network and keeps the
same setting as the baseline. Phonetic information is
explicitly introduced by phonetic-discriminant networks.
The senone transcriptions forced aligned by GMM-HMM
are used to represent the phonetic contents on Fisher and
Switchboard. The number of senones is 3800.
1https://github.com/kaldi-asr/kaldi/blob/master/src/ivector/plda.cc

Table 4 Phonetic adaptation results on VoxCeleb

EER(%) minDCF08 minDCF10

x-vector 2.68 0.0144 0.4645

x-vector-pa (c = 0) 2.52 0.0137 0.4111

x-vector-pa (c = 0.1) 2.26 0.0126 0.3651

x-vector-pa (c = 0.2) 2.24 0.0132 0.3289

x-vector-pa (c = 0.3) 2.32 0.0124 0.3533

x-vector-pa (c = 0.4) 2.32 0.0126 0.3531

For phonetic adaptation, a 5-layer TDNN network is
trained as the ASR acoustic model. The slicing param-
eter is {−2,−1, 0, 1, 2}, {−1, 0, 1}, {−1, 0, 1}, {−3, 0, 3},
{−6,−3, 0}. The 5-th layer is the BN layer containing 128
nodes and other layers have 650 nodes. The activations of
the BN layer in the acoustic model are connected to the
5-th layer of the x-vector network. The effect of the fine-
tuning learning rate scaling factor c is discussed in this
section. When optimizing the phonetic-discriminant net-
works, the batch size is set to 256, which is a value often
used in ASR acoustic model training.
In hybrid multi-task learning, the phonetic-

discriminant network uses the same architecture as the
x-vector network except for two differences. The statistics
pooling layer is excluded in the phonetic-discriminant
network and the number of the nodes in the 5-th layer
is reduced to 512. Although the learning rates α1 and α2
for the two tasks can be different, keeping them equal
performs well in our experiments. The results sharing
different numbers of layers will be investigated below.
The c-vector combines the phonetic adaptation and

multi-task learning networks and uses the same param-
eters. In the simplified c-vector architecture, the multi-
task learning network is used, with some modifications.
The number of nodes in the last hidden layer of the
phonetic-discriminant network is reduced to 128 and the
activations of this layer are fed into the 5-th layer of the
x-vector network.
We use x-vector-pa, x-vector-mt, c-vector and sc-vector

to denote the proposed systems respectively.
The conventional i-vector and DNN-based i-vector are

also used in some evaluations for complete compari-
son. All the models trained in this paper are gender-
independent. We analyze the influence of the parameters
in ourmodels on themale part of the NIST SRE 2010 core-
extended condition and VoxCeleb. Results on SRE 2016
and 2018 are also reported to validate our approaches.
EER, the minimum detection cost function of NIST SRE

2008 (minDCF08) and SRE 2010 (minDCF10) [41] are
used as the main performance metrics. The primary cost
measures for SRE 2016 and 2018, denoted as minDCF16
and minDCF18, are reported for these two evaluations
respectively [42, 43].

https://github.com/kaldi-asr/kaldi/blob/master/src/ivector/plda.cc
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Table 5 Results obtained by sharing different numbers of layers
in hybrid multi-task learning

EER(%) minDCF08 minDCF10

x-vector 1.96 0.0109 0.3900

x-vector-mt (1-layer sharing) 1.67 0.0091 0.3465

x-vector-mt (2-layer sharing) 1.61 0.0082 0.3009

x-vector-mt (3-layer sharing) 1.52 0.0073 0.2752

x-vector-mt (4-layer sharing) 1.50 0.0086 0.3383

The results are given on the male part of the NIST SRE 2010 core-extended condition

The Kaldi toolkit [48] is used to build all the systems in
this paper. The code has been released 2.

5.3 Results and discussion
5.3.1 Phonetic adaptation
This section presents the results of phonetic adaptation
in speaker embedding training. In order to show the
effectiveness of the acoustic model fine-tuning, several
systems are trained with different learning rate scaling
factors. Table 3 shows that all the systems using pho-
netic adaptation outperform the x-vector baseline on the
male part of the NIST SRE 2010 core-extended condi-
tion. Since the phonetic information is introduced to this
network, phonetic adaptation without fine-tuning (i.e.,
c = 0) reduces the EER by 14%. The performance can
be further improved if we update the appended net-
work during the x-vector training. The best result is
obtained when the learning rate scaling factor is 0.1.
The small learning rate means that the acoustic model
only needs a slight adjustment to achieve good perfor-
mance. Compared to the baseline, the x-vector using
fine-tuned phonetic vectors improves the performance by
26%, 22%, and 23% in EER, minDCF08, and minDCF10,
respectively.
Due to the introduction of an additional network,

the number of model parameters increases. It is not
initially clear whether the improvement comes from
the phonetic information or the bigger model. Hence,
we train a network combining the x-vector architec-
ture and the acoustic model from scratch where there
is no phonetic information considered. This model has
the same topology with x-vector-pa. As shown in the
last row of Table 3, the larger network does improve
the performance. But the performance gain is smaller
and it still performs worse than our proposed sys-
tems. The result validates the importance of the pho-
netic information extracted from the pre-trained acoustic
model.
Table 4 presents the results on VoxCeleb. Phonetic

adaptation is also effective in this dataset. Since the

2https://github.com/mycrazycracy/speaker-embedding-with-phonetic-
information

Table 6 Results of systems using hybrid multi-task learning with
different configurations on VoxCeleb

EER(%) minDCF08 minDCF10

x-vector 2.68 0.0144 0.4645

x-vector-mt (1-layer sharing) 2.58 0.0132 0.4027

x-vector-mt (2-layer sharing) 2.73 0.0145 0.3977

x-vector-mt (3-layer sharing) 2.83 0.0151 0.4700

x-vector-mt (4-layer sharing) 2.92 0.0151 0.5001

acoustic model is pre-trained only using English speech,
the extracted phonetic vectors are not a good match with
the multi-lingual VoxCeleb training set. Fine-tuning alle-
viates thismismatch to some extent. Compared withNIST
SRE 2010, a higher learning rate scaling factor needs to be
used. In this case, 0.2 or 0.3 seems to be a good option. The
speaker embedding using phonetic adaptation improves
the EER of the baseline by relative 6% and 16%, without
and with fine-tuning (c = 0.2), respectively.

5.3.2 Multi-task learning
Table 5 gives the performance of several systems shar-
ing different numbers of frame-level layers between the
speaker and phonetic-discriminant networks on NIST
SRE 2010. From Table 5, we find that although the multi-
task learning adds benefit in this condition, sharing more
layers does not always improve the performance. The
best overall result on our development set is obtained
when 3 layers are shared. We decrease the EER from
1.96, when no multi-task learning is used, to 1.52%, when
3 layers are shared, resulting in 22% relative reduction.
The minDCF08 and minDCF10 in this configuration also
improves by 33% and 29% compared to the baseline.
In contrast to the previous results, the VoxCeleb exper-

iments reported in Table 6 show that, the multi-task
learning only improves the results slightly in this dataset.
By sharing 1 layer, the system outperforms the baseline
by 4%, 8%, and 13% on EER, minDCF08, and minDCF10,
respectively. However, the performance degrades rapidly
when more layers are shared. We hypothesize that this is
due to the language mismatch between Librispeech and

Table 7 Results obtained from different c-vector configurations
on the male part of the NIST SRE 2010 core-extended condition

EER(%) minDCF08 minDCF10

x-vector 1.96 0.0109 0.3900

c = 0.1 + 2-layer sharing 1.12 0.0066 0.2748

c = 0.1 + 3-layer sharing 1.21 0.0065 0.2449

c = 0.2 + 2-layer sharing 1.18 0.0067 0.3017

c = 0.2 + 3-layer sharing 1.24 0.0071 0.2623

c = 0.3 + 2-layer sharing 1.29 0.0074 0.2531

c = 0.3 + 3-layer sharing 1.46 0.0074 0.2536

https://github.com/mycrazycracy/speaker-embedding-with-phonetic-information
https://github.com/mycrazycracy/speaker-embedding-with-phonetic-information
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Table 8 Results obtained from different c-vector configurations
on VoxCeleb

EER(%) minDCF08 minDCF10

x-vector 2.68 0.0144 0.4645

c = 0.2 + 1-layer sharing 2.18 0.0129 0.2994

c = 0.2 + 2-layer sharing 2.32 0.0120 0.3798

c = 0.3 + 1-layer sharing 2.33 0.0121 0.3030

c = 0.3 + 2-layer sharing 2.24 0.0123 0.3170

the VoxCeleb training set. In this case, sharing more layers
cannot provide more useful information for the speaker-
discriminant network. On the contrary, with more layers
shared, the number of the individual layers in the speaker-
discriminant network decreases, making the extraction of
speaker characteristics more difficult.

5.3.3 The c-vector
The advantages of phonetic adaptation and multi-task
learning are combined in the proposed c-vector. The tun-
able hyper-parameters now include both the learning rate
scaling factor and the shared layers.
We start our analysis on NIST SRE 2010. Based on the

above experiments, the learning rate scaling factor ranges
from 0.1 to 0.3. There are 2 or 3 layers shared between
the speaker and phonetic-discriminant networks. Table 7
shows that the EER and minDCFs on the male part of the
core-extended condition can be greatly reduced if proper
parameters are selected. For each configuration, the
c-vector performs better than the systems using only pho-
netic adaptation or multi-task learning. Consistent with
the former experiments, better performance is obtained
using a smaller learning rate scaling factor. Sharing 2 lay-
ers results in better EER, while 3-layer sharing is better
for minDCF10. The minimum EER (1.12%) is achieved in
the second row while the best minDCF08 (0.0065) and
minDCF10 (0.2449) are obtained in the third row. To
make a trade-off between these operation points, we set
c = 0.1 and 3-layer sharing in our c-vector.
Table 8 presents the performance of the c-vector

approach on VoxCeleb. The best performance is obtained
when the learning rate scaling factor is 0.2 and 1 layer
is shared, resulting in 19%, 10%, and 36% relative reduc-
tion on EER, minDCF08, and minDCF10, respectively.

Table 9 Comparison of different simplified c-vector systems on
the male part of the NIST SRE 2010 core-extended condition

EER(%) minDCF08 minDCF10

x-vector 1.96 0.0109 0.3900

sc-vector (1-layer sharing) 1.47 0.0085 0.2848

sc-vector (2-layer sharing) 1.34 0.0085 0.3019

sc-vector (3-layer sharing) 1.24 0.0071 0.3035

Table 10 Comparison of different simplified c-vector systems on
VoxCeleb

EER(%) minDCF08 minDCF10

x-vector 2.68 0.0144 0.4645

sc-vector (1-layer sharing) 2.52 0.0142 0.4333

sc-vector (2-layer sharing) 2.60 0.0143 0.4469

As explained previously, compared with the c-vector
used in NIST SRE 2010, the learning rate scaling fac-
tor is increased while the number of the shared layers is
decreased.

5.3.4 The simplified c-vector
We further evaluate the simplified c-vector (sc-vector) on
these two datasets. As shown in Table 9, the sc-vector
approach sharing 3 layers achieves the best overall perfor-
mance on the male part of NIST SRE 2010 core-extended
condition. This is consistent with the results observed for
the c-vector.
Table 10 shows the results obtained from different sc-

vector configurations on VoxCeleb. Unlike the results
in Table 9, the sc-vector does not significantly improve
the performance on VoxCeleb. As shown in the above
experiments, phonetic adaption with fine-tuning is more
helpful than the multi-task learning in this dataset, which
means the fine-tuning is vital in the language mismatch
condition. However, for the sc-vector, the phonetic-
discriminant sub-network is only optimized by the out-
of-domain phonetic unit classification, which limits the
power of the phonetic vectors.

5.3.5 Comparison of systems on NIST SRE 2010 and
VoxCeleb

Tables 11 and 12 summarize the results of the x-vector
baseline and all our proposed methods with the best sys-
tem configurations on NIST SRE 2010. Two i-vector sys-
tems are also included. The setups of the i-vector systems
are the same as that of the Kaldi SRE10 recipe 3.
From the results, we find that when using fine-tuning

the speaker embedding with phonetic adaptation achieves
better results than the baseline x-vector in almost all
conditions. The only exception is the minDCF08 in the
female 10 s–10 s condition which is also very close to the
baseline. With multi-task learning, the proposed speaker
embedding generally improves the performance, except
for the minDCF10 in the male 10 s–10 s condition. The
relative improvements in the core-extended condition are
about 20% and about 10% in the 10 s–10 s condition.
From Table 11 and Table 12, it is difficult to conclude
which one is better because they each have advantages
in different conditions. Overall, the sc-vector is able to

3https://github.com/kaldi-asr/kaldi/tree/master/egs/sre10

https://github.com/kaldi-asr/kaldi/tree/master/egs/sre10
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Table 11 Summary of results obtained with different systems on the male part of the NIST SRE 2010 core-extended and 10s-10s
conditions

Core-extended 10 s–10 s

EER(%) minDCF08 minDCF10 EER(%) minDCF08 minDCF10

i-vector 2.33 0.0127 0.4132 10.29 0.0521 0.9695

DNN/i-vector 0.89 0.0047 0.1969 7.25 0.0334 0.9160

x-vector 1.96 0.0109 0.3900 7.62 0.0428 0.8321

x-vector-pa (c = 0) 1.68 0.0095 0.3585 6.86 0.0406 0.8053

x-vector-pa (c = 0.1) 1.44 0.0084 0.2979 6.45 0.0385 0.7366

x-vector-mt (3-layer sharing) 1.52 0.0073 0.2752 6.10 0.0369 0.8808

sc-vector (3-layer sharing) 1.24 0.0071 0.3035 6.80 0.0351 0.7854

c-vector (c = 0.1 + 3-layer sharing) 1.21 0.0065 0.2449 6.40 0.0334 0.5878

deliver better performance than previous systems and
the c-vector generally performs the best on NIST SRE
2010. Even though the x-vectors with phonetic adapta-
tion and hybrid multi-task learning have reduced the EER
and minDCFs compared to the baseline for both genders,
the c-vector approach further improves the performance.
The only case where the c-vector approach performs
worse than the multi-task learning system is with regard
to EER on the male part of the 10 s–10 s condition. In
contrast, the minDCF10 is significantly better, leading to
33% relative reduction. On the male part of the core-
extended condition, the c-vector significantly outper-
forms the original x-vector by 38%, 40%, and 37% in EER,
minDCF08, and minDCF10, respectively. In the 10 s–10 s
condition, the improvement on EER is 16% and over 20%
based on minDCFs. The performance is similar on the
female part. For the sc-vector, the model size is reduced
by removing the appended acoustic model. The cost of
this is that the phonetic vector fine-tuning is unavailable,
and as a result the sc-vector performs worse than the
c-vector.
As shown in Tables 11 and 12, the i-vector framework

can also benefit from the use of phonetic information

on NIST SRE 2010. The i-vector system using DNN-
based alignments (DNN/i-vector) outperforms the vanilla
i-vector, especially when the utterance duration is long.
The improvement of incorporating phonetic information
in the i-vector system is almost 50% in some conditions.
Even so, compared with our proposed c-vector, the DNN-
based i-vector only achieves better results on the male
part of the core-extended condition and performs much
worse in the 10 s–10 s conditions.
Next, we investigate the performance of the different

systems on VoxCeleb. The results are shown in Table 13.
The i-vector systems are not included due to inferior
results. Compared with NIST SRE 2010, language mis-
match exists between the speaker and phonetic training
sets on VoxCeleb. From Table 13, it is clear that the
phonetic adaptation performs better than the multi-task
learning and a more aggressive learning rate scaling fac-
tor should be applied. We see that the sc-vector fails to
outperform the x-vectors with phonetic adaptation and
hybrid multi-task learning in this dataset. The likely rea-
son is that the sc-vector cannot utilize the fine-tuning to
adapt the acoustic model so that the extracted phonetic
vectors are not suitable for the new domain. Actually,

Table 12 Summary of results obtained with different systems on the female part of the NIST SRE 2010 core-extended and 10s-10s
conditions

Core-extended 10 s–10 s

EER(%) minDCF08 minDCF10 EER(%) minDCF08 minDCF10

i-vector 2.02 0.0110 0.4104 10.56 0.0530 0.9683

DNN/i-vector 1.13 0.0055 0.2369 9.50 0.0415 0.8697

x-vector 1.45 0.0079 0.3234 9.83 0.0431 0.9451

x-vector-pa (c = 0) 1.34 0.0072 0.2932 8.45 0.0459 0.8732

x-vector-pa (c = 0.1) 1.29 0.0061 0.2768 7.75 0.0434 0.8627

x-vector-mt (3-layer sharing) 1.18 0.0064 0.2423 8.45 0.0399 0.8486

sc-vector (3-layer sharing) 1.21 0.0062 0.2345 6.34 0.0404 0.7746

c-vector (c = 0.1 + 3-layer sharing) 0.99 0.0049 0.2189 7.04 0.0401 0.7782
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Table 13 Summary of results obtained with different systems on
VoxCeleb

EER(%) minDCF08 minDCF10

x-vector 2.68 0.0144 0.4645

x-vector-pa (c = 0) 2.52 0.0137 0.4111

x-vector-pa (c = 0.2) 2.24 0.0132 0.3289

x-vector-mt (1-layer sharing) 2.58 0.0132 0.4027

sc-vector (1-layer sharing) 2.52 0.0142 0.4333

c-vector (c = 0.2 + 1-layer sharing) 2.18 0.0129 0.2994

the performance of the sc-vector is similar to the second
row in Table 13. It seems that the introduction of the BN
layer in the phonetic-discriminant network training has a
negative impact, so that the multi-task learning in the sc-
vector does not further improve the results of the speaker
embedding using phonetic adaptation without any fine-
tuning. Again, the c-vector approach performs the best on
VoxCeleb.

5.3.6 Results on NIST SRE 2016 and 2018
Only English speech is used in NIST SRE 2010. In this
case, the i-vector and speaker embedding systems both
achieve better results when including phonetic informa-
tion. In recent NIST SREs, language and channel mis-
match was introduced between the training and test data
[42, 43]. Although we have examined the new speaker
embeddings in a multi-lingual VoxCeleb dataset, it is still
interesting to investigate the performance of our proposed
methods in the more challenging NIST SRE 2016 and
2018. According to the experimental results on NIST SRE
2010 and VoxCeleb, in the language mismatched condi-
tion, a larger learning rate scaling factor and fewer shared
layers should be used for our proposed approaches. All
the results reported in this section are obtained by set-
ting the learning rate scaling factor as 0.2 in the phonetic

adaptation, and there is 1 layer shared in the multi-task
learning.
The results of the two subsets of NIST SRE 2016,

Tagalog and Cantonese, are reported in Table 14. From
Table 14, we find that due to the severe language mis-
match, the DNN-based i-vector system performs worse
than the conventional i-vector. The reason for this is that
the DNN trained on the English corpus cannot accurately
compute the senone posteriors in Tagalog and Cantonese.
Table 14 also demonstrates that the speaker-embedding
systems outperform both i-vector systems on NIST SRE
2016. The x-vector baseline reduces the EER from 15.73%
(i-vecto) to 9.46%.
Unlike the i-vector systems, our proposed methods still

benefit from the added phonetic information even in this
language mismatched condition. The first observation is
that the x-vector using phonetic adaptation outperforms
the baseline and the fine-tuning further improves the per-
formance. The hybridmulti-task learning is also beneficial
for the speaker embedding. Compared with the phonetic
adaptation, hybrid multi-task learning performs worse in
the Tagalog subset, while the results are better in the Can-
tonese subset. The sc-vector achieves similar results to
that of the multi-task learning in the Tagalog subset and
results in a better EER in Cantonese. The last row in
Table 14 shows that the c-vector performs the best. Com-
pared to the conventional x-vector, the c-vector improves
the EER and minDCF16 on the pooled set by relative 15%
and 10%, respectively.
Table 15 summarizes the results of different systems on

the NIST SRE 2018 CMN2 development and evaluation
sets. The x-vector using fine-tuned phonetic vectors per-
forms much better than the multi-task learning. Without
fine-tuning, the sc-vector does not significantly improve
the performance. The c-vector approach performs simi-
larly to the x-vector with fine-tuned phonetic adaptation
(the 3rd row in Table 15) on the dataset. This confirms

Table 14 Summary of results obtained with i-vector systems and different speaker embeddings in the Tagalog and Cantonese subsets
of NIST SRE 2016

Tagalog Cantonese Pooled

EER(%) minDCF16 EER(%) minDCF16 EER(%) minDCF16

i-vector 21.37 0.8901 10.07 0.6564 15.73 0.7861

DNN/i-vector 22.25 0.9059 11.47 0.6950 16.90 0.8127

x-vector 13.60 0.7877 5.33 0.4429 9.46 0.6365

x-vector-pc (c = 0) 13.06 0.7794 4.86 0.4207 8.96 0.6214

x-vector-pv (c = 0.2) 12.60 0.7593 4.55 0.4127 8.58 0.6045

x-vector-mt (1-layer sharing) 12.82 0.7629 4.36 0.3878 8.59 0.5941

sc-vector (1-layer sharing) 12.92 0.7675 4.00 0.3835 8.44 0.5951

c-vector (c = 0.2 + 1-layer sharing) 12.00 0.7451 4.04 0.3629 8.04 0.5692

The pooled results are also demonstrated
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Table 15 Summary of results on the CMN2 subsets of NIST SRE 2018. The actDCF18 is also reported on the evaluation set

Dev Eval

EER(%) minDCF18 EER(%) minDCF18 actDCF18

x-vector 8.86 0.587 10.94 0.630 0.631

x-vector-pv (c = 0) 8.10 0.556 9.92 0.597 0.604

x-vector-pv (c = 0.2) 7.82 0.521 9.62 0.557 0.562

x-vector-mt (1-layer sharing) 8.40 0.554 10.07 0.589 0.593

sc-vector (1-layer sharing) 8.35 0.543 10.06 0.585 0.587

c-vector (c = 0.2 + 1-layer sharing) 7.95 0.511 9.57 0.579 0.584

the important role of the fine-tuning in the language
mismatched condition. When the c-vector approach is
used, the EER and minDCF18 of the baseline is reduced
by 13% and 8% on the evaluation set.
The actDCF18 is also reported on the evaluation set of

the NIST SRE 2018 CMN2 subset. Logistic regression-
based score calibration is used. The calibration param-
eters are first trained on the development set using
the Bosaris toolkit [50] and then applied on the eval-
uation set. In Table 15, the actDCFs show a simi-
lar trend with the minDCFs and the proposed speaker
embeddings still perform better than the baseline in
actDCF18.
Although the improvements due to applying the pho-

netic information in these conditions are smaller than
those of NIST SRE 2010, these results show the effective-
ness and robustness of our proposed approaches when a
language mismatch exists.

6 Conclusions
Although phonetic information has been reported to be
effective in both the i-vector and frame-level d-vector
frameworks, it is rarely used in state-of-the-art speaker
embeddings. In this paper, we propose several approaches
to overcome the level mismatch problem and intro-
duce frame-level phonetic information into segment-level
speaker embedding. The first approach is based on apply-
ing phonetic adaptation using phonetic vectors. The pho-
netic vectors, which are extracted from a fine-tuned ASR
acoustic model, are used as auxiliary inputs into the
x-vector network. The second approach uses hybrid
multi-task learning to exploit the shared information
between speaker traits and phonetic content, which
improves model generalization. We finally propose a
c-vector architecture combining these two approaches, as
well as a simplified c-vector which uses phonetic vectors
extracted from the phonetic-discriminant network in the
multi-task learning approach. On NIST SRE 2010 core-
extended and 10 s-10 s condition 5, the proposed speaker
embeddings using phonetic adaptation and hybrid multi-
task learning significantly outperform the conventional

x-vector, with the best performance achieved by our
combined c-vector approach. Moreover, the results on
the language mismatched NIST SRE 2016, 2018 and Vox-
Celeb show that the proposed approaches perform well
even if different languages are presented. The relation-
ship between the performance and different system con-
figurations have been carefully analyzed across different
conditions. These results provide strong support for the
benefit of including phonetic information into the speaker
embedding-based speaker verification systems.
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