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Abstract

In order to improve the performance of hand-crafted features to detect playback speech, two discriminative features,
constant-Q variance-based octave coefficients and constant-Q mean-based octave coefficients, are proposed for
playback speech detection in this work. They rely on our findings that variance-based modified log magnitude
spectrum and mean-based modified log magnitude spectrum can enhance the discriminative power between
genuine speech and playback speech. Then constant-Q variance-based octave coefficients (constant-Q mean-based
octave coefficients) can be obtained by combining variance-based modified log magnitude spectrum (mean-based
modified log magnitude spectrum), octave segmentation, and discrete cosine transform. Finally, constant-Q
variance-based octave coefficients and constant-Q mean-based octave coefficients are evaluated on ASVspoof 2017
corpus version 2.0 and ASVspoof 2019 physical access, respectively. Experimental results show that variance-based
modified log magnitude spectrum and mean-based modified log magnitude spectrum can produce discriminative
features toward playback speech. Further results on the two databases show that constant-Q variance-based octave
coefficients and constant-Q mean-based octave coefficients can perform better than some common features, such as
mel frequency cepstral coefficients and constant-Q cepstral coefficients.

Keywords: Discriminative feature, Playback attack detection, Modified log magnitude spectrum, Constant-Q
variance-based octave coefficients, Constant-Q mean-based octave coefficients

1 Introduction
Replay attacks present serious threat to automatic speaker
verification (ASV) system. In which the source recordings
of playback are from the legitimate clients [1, 2]. Thus,
replay attacks can pose the threat to ASV system. This
motivates our focus on playback speech detection.
Since the ASVspoof 2017 challenge [1, 2], more and

more researchers begin to focus on playback speech
detection [3–10]. Similar to many speech signal process-
ing systems, most of all playback speech detection sys-
tems usually consist of front-end feature and back-end
classifier [11–18]. For the end-to-end systems such as
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[19–23], the output layer of the neural network can be
seen as a virtual classifier and the rest of the neural net-
work can be seen a deep feature extractor. In this paper,
we mainly focus on how to extract discriminative feature
for playback speech detection.

1.1 Related works
Before 2017, several studies about playback speech detec-
tion have been reported. The earlier ones [24–26] were
based on small-scale databases, where only a small num-
ber playback and recording conditions were taken into
account. For example, in [24, 27], three playback and
recording devices were used to collect the database; in
[25, 28], one recording device and one playback device
were used to create the database, which is named as
authentic and playback speech database (APSD); in [29],
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the database was built by four smartphones; and in [26],
four devices were used to create the playback utterances
in the database, which is named as (audio-visual spoofing
2015) AVspoof 2015.
Different from the above databases, the launch of

the ASVspoof 2017 corpus provided a large common
database, obtained using 26 playback devices, 25 record-
ing devices, and 26 environments [1, 2, 30]. So, ASVspoof
2017 corpus can be used to evaluate a playback speech
detection algorithm justly because it has more chan-
nel and acoustic conditions than any previous databases
[24–26]. In addition, the recent released ASVspoof 2019
physical access also can be used in this study. Hence,
ASVspoof 2017 and ASVspoof 2019 physical access not
only can support researchers to develop countermea-
sures, but also can protect ASV system to avoid replay
attack [1].
After ASVspoof 2017 and ASVspoof 2019 physical

access corpus were released in 2017 and 2019, respec-
tively, some effective methods were proposed to detect
playback speech based on the two databases. According
to how the used features generate, these methods can be
categorized into two types: hand-crafted design features
and deep features. In general, hand-crafted features are
the features which are obtained by using math formula
to design while deep features are the features which are
obtained by learning from neural networks for the input.
Deep feature extraction usually contains two steps: the

fist is to train a classifier using neural network and the
input, and the second is to remove the output layer of
the classifier. Because the end-to-end system can be seen
a virtual classifier (the output layer) and a deep feature
extractor (the rest part), in other words, the end-to-end
system can be seen a deep feature extractor if the output
layer is removed. So in this study, we also regard the deep
features that can be obtained from the end-to-end systems
as special type of deep features. According to the neural
networks used, there are several types deep features. For
example, light convolutional neural network was used to
learn deep feature for the input of log power spectrum of
constant-Q transform (CQT) and fast Fourier transform
in [14, 20, 21], deep Siamese that is formed two convolu-
tional neural networks with the input of spectrogram are
used to learned to obtain Siamese embedding features in
[31], residual network (ResNet) was used to learn deep
feature from the input of group delay gram in [19, 32, 33].
For the hand-crafted design features, which mainly

include the following categories:

• CQT based features: which include constant-Q
cepstral coefficients (CQCC) [34, 35] used in [4, 36,
37], extended CQCC [38, 39], constant-Q magnitude-
phase octave coefficients [40], and constant-Q
statistics-plus-principal information coefficients [41].

• Discrete Fourier transform (DFT) based features:
which include Mel frequency cepstral coefficients
(MFCC) [4, 13, 36], mel filterbank slope [10], linear
filterbak slope [10], and Q-log domain DFT-based
mean normalized log spectral [42].

• Variable length energy separation algorithm
(VESA)-based features: which include
instantaneous frequency cosine coefficients based on
VESA [6] and instantaneous amplitude cosine
coefficients based on VESA [43].

• Prediction cepstral coefficients-based features:
which include linear prediction cepstral coefficients
residual part and linear prediction cepstral
coefficients cepstrum [13, 19], frequency domain
linear prediction [9].

• Spectral centroid-based features: which include
subband spectral centroid frequency coefficients and
subband spectral centroid magnitude coefficients
[12] and spectral centroid deviation [16].

• Phased-based features: which include
instantaneous frequency cosine coefficient [44, 45]
and modified group delay cepstral coefficient [15].

• Zero time windowing-based features: zero time
windowing cepstral coefficients [46, 47].

• Single frequency filter-based features: single
frequency filter cepstral coefficients [3, 47].

In which, CQCC is the most widely used features in play-
back speech detection, in ASVspoof2017 and ASVspoof
2019 challenge, CQCC plus Gaussian mixture model
(GMM) are used to form the baseline system by the orga-
nizers [2, 48]. The reason is that CQT is a long-term
transform, and it can provide more frequency detail to
capture playback information in playback speech detec-
tion compared with DFT.
Generally speaking, deep features perform better than

hand-crafted design features in playback speech detec-
tion because more useful information for discriminating
playback speech from genuine speech can be obtained
by deep learning. However, deep features rely on train-
ing data heavily. That is to say, deep features only suit
on the scope of training data. Further, if we want to
study the property of playback speech, hand-crafted
design features can be selected rather than deep fea-
tures. The goal of the paper is to extract discrimi-
native feature for playback speech detection, so hand-
crafted design feature is studied. Therefore, our focus
is how to extract hand-crafted discriminative features in
this study.
Traditional hand-crafted features used in speech signal

processing such as MFCC and CQCC are not designed
for playback speech detection. In order to improve the
performance of hand-crafted features to detect playback
speech, we focus on designing discriminative features for
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playback speech detection in this study. Considering three
facts which are as following:

• CQT is a long-term transform and it can provide
more frequency detail to capture the playback
information compared with DFT.

• Many hand-crafted features such as CQCC and
MFCC are extracted from log power spectrum that
can be obtained from log magnitude spectrum (LMS).

• A feature can have more discriminative power to
distinguish playback speech from genuine speech if
the discriminative power between genuine speech
and playback speech can be enhanced.

Therefore, in this study, LMS based on CQT is used as
study object to investigating how to enhance the dis-
criminative power between genuine speech and playback
speech and then modified log magnitude spectrum can
be obtained. Finally, by combining with octave segmen-
tation and discrete cosine transform (DCT), hand-crafted
features with more discriminative feature for playback
speech detection can be obtained, we can call them as
hand-crafted discriminative features.

1.2 Contributions of the work
The goal of the work is how to extract hand-crafted dis-
criminative feature by enlarging the difference between
genuine speech and playback speech for playback speech
detection. There are mainly two contributions in this
work.
We found that discriminative power between genuine

speech and playback speech can be enhanced if LMS
is added its variance or mean. Based on the findings,
two methods are proposed to modify LMS and we refer
them as variance-basedmodified logmagnitude spectrum
(VMLMS) and mean-based modified log magnitude spec-
trum (MMLMS). In which, LMS is obtained using CQT
which is used to convert speech from the time domain
into the frequency domain. It is the first contribution of
the paper.
By combining VMLMS, octave segmentation and DCT,

one new feature from VMLMS is obtained, namely,
constant-Q variance-based octave coefficients (CVOC).
In the same way, the other feature is obtained by com-
bining MMLMS, octave segmentation, and DCT, which
is named as constant-Q mean-based octave coefficients
(CMOC). They are the second contribution of the paper.
The remainder of the paper is organized as follows.

Section 2 introduces modified log magnitude spectrum.
Section 3 introduces how to extract discriminative fea-
tures. Sections 4 and 5 gives the experimental results and
corresponding analysis on ASVspoof 2017 version 2.0 and
ASVspoof 2019 physical access databases, respectively.
Section 6 concludes the paper.

2 Proposedmethod I: modified logmagnitude
spectrum

In this section, in order to enhance the discriminative
power between genuine speech and playback speech, two
methods to modify LMS are proposed by analyzing dis-
criminative power between genuine speech and playback
speech, which are VMLMS and MMLMS. Here, Fisher’s
ratio [49] that is often used to measure discriminative
power of two classes [50], is used to measure discrimina-
tive power between genuine speech and playback speech,
its equation is as follows [11]:

FC1C2 = (C1 − C2)2

σ 2
C1

+ σ 2
C2

(1)

where C1 and C2 present two classes, FC1C2 represents
Fisher ratio betweenC1 andC2,C1 andC2 represent mean
of C1 and C2, respectively, σ 2

C1
and σ 2

C2
represent variance

of C1 and C2, respectively.

2.1 Variance-based modified log magnitude spectrum
We assume X0 and Y0 are a frame genuine speech mag-
nitude spectrum and its corresponding playback speech
magnitude spectrum, respectively, and K is frequency bin
number, we can obtain

X0 =
{
x1, x2, ..., xK

}
(2)

Y0 =
{
y1, y2, ..., yK

}
(3)

In addition, we can obtain X0 and Y0 in log-scale,
denoted as X and Y

X =
{
log(x1), log(x2), ..., log(xK )

}
(4)

Y =
{
log(y1), log(y2), ..., log(yK )

}
(5)

Supposing X and Y are means of X and Y , respectively,
we can obtain

X =
∑K

k=1 log(xk)
K

(6)

Y =
∑K

k=1 log(yk)
K

(7)

Supposing σ 2
X and σ 2

Y are variance of X and Y , respec-
tively, we can obtain

σ 2
X =

∑K
k=1(log(xk) − X)2

K
(8)

σ 2
Y =

∑K
k=1(log(yk) − Y )2

K
(9)
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Supposing FXY is Fisher’s ratio between X and Y ,
according to Eq. (1), we can obtain

FXY = (X − Y )2

σ 2
X + σ 2

Y
(10)

Supposing X′ and Y ′ satisfy:

X′ =
{
log(x1) + σ 2

X , log(x2) + σ 2
X , ..., log(xK ) + σ 2

X

}

(11)

Y ′ =
{
log(y1)+σ 2

Y , log(y2)+σ 2
Y , ..., log(yK )+σ 2

Y

}
(12)

The means of X′ and Y ′, denoted as X′ and Y ′, which are
as follows:

X′ =
∑K

k=1(log(xk) + σ 2
X)

K
= X + σ 2

X (13)

Y ′ =
∑K

k=1(log(yk) + σ 2
Y )

K
= Y + σ 2

Y (14)

The variances of X′ and Y ′, denoted as σ 2
X′ and σ 2

Y ′ ,
which are as follows:

σ 2
X′ =

∑K
k=1(log(xk) + σ 2

X − X′)2

K

=
∑K

k=1(log(xk) + σ 2
X − (X + σ 2

X))2

K

=
∑K

k=1(log(xk) − X)2

K
= σ 2

X (15)

σ 2
Y ′ =

∑K
k=1(log(yk) + σ 2

Y − Y ′)2

K

=
∑K

k=1(log(yk) + σ 2
Y − (Y + σ 2

Y ))2

K

=
∑K

k=1(log(yk) − Y )2

K
= σ 2

Y (16)

Supposing FX′Y ′ is Fisher’s ratio between X′ and Y ′,
according to Eq. (1), we can obtain

FX′Y ′ = (X′ − Y ′)2

σ 2
X′ + σ 2

Y ′

= (X + σ 2
X − Y − σ 2

Y )2

σ 2
X + σ 2

Y

= (X − Y + σ 2
X − σ 2

Y )2

σ 2
X + σ 2

Y
(17)

Let

Fmro = FX′Y ′

FXY

=
(X−Y+σ 2

X−σ 2
Y )2

σ 2
X+σ 2

Y
(X−Y )2

σ 2
X+σ 2

Y

= (X − Y + σ 2
X − σ 2

Y )2

(X − Y )2

= (1 + σ 2
X − σ 2

Y
X − Y

)2 (18)

Let

Fvrs = σ 2
X − σ 2

Y
X − Y

(19)

From Eqs. (18) and (19), we can see that Fmro is deter-
mined by Fvrs and then Fvrs is determined by σ 2

X , σ 2
Y , X,

and Y . However, as these parameters are unknown, it is
not possible to determine the value of F1 and F2 directly.
Therefore, statistical analysis methods can be used to

obtained Fvrs. To this end, APSD [25] and AVspoof 2015
[26] are used here. There are two reasons behind selecting
these two databases. One is that they are the two largest
publicly available databases of genuine-playback speech
utterances to date with 3600 and 5600 respectively. The
other is that the former is designed for the purpose of
replay speech detection and the latter for replaying spoof-
ing detection and synthetic speech detection. The 3600
genuine-playback pairs utterances from APSD and 5600
genuine-playback pairs utterances fromAVspoof 2015 can
be used to obtain the statistics of Fvrs on different σ 2

X , σ 2
Y ,

X, and Y . The CQT is applied on utterances from the two
databases to compute Fvrs on σ 2

X , σ 2
Y , X and Y frame by

frame. Finally, average Fvrs can be obtained, denoted as
Fvrs. In the same way, average values of σ 2

X , σ 2
Y , X, and Y

can be denoted as σ 2
X , σ 2

Y , X, and Y .
Table 1 shows the statistics value of Fvrs on APSD and

AVspoof 2015. From Table 1, it can be observed that Fvrs
is above 0 not only for APSD but also for AVspoof 2015.
According to the relationship between Fmro and Fvrs in
Eqs. (18) and (19), we can know that the statistics value
of Fmro is above 1 on the two databases. Further, we can
know that FX′Y ′ is larger than FXY .
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Table 1 Statistics value of Fvrs on APSD and AVspoof 2015

Database σ 2
X σ 2

Y X Y Fvrs

APSD 1.07 0.83 −3.33 −3.80 0.51

AVspoof 2015 6.22 5.41 −19.27 −21.42 0.38

The above discussion leads to the findings that discrim-
inative power between X′ and Y ′ is greater than discrim-
inative power between X and Y . In addition, from the
comparison between Eqs. (4) and (11), Eqs. (5) and (12),
in order to enhance the discriminative power between
genuine speech and playback speech, a method to modify
LMS is proposed. The VMLMS can be obtained by adding
LMS and its variance. Figure 1(a) shows the framework
how to obtain VMLMS on the basis of LMS.

2.2 Mean-based modified log magnitude spectrum
Supposing X′′ and Y ′′ satisfy

X′′ =
{
log(x1) +X, log(x2) +X, ..., log(xK ) +X

}
(20)

Y ′′ =
{
log(y1)+Y , log(yK )+Y , ..., log(yK )+Y

}
(21)

The means of X′′ and Y ′′, denoted as X′′ and Y ′′, which
are as follows:

X′′ =
∑K

k=1(log(xk) + X)

K

=
∑K

k=1 log(xk)
K

+ X

= 2X (22)

Y ′′ =
∑K

k=1(log(yk) + Y )

K

=
∑K

k=1 log(yk)
K

+ Y

= 2Y (23)

The variances of X′′ and Y ′′, denoted as σ 2
X′′ and σ 2

Y ′′ ,
which are as follows:

σ 2
X′′ =

∑K
k=1(log(xk) + X − X′′)2

K

=
∑K

k=1(log(xk) + X − 2X)2

K

=
∑K

k=1(log(xk) − X)2

K
= σ 2

X (24)

σ 2
Y ′′ =

∑K
k=1(log(yk) + Y − Y ′′)2

K

=
∑K

k=1(log(yk) + Y − 2Y )2

K

=
∑K

k=1(log(yk) − Y )2

K
= σ 2

Y (25)

Fig. 1 Schematic diagram of constant-Q variance-based octave coefficients extraction, including a VMLMS extraction and b CVOC extraction
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Supposing FX′′Y ′′ is the Fisher’s ratio between X′′ and Y ′′,
according to Eq. (1), we can obtain

FX′′Y ′′ = (X′′ − Y ′′)2

σ 2
X′′ + σ 2

Y ′′

= (2X − 2Y )2

σ 2
X + σ 2

Y

= 4(X − Y )2

σ 2
X + σ 2

Y
= 4FXY (26)

From Eq. (26), we can see that FX′′Y ′′ is four times of
FXY . In other words, discriminative power between X′′
and Y ′′ is greater than discriminative power between X
and Y . Hence, the other method to modify LMS is pro-
posed. MMLMS can be obtained by adding LMS and its
mean. Figure (2)(a) shows the framework how to obtain
MMLMS on the basis of LMS.

3 Proposedmethod II: hand-crafted
discriminative features extraction

In this section, CVOC and CMOC extraction is intro-
duced. Figures 1 and 2 show the block diagram of CVOC
and CMOC extraction, respectively.
From Fig. 1, it can be seen that it consists of two parts:

(a) VMLMS extraction and (b) CVOC extraction, in which
CVOC is obtained on the basis of VMLMS. Further, there
are five modules in VMLMS extraction, which are CQT,
magnitude spectrum, log, variance, and add. There are
twomodules in CVOC extraction on the basis of VMLMS,
which are octave segmentation and DCT.
From Fig. 2, it can be observed that it consists of two

parts: (a) MMLMS extraction and (b) CMOC extraction,

in which CMOC is obtained on the basis of MMLMS.
Further, there are five modules in MMLMS extraction,
which are CQT, magnitude spectrum, log, mean, and add.
There are two modules in CMOC extraction on the basis
of MMLMS, which are octave segmentation and DCT.
The module of CQT is used to convert speech from

the time domain into the frequency domain. Magnitude
spectrum is used to obtain magnitude spectrum on the
basis of CQT. Log is used to obtained LMS. The mod-
ules of variance (mean) and add are used to obtained
VMLMS (MMLMS) on the basis of LMS. Octave seg-
mentation is used to segment MLMS frequency bins into
blocks according to octave. The DCT is used to extract
principal information of every block. Next, CQT, octave
segmentation, and DCT will be introduced in detail.

3.1 Constant-Q transform
The CQT was proposed [51, 52]. Here, Q is defined as
the ratio of center frequency to bandwidth, which is as
Eq. (27), in which, fm is center frequency and δf is the
bandwidth.

Q = fm
δf

(27)

where fm representsmth frequency bin and it obeys

fm = f12
m−1
B (28)

where f1 is the center frequency of the lowest-frequency
bin, B is the number of bins in every octave.
From Eq. (28), we can see that every frequency bin

has different frequency bandwidth, the more k, the more
bandwidth. This is different from the frequency region in
DFT in which every frequency bin has the equal frequency
bandwidth.

Fig. 2 Schematic diagram of constant-Q mean-based octave coefficients extraction, including aMMLMS extraction and b CMOC extraction
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For a discrete time domain signal x(n), supposing
Y (m, n) is its CQT, which is defined as

Y (m, n) =
n+�Nm

2 �∑
j=n−�Nm

2 �
x(j)a∗

m(j − n − Nm
2

) (29)

where m = 1, 2, ...K is the frequency bin index, Nm are
the variable window lengths, a∗

m(n1) denotes the com-
plex conjugate of am(n), and �•� denotes rounding toward
negative infinity. The basic functions am(n) are complex-
valued time-frequency atoms and are defined by

am(n) = 1
C

ν(
n
Nm

) exp[ i(2πn
fm
fs

+ φm)] (30)

where fm is the center frequency ofm-th bin, fs is the sam-
pling rate, and ν(t) is a window function (e.g., Hanning
window). φm is a phase offset. C is a scaling factor and

C =
�Nm

2 �∑
n′=−�Nm

2 �
ν(

n′ + Nm
2

Nm
) (31)

3.2 Octave segmentation and discrete cosine transform
In our previous work, octave segmentation was proposed
to segment magnitude-phase spectrum [40] and octave
power spectrum [53]. In this work, octave segmenta-
tion is used here to segment VMLMS (MMLMS) into
un-overlapped blocks according to octave. After octave
segmentation, every block has B frequency bins. And then
DCT is used to extract principal information of every
block. Next, we will take VMLMS as an example to show
how to calculate the final coefficients.
For Y (m, n), after log operation, we can obtain

log(|Y (m, n)|). Considering log(|YVMLMS(m, n)|) is the
modified log(|Y (m, n)|). Further, after octave segmen-
tation is supplied on log(|YVMLMS(m, n)|), it can be
written as

log(|YVMLMS(m, n)|) =
{
block1, block2, ..., blockR

}

(32)

where R represents total octave number, and it satisfies

R = K
B

(33)

After DCT is employed on every block. For every block
DCT result, the former Z dimensions as selected as fea-
ture (Z is a positive integer), we can obtain CVOC of x(n),
denoted as CVOCx(n).

CVOCx(n) =
{
C1(0),C1(z), ...,CR(0),CR(z)

}
(34)

where z is from 1 to Z-1 and

C1(0) =
√

1
B

B∑
b=1

block1 (35)

C1(z) =
√

2
B

B∑
b=1

block1 cos
{

(2b − 1)zπ
2B

}
(36)

CR(0) =
√

1
B

R×B∑
b=(R−1)×B+1

blockR (37)

CR(z) =
√

2
B

R×B∑
b=(R−1)×B+1

blockR cos
{

(2b − 1)zπ
2B

}

(38)

4 Studies on ASVspoof 2017
In this section, CVOC and CMOC are evaluated on
ASVspoof 2017 corpus version 2.0 (ASVspoof 2017 V2) for
playback speech detection.

4.1 Database introduction
ASVspoof 2017 corpus was released after ASVspoof 2017
challenge [1, 30] . However, the organizers found some
zero-value samples and silence in ASVspoof 2017 will
affect the result of playback speech detection. In 2018,
the organizers updated ASVspoof 2017 by removing those
zero-value samples and silence, and named the correct
version as ASVspoof 2017 V2 [30]. It is constituted
by three subsets: training data, development, and eval-
uation data, Table 2 gives some details of ASVspoof
2017 V2.

4.2 Evaluation rule and experimental setup
In ASVspoof 2017 challenge, participants are allowed to
pool training data with development data together to train
a final model. Equal error rate (EER) is used as evalua-
tion metric. According to ASVspoof 2017 challenge rule,
two types models are trained, one is used to evaluate the
performance of the proposed features on evaluation set,
wherein 4724 utterances from training and development

Table 2 Number of speakers and the corresponding number of
genuine and playback utterances in the training, development,
and evaluation sets in ASVspoof 2017 V2

Subset
Number

Speakers Utterances Genuine Spoofed

Training 10 3014 1507 1507

Development 8 1710 760 950

Evaluation 24 13,306 1298 12,008
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set are used; the other is used to evaluate the performance
of the proposed features on development set, wherein
3014 utterances from training set are used.
In CQT, there are several important parameters, which

will affect the final performance. They are the number
of bins in a octave (B), octave number (R), sampling
period that is used for re-sampling to transform octave
power spectrum into linear power spectrum [34], gamma,
respectively. In the process of CMOC and CVOC, all the
parameters in CQT are set according to [34], in which,
B is set as 96, sampling period is set as 16, gamma is set
as 3.3026, and R is set as 9, which means that there are
9 octaves in CQT. In addition, in CMOC extraction, Z is
set as 12, which means there are 12 coefficients obtained
from every block after DCT is applied on it. Therefore,
the static dimension of CMOC is set as 108. Since our
previous works [38, 40] have shown static features will
degrade the performance in playback speech detection,
only dynamic features are used in this study. For differ-
ent feature combinations of CMOC and CVOC dynamic
features, D and A represent delta and acceleration,
respectively.
In this study, similar to our previous playback speech

detection studies [38, 40, 41], deep neural network (DNN)
is selected as a suitable classifier because we found that
DNN based systems can give better performance. The
reason may be that DNN has both a classifier function
and feature-learning ability [54]. Computational network
Toolkit [55] is used to train DNN, which is used as classi-
fier in our experiments. In addition, in the DNN training
process, stochastic gradient descent is used. In our exper-
iments, a series of four-layer DNN classifiers are trained
for different feature combinations of CMOC and CVOC,
which have two hidden layers with 512 nodes at every
layer and output layer with 2 nodes and the input nodes
number constituted by 11-frame context window of the
input feature vector. In other words, for different feature
combining of CVOC and CMOC dynamic features, the
input nodes are different, for example, for CVOC-A, the
input node number is 108 ×11 (including left five frames
and right five frames), while for CMOC-DA , the input
node number is 216 ×11.
All the DNNs trained in our experiments follow the

same method, which consists of the following: (1) The
training criterion is cross-entropy with softmax. (2) sig-
moid network is used for the hidden layers training. (3)
Mean and variance normalization is supplied on the input
data. (4) In DNN training, stochastic gradient descent is
used. (5) The learning rate is set as 0.8 for the first epoch,
3.2 for from second to fifteenth epochs, and 0.08 for six-
teenth to twenty-fifth, in DNN training, there are totally
25 epochs. (6) The minibatch size is set as 256 for the first
eopchs and 1024 for the rest epochs. (7) 0.9 is set for the
momentum.

4.3 Experiment results and analysis
Table 3 gives the experimental results on ASVspoof 2017
V2 development set using dynamic features of CMOC and
CVOC. From Table 3, two conclusions can be obtained:
(1) For CMOC, CMOC-A can give the best performance
on ASVspoof 2017 V2 development set, then followed
by CMOC-DA and CMOC-D. (2) For CVOC, CVOC-
DA performs better than CVOC-A, and then CVOC-A
performs better than CVOC-D on ASVspoof 2017 V2
development set.
Table 4 gives the experimental results on ASVspoof

2017 V2 evaluation set using different dynamic features
of CMOC and CVOC. From Table 4, several conclusions
can be drawn: (1) For CMOC, CMOC-DA gives the best
performance on ASVspoof 2017 V2 evaluation set, then
followed by CMOC-D and CMOC-A. (2) For CVOC,
CVOC-DA performs better than CVOC-D and then
CVOC-D performs better than CVOC-A on ASVspoof
2017 V2 evaluation set. (3) Comparing Table 3 with
Table 4, it can be seen that CMOC-A performs the best on
development set while CMOC-DA on evaluation set, also
it can be observed that CVOC-DA gives the best perfor-
mance on development and evaluation set. (4) CVOC-DA
performs better than CMOC-DA on ASVspoof 2017 V2
evaluation set. As mentioned above, CVOC and CMOC
are obtained by applying octave segmentation plus DCT
on VMLMS and MMLMS, respectively. Further, VMLMS
is obtained by statistical analysis method while MMLMS
is obtained bymaths formula. Though we cannot compare
their discriminative power using Fisher’s ratio directly, we
can say that CVOC has more discriminative power than
CMOC on ASVspoof 2017 V2 evaluation set from the
experimental result.

4.4 Comparison with modified log magnitude spectrum
In this subsection, modified log magnitude spectrum,
namely, MMLMS and VMLMS, their performance is
compared with corresponding CMOC and CVOC on
ASVspoof 2017 V2 evaluation set. Table 5 gives the
comparison with modified log magnitude spectrum on
ASVspoof 2017 V2 evaluation set in terms of EER. In
which, DNN is also used to model MMLMS and VMLMS,
respectively. From Table 5, it can be seen that CMOC
performs better than MMLMS and then CVOC performs
better than VMLMS on ASVspoof 2017 V2 evaluation set,

Table 3 Experimental results (EER(%)) on ASVspoof 2017 V2
development set using dynamic features of CMOC and CVOC

Feature combinations CMOC CVOC

D 23.16 19.49

A 16.24 17.75

DA 22.70 17.41
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Table 4 Experimental results (EER(%)) on ASVspoof 2017 V2
evaluation set using dynamic features of CMOC and CVOC

Feature combinations CMOC CVOC

D 15.37 12.81

A 18.28 16.03

DA 14.16 11.46

respectively. The reason is that more discriminative infor-
mation can be obtained by applying octave segmentation
plus DCT on the modified spectrums, which can make
EER reduce 16.46% and 12.25%, respectively.

4.5 Comparison with Gaussian mixture model
In this subsection, the performance of CMOC-DA and
CVOC-DA using the DNN will be compared with the
corresponding performance using GMM as the model
of CMOC-DA and CVOC-DA on ASVspoof 2017 V2.
Table 6 shows that the comparison with GMM on
ASVspoof 2017 V2 evaluation set in terms of EER, in
which, the mixture of the GMM is 512. From Table 6, sev-
eral conclusions can be obtained: (1) For CMOC-DA, the
EER can increase from 14.16% to 31.33%, which increases
by 121.26%. (2) For CVOC-DA, the EER can increase from
11.46% to 30.56%, which increases by 166.67%. (3) From
the performance comparison, we can say that DNN can
perform better than GMM on ASVspoof 2017 V2 evalua-
tion set for CMOC-DA and CVOC-DA, the reason is that
DNN has feature learning ability as well as classification,
it also confirms that consideration of DNN for our studies
is useful.

4.6 Comparison with some commonly used features
In this section, some commonly used features, for exam-
ple, MFCC and CQCC are compared and with CVOC
and CMOC on ASVspoof 2017 V2 evaluation set. In
addition, considering the modules of variance or add are
removed from Fig. 1 or the modules of mean and add are
removed from Fig. 2, the obtained feature can be named
as constant-Q octave coefficients (COC). It can be used
to compare the performance with CVOC and CMOC to
show the role of VMLMS and MMLMS in CVOC and
CMOC.
Table 7 gives the performance comparison among

MFCC-DA, CQCC-DA, COC-DA, CMOC-DA, and
CVOC-DA on ASVspoof 2017 V2 evaluation set in terms

Table 5 Comparison with modified log magnitude spectrum on
ASVspoof 2017 V2 evaluation set in terms of EER (%)

Feature EER Features EER

MMLMS-DA 16.95 CMOC-DA 14.16

VMLMS-DA 13.06 CVOC-DA 11.46

Table 6 Comparison with GMM on ASVspoof 2017 V2 evaluation
set in terms of EER (%)

Feature Model EER

CMOC-DA
DNN 14.16

GMM 31.33

CVOC-DA
DNN 11.46

GMM 30.56

of EER. In which, MFCC-DA, CQCC-DA, and COC-DA
have their respective DNN classifiers. From Table 7, it can
be seen that (1) the performance of CQCC-DA, COC-DA,
CMOC-DA, and CVOC-DA is better than MFCC-DA.
The reason is that MFCC-DA is based on DFT which is
a short-term transform while the other four features are
based on CQT which is a long-term transform. CQT can
provide more frequency details. (2) Both CVOC-DA and
CMOC-DA perform better than COC-DA, which means
that our proposed VMLMS and MMLMS have more dis-
criminative power toward playback speech. In addition, it
also confirms that our idea is correct and effective. (3) The
performance of CVOC-DA and CMOC-DA is better than
CQCC-DA and COC-DA, the reason is that modified log
magnitude spectrum is used the two feature extraction.

4.7 Comparison with some other known systems
Table 8 gives the comparison with some known systems
based on hand-crafted features on ASVspoof 2017 V2
evaluation set. In which, logE represents logarithm energy,
qDFTspe represents Q-log domain DFT-based mean nor-
malized log spectral [42], eCQCC represents extended
CQCC [38], CMPOC represents constant-Q magnitude-
phase octave coefficients [40] and CQSPIC represents
constant-Q statistics-plus-principal information coeffi-
cients [41].
From Table 8, it can be seen that the performance of

our systems are better than some other known systems.
The reason may be that discriminative features are used
our systems. However, our systems are a little worse than
the system based on qDFTspe [42]. In addition, feature
combination SDA perform the best in [30] while fea-
ture combination DA performs the best in our system.

Table 7 Comparison with some commonly used features on
ASVspoof 2017 V2 evaluation set in terms of EER (%)

Feature EER

MFCC-DA 23.79

CQCC-DA 15.18

COC-DA 14.26

CMOC-DA 14.16

CVOC-DA 11.46
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Table 8 Comparison with some known systems based on
hand-crafted features on the ASVspoof 2017 V2 evaluation set in
terms of EER(%)

Feature Classifier EER

CQCC-SDA [30] GMM 15.33

(CQCC-logE)-SDA [30] GMM 12.24

CQCC-SDA [30] I-vector 15.63

(CQCC-logE)-SDA [30] I-vector 12.93

qDFTspe [42] GMM 11.19

CQCC-SDA DNN 32.46

CQCC-DA DNN 15.18

CMPOC-DA [40] DNN 14.99

CMPOC-D [40] DNN 14.93

eCQCC-DA [38] DNN 13.38

CQSPIC-DA [41] DNN 11.09

CMOC-DA DNN 14.16

CVOC-DA DNN 11.46

The reason is that cepstral mean and variance normal-
ization (CMVN) is applied on feature in [30] and the
feature distribution has been changed while CMVN is not
applied on our feature. We also found that CQSPIC per-
forms better than CVOC and CMOC, the reason is that
CQSPIC is a combined feature, it has spectral principal
information, subband information, and short-term spec-
tral statistical information while our CVOC and CMOC
only has spectral principal information.

5 Studies on ASVspoof 2019 physical access
5.1 Database introduction and evaluation metric
In this section, CMOC and CVOC are evaluated on
ASVspoof 2019 physical access [48], which was released in
2019 for ASVspoof 2019 challenge, some details are given
in Table 9. In which, the corpus has three subset, train,
development, and evaluation set. According to ASVspoof
2019 challenge rule, tandem detection cost function (t-
DCF) [56] and EER are used as the primary and secondary
metric, respectively, which is the same as the previous
works [57–64].

Table 9 Details of ASVspoof 2019 physical access corpus

Subset
# Speakers # Utterances

Male Female Bonafide Spoof

Training 8 12 5400 48,600

Development 8 12 5400 24,300

Evaluation 30 37 18,089 13,4630

Table 10 Experimental results (t-DCF and EER(%)) on ASVspoof
2019 physical access development set using dynamic features of
CMOC and CVOC

Feature Feature combinations t-DCF EER

CMOC

D 0.235 13.686

A 0.198 10.906

DA 0.220 12.705

CVOC

D 0.234 12.737

A 0.165 8.430

DA 0.232 12.665

5.2 Experimental results and analysis
Table 10 gives the experimental results on ASVspoof 2019
physical access development set using dynamic features of
CMOC and CVOC. From Table 10, according to t-DCF
or EER, two conclusions can be obtained: (1) For CMOC,
CMOC-A can give the best performance on ASVspoof
2019 physical access development set, then followed by
CMOC-DA and CMOC-D. (2) For CVOC, CVOC-A per-
forms better than CVOC-DA, and then CVOC-DA per-
forms better than CVOC-D on ASVspoof 2019 physical
access development set.
Table 11 gives the experimental results on ASVspoof

2019 physical access evaluation set using different
dynamic features of CMOC and CVOC. From Table 11,
several conclusions can be drawn: (1) For CMOC,
CMOC-A gives the best performance on ASVspoof 2019
physical access evaluation set, then followed by CMOC-
DA and CMOC-D. (2) For CVOC, CVOC-A performs
better than CVOC-DA and then CVOC-DA performs
better than CVOC-D on ASVspoof 2019 physical access
evaluation set. (3) Comparing Table 10 with Table 11, it
can be seen that CMOC-A and CVOC-A perform the
best on ASVspoof 2019 physical access development and
evaluation set. (4) CVOC-A performs better than CMOC-
A on ASVspoof 2019 physical access development and
evaluation set. Which also confirms that CVOC-A has
more discriminative ability than CMOC-A, the same as on
ASVspoof 2017 evaluation set.

Table 11 Experimental results (t-DCF and EER(%)) on ASVspoof
2019 physical access evaluation set using dynamic features of
CMOC and CVOC

Feature Feature combinations t-DCF EER

CMOC

D 0.225 13.614

A 0.208 11.447

DA 0.212 12.582

CVOC

D 0.221 12.610

A 0.178 9.269

DA 0.213 12.029
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Table 12 Comparison with modified log magnitude spectrum
on ASVspoof 2019 physical access evaluation set in terms of
t-DCF and EER (%)

Feature t-DCF EER Feature t-DCF EER

MMLMS-A 0.357 16.330 CMOC-A 0.208 11.447

VMLMS-A 0.306 14.703 CVOC-A 0.178 9.269

5.3 Comparison with modified log magnitude spectrum
In this subsection, modified log magnitude spectrum, the
performance of MMLMS and VMLMS is compared with
their corresponding CMOC and CVOC on ASVspoof
2019 physical access evaluation set. Table 12 gives the
comparison with modified log magnitude spectrum on
ASVspoof 2019 physical access evaluation set in terms of
EER. In which, DNN is also used to model MMLMS-A
and VMLMS-A, respectively. From Table 12, it can be
seen that CMOC-A, CVOC-A perform much better than
corresponding MMLMS-A and VMLMS-A on ASVspoof
2019 physical access evaluation set in terms of t-DCF
or EER, respectively. The reason is that more discrim-
inative information can be obtained by applying octave
segmentation plus DCT on the modified spectra.

5.4 Comparison with Gaussian mixture model
In this subsection, the performance of CMOC-A and
CVOC-A using the DNN will be compared with the
corresponding performance using GMM as the model
of CMOC-A and CVOC-A on ASVspoof 2019 physi-
cal access. Table 13 shows that the comparison with
GMM on ASVspoof 2019 physical access evaluation set
in terms of EER, in which, the mixture of the GMM is
512. From Table 13, several conclusions can be obtained:
(1) For CMOC-A, the t-DCF increases from 0.208 to
0.411, which increases by 97.60%. In addition, the EER
can increase from 11.447% to 21.128%, which increases
by 84.57%. (2) For CVOC-A, the t-DCF increases from
0.178 to 0.379, which increases by 107.30%. In addition,
the EER can increase from 9.269% to 18.850%, which
increases by 103.37%. (3) From the performance com-
parison, we can say that DNN can perform better than
GMM on ASVspoof 2019 physical access evaluation set
for CMOC-A and CVOC-A.

Table 13 Comparison with GMM on ASVspoof 2019 physical
access evaluation set in terms of t-DCF and EER (%)

Feature Model t-DCF EER

CMOC-A
DNN 0.208 11.447

GMM 0.411 21.128

CVOC-A
DNN 0.178 9.269

GMM 0.369 18.850

Table 14 Comparison with some commonly used features on
ASVspoof 2019 physical access evaluation set in terms of t-DCF
and EER (%)

Feature t-DCF EER

MFCC-A 0.427 21.227

CQCC-A 0.389 21.193

eCQCC-A [38] 0.331 14.118

CQSPIC-A [41] 0.204 10.690

COC-A 0.209 11.608

CMOC-A 0.208 11.447

CVOC-A 0.178 9.269

5.5 Comparison with some commonly used features
Table 14 gives the performance comparison among
MFCC-A, CQCC-A, COC-A, CMOC-A, eCQCC-A,
CQSPIC-A, and CVOC-A on ASVspoof 2019 physical
access evaluation set in terms of t-DCF and EER. In
which, eCQCC represents extended CQCC (eCQCC)
[38], CMPOC represents constant-Q magnitude-phase
octave coefficients [40] and CQSPIC represents constant-
Q statistics-plus-principal information coefficients [41].
In addition, MFCC-A, CQCC-A, eCQCC-A, CQSPIC-
A, and COC-A have their respective DNN classifiers.
From Table 14, according to t-DCF or EER, it can be
seen that (1) The performance of CQCC-A, COC-A,
eCQCC-A, CQSPIC-A, CVOC-A, and CMOC-A is bet-
ter than MFCC-DA. The reason is that MFCC-DA is
based on DFT which is a short-term transform while
the other four features are based on CQT which is a
long-term transform. CQT can provide more frequency
details. (2) Both CMOC-A and CVOC-A perform bet-
ter than COC-A, which also confirms that our proposed
VMLMS and MMLMS have more discriminative power
than LMS toward playback speech. (3) Similar to the per-
formance between CVOC and eCQCC on ASVspoof 2017
V2, CVOC also give better performance than eCQCC on
ASVspoof 2019 physical access evaluation set. It means
that CVOV has more discriminative ability than eCQCC
on the two databases. (4) It is surprising to found that
CVOC-A performs better than CQSPIC-A on ASVspoof
2019 physical access evaluation set unlike the comparison
between them on ASVspoof 2017 V2 evaluation set. The
reason may be that CVOC can extract more discrimina-
tive information than CQSPIC onASVspoof 2019 physical
access evaluation set. (5) The performance of CMOC-A
and CVOC-A is better than CQCC-A and COC-A, the
reason is that modified log magnitude spectrum is used
the two feature extraction.

5.6 Comparison with some other known systems
Table 15 gives the comparison with some known systems
based on hand-crafted features on ASVspoof 2019 physi-
cal access evaluation set. In which, LFCC represents linear
frequency cepstral coefficients. From Table 15, it can be
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Table 15 Comparison with some known systems on ASVspoof
2019 physical access evaluation set in terms of t-DCF and EER (%)

Feature Model t-DCF EER

CQCC [48] GMM 0.245 11.04

LFCC [48] GMM 0.302 13.54

CMOC-A DNN 0.208 11.447

CVOC-A DNN 0.178 9.269

seen that the performance of our systems are better than
the two known systems. The reason is that discriminative
features are used our systems.

6 Conclusion
This paper addresses the problem how to extract hand-
crafted discriminative features for playback speech detec-
tion. Two methods to obtain modified log magnitude
spectrum are proposed by analyzing the discriminative
power between genuine speech and playback speech using
Fisher’s ratio. Then, CVOC and CMOC are extracted
by using octave segmentation and DCT on the basis
of VMLMS and MMLMS, respectively. The experimen-
tal results on ASVspoof 2017 V2 and ASVspoof 2019
physical access databases show that both CVOC and
CMOC perform better than some commonly used fea-
tures because VMLMS and MMLMS can enhance the
discriminative power between genuine speech and play-
back speech. In addition, CVOC can perform better than
CMOC on the two databases, which means that CVOC
has more discriminative power than CMOC. The EER of
CVOC on ASVspoof 2017 V2 evaluation set can reach
11.46%, and the t-DCF on ASVspoof 2019 physical access
evaluation set can achieve 0.165. It is somewhat sur-
prising to find that the proposed method can work so
well. Future work can explore how far this idea can be
extended.
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