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Abstract

In this work, we present an ensemble for automated audio classification that fuses different types of features
extracted from audio files. These features are evaluated, compared, and fused with the goal of producing better
classification accuracy than other state-of-the-art approaches without ad hoc parameter optimization. We present an
ensemble of classifiers that performs competitively on different types of animal audio datasets using the same set of
classifiers and parameter settings. To produce this general-purpose ensemble, we ran a large number of experiments
that fine-tuned pretrained convolutional neural networks (CNNs) for different audio classification tasks (bird, bat, and
whale audio datasets). Six different CNNs were tested, compared, and combined. Moreover, a further CNN, trained
from scratch, was tested and combined with the fine-tuned CNNs. To the best of our knowledge, this is the largest
study on CNNs in animal audio classification. Our results show that several CNNs can be fine-tuned and fused for
robust and generalizable audio classification. Finally, the ensemble of CNNs is combined with handcrafted texture
descriptors obtained from spectrograms for further improvement of performance. The MATLAB code used in our
experiments will be provided to other researchers for future comparisons at https://github.com/LorisNanni.

Keywords: Audio classification, Texture, Deep learning, Handcrafted features, Ensemble of classifiers, Pattern
recognition

1 Introduction
Sound classification has been assessed as a pattern recog-
nition task in different application domains for a long
time. However, new advances have changed the typi-
cal way these classifier systems can be organized. One
pivotal milestone has been the popularization of graph-
ics processing units (GPUs), devices that have made it
much more feasible to train convolutional neural net-
works (CNNs), a powerful deep learning architecture
developed by LeCun et al. [26]. Before the development
of cheap GPUs, training CNNs was too computationally
expensive for extensive experimentation.
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The wide availability and development of deep learn-
ers have produced some important changes in the clas-
sical pattern recognition framework. The traditional
workflow is a three-step process involving preprocess-
ing/transformation, feature extraction, and classification
[13], and most research following this paradigm has
focused on improving each of these steps. The feature
extraction step, for instance, has evolved to such a point
that many researchers now view it as a form of feature
engineering, the goal being to develop powerful feature
vectors calculated to describe patterns in specific ways
relevant to the task at hand. These engineered features
are commonly described in the literature as handcrafted
or handmade features. The main objective behind fea-
ture engineering is to create features that place patterns
belonging to the same class close to each other in the
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feature space, while simultaneously maximizing their dis-
tance from other classes.
With the ability to explore more easily and extensively

deep learning approaches, autonomous representation
learning has gained more attention. With deep learning,
the classification scheme is developed in such a way that
the classifier itself learns during the training process the
best features for describing patterns. In addition, due to
the nature of some deep architectures, such as CNN,
the patterns are commonly described as an image at the
beginning of the process. This has motivated researchers
using CNNs in audio classification to develop methods for
converting an audio signal into a time-frequency image.
The approach we take in this paper expands previous

studies where deep learning approaches are combined
with ensembles of texture descriptors for audio classi-
fication. Different types of audio images (spectrograms,
harmonic and percussion images, and ScatNet scattering
representations) are extracted from the audio signal and
used for training/fine-tuning CNNs and for calculating
the texture descriptors.
Our main contributions to the community are the

following:

• For several animal audio classification problems, we
test the performance obtained by fine-tuning different
pretrained CNNs (AlexNet, GoogleNet, Vgg-16,
Vgg-19, ResNet, and Inception) on ImageNet,
demonstrating that an ensemble of different
fine-tuned CNNs maximizes the performance in our
tested animal audio classification problems;

• A simple CNN is trained (not fine-tuned) directly
using the animal audio datasets and fused with the
ensemble of fine-tuned CNNs.

• Exhaustive tests are performed on the fusion between
an ensemble of handcrafted descriptors and an
ensemble system based on CNN.

• All MATLAB source code used in our experiments
will be freely available to other researchers for future
comparisons at https://github.com/LorisNanni.

Extensive experiments on the above approaches and
their fusions are carried out on different benchmark
databases. These experiments were designed to com-
pare and maximize the performance obtained by varying
combinations of descriptors and classifiers. Experimental
results show that our proposed system outperforms the
use of handcrafted features and individual deep learning
approaches.
The remainder of this work is organized as follows: In

Section 2, we describe some of the most important works
available in the literature regarding deep learning on audio
classification tasks, and pattern recognition techniques on
animal classification. In Section 3, we describe themethod

proposed here. In Section 4, we present some details about
the CNN architectures used in this work. In Section 5,
we portray some facts about the experimental setting.
In Section 6, we describe the experimental results, and
finally, the conclusions are presented.

2 Related works
To the best of our knowledge, the use of audio images
in deep learners started in 2012 when Humphrey and
Bello [22] started exploring deep architectures as a way
of finding new alternatives that addressed some music
classification problems, obtaining state of the art using
CNN in automatic chord detection and recognition [23].
In the same year, Nakashika et al. [32] performed music
genre classification on the GTZAN dataset [57] starting
from spectrograms using CNN applied on feature maps
made with the Gray Level Co-occurrence Matrix (GLCM)
[19]. One year later, Schlüter and Böck [48] performed
music onset detection using CNN, obtaining state of the
art at this task. Gwardys and Grzywczak [18] performed
music genre classification on the GTZAN dataset using
the CNNmodel winner of the Large Scale Visual Recogni-
tion Challenge (ILSVRC) 2012 edition, which was trained
on a dataset with more than one million images. Sigtia
andDixon [51] assessedmusic genre classification on both
the GTZAN and ISMIR 2004 datasets. In that paper, the
authors offered a suggestion for adjusting CNN param-
eters to obtain a good performance both in terms of
accuracy and time consumption. Finally, Costa et al. [11]
performed better than the state of the art on the Latin
Music Database (LMD) [52] by using a late fusion strat-
egy to combine CNN classifiers with features from local
binary pattern (LBP) and support vector machine (SVM).
While most work using deep learning approaches focus

on improving the classification performance, there is also
research that focuses on different aspects of the pro-
cess. Examples of such research include the work of
Pons and Serra [45], who point out that most research
using CNNs for music classification tasks employ tradi-
tional architectures that come from the image processing
domain and that employ small rectangular filters applied
to spectrograms. Pons and Serra proposed a set of exper-
iments exploring filters of different sizes; however, results
proved inferior to the best known classification meth-
ods that used handcrafted features for the tested dataset.
Wang et al. [59] proposed a novel CNN they called a
sparse coding CNN that addressed the problem of sound
event recognition and retrieval. In their experiments,
they compared their approach against other approaches
using 50 of the 105 classes of the Real World Comput-
ing Partnership Sound Scene Database (RWCP-SSD). The
authors obtained competitive and sometimes superior
results compared to most other approaches when evalu-
ating the performance under noisy and clean conditions.

https://github.com/LorisNanni


Nanni et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2020) 2020:8 Page 3 of 14

Oramas et al. [43] focused on combining different modal-
ities (album cover images, text reviews, and audio tracks)
for multilabel music genre classification using deep learn-
ing approaches appropriate for each modality. In their
experiments, they verified that the multimodal approach
outperformed single modal approaches. Finally, Lim and
Lee [27] have proposed amethod that uses a convolutional
auto-encoder method to perform harmonic and percus-
sive source separation. In another application domain, we
also can find some works focused on speech recognition
that have been accomplished using CNN as well [21, 30].
Some of the methods used in this paper are based

on research that has explored audio classification using
a visual time-frequency representation of the sound,
which has been explored in different application domains.
Research along this line began in 2011, when Costa et al.
[8] published results on music genre classification using
GLCM to describe texture features extracted from spec-
trograms that were fed into a SVM. The experiments were
conducted on the LMD dataset, and the results were com-
parable to the state of the art at that time. One year later,
Costa et al. [10] assessed music genre classification once
again by taking features from spectrogram images, but this
time, the authors used more current state-of-the-art tex-
ture descriptors, such as LBP [41], which trained SVM
classifiers on two music databases, LMD and ISMIR 2004
[6]. Results proved superior to the state of the art on the
LMD database. In 2013, Costa et al. [9] used the same
strategy with texture features obtained with Local Phase
Quantization (LPQ) [42] and Gabor filters [17]. Nanni
et al. [37] then experimentally compared several differ-
ent texture descriptors and ensembles of texture descrip-
tors to find the best general ensemble of classifiers for
music genre classification. Montalvo et al. [31] assessed
automatic spoken language identification using a similar
experimental protocol, starting from spectrograms.
In 2015, some of the same image-based techniques

mentioned above were applied to the task of animal clas-
sification. Lucio and Costa [28], for instance, performed
bird species classification using spectrograms. After that,
Freitas et al. [16] used spectrograms to detect North
Atlantic right whale calls from audio recordings collected
underwater. Nanni et al. [38] performed bird species iden-
tification by combining features obtained in the visual
domain (spectrograms) with features obtained directly
from the audio signal. In the same vein, Nanni et al.
[33, 39] performed bird species classification and North
Atlantic right whale call identification. In all of these cases,
the authors obtained results comparable to the state of the
art if not better than that of the state of the art.
The use of non-invasive artificial intelligence tech-

niques based on audio, image, and video data is ideal
for identifying and monitoring different types of ani-
mal species. These approaches are classified as having

an A degree of invasiveness according to the Canadian
Council on Animal Care (CCAC1) scale of invasiveness
(and subsequently pain scale), as they are indirect mon-
itoring techniques. In the related literature, it is possi-
ble to find other works where different techniques are
used to identify and/or monitor different types of species
such as birds [1, 12], whales, frogs [1], and bats [12].
However, most existing works still rely on traditional
machine learning approaches, where one needs to use
the feature extraction approach, clearly telling the algo-
rithms which engineered features will be used to represent
the data.
In this paper, we explore the use of deep learning

approaches, specifically approaches based on the convo-
lutional neural network (CNN), a deep learner that is able
to automatically learn features directly from the dataset
while training. It should be noted that other researchers
have also used deep learning-based approaches to deal
with different animal classification problems. For exam-
ple, Branson et al. [4] performed experiments with a
CNN for fine-grained classification of bird images. In
their experiments with SVM and CNN extracted features,
they were able to reduce the error rate on the Caltech-
UCSD Birds-200-2011 dataset (CUB-200-2011) [58] (that
contains 200 bird species and 11,788 images) by 30% in
relation to the technique Part-based One-vs-One Features
(POOF) [3].
There are also some works that combine the use of a

deep learning approach with other approaches. Cao et
al. [7], for instance, combined a CNN with handcrafted
features to classify marine animals (fishes and benthic
animals). Their experimental results showed that, by com-
bining handcrafted features with CNN learned features,
it was possible to achieve better classification results.
Salamon et al. [46] investigated the use of combining
deep learning (using CNN) and shallow learning for the
problem of bird species identification. They employed
5428 bird flight calls from forty-three bird species. In
their experiments, they used a Mel-Frequency Cepstral
Coefficient (MFCC) approach as baseline, which was sur-
passed by both approaches. Their best result was obtained
by using the combined approach. In [61], the authors
used visual, acoustic, and learned features to perform
bird species classification, on a dataset composed of bird
sounds taken from 14 different species. The authors com-
pared the results individually obtained with these three
kinds of feature, with those obtained by combining them
using a late fusion strategy. Finally, the best result was
obtained by combining visual, acoustic, and learned fea-
tures, which suggests that there is a complementarity
between these different representations.

1https://www.ccac.ca/Documents/Standards/Policies/
Categories_of_invasiveness.pdf
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Fig. 1 Overview of the base classifiers

3 Proposed approach
An overview of the base classifiers used in our pro-
posed approach is presented in Fig. 1. The main idea
behind our approach is to perform the ensemble of dif-
ferent types of approaches. These approaches can be
trained using different types of input. Figure 1 illustrates
the different types of input that are used to train the
classifiers.
The main idea is that we take an animal audio signal

and transform it into a visual image. Different methods
can be used to create this image, such as spectrograms
(Section 3.2.1), harmonic-percussive spectrogram images
(Section 3.2.2), and scattergrams (Section 3.2.3). These
images generated from the audio can then be used in
one out of two ways. In the first way, different sets of
handcrafted features are extracted from the visual repre-
sentations of the audio and used to train and test a SVM
classifier. In the second way, the visual representation of
the audio is fed directly to a standard convolutional neu-
ral network (CNN), which automatically learns a feature
representation. This representation learned by the CNN
can be used to train a SVM classifier or to make a decision
with the CNN itself. We also extract some acoustic fea-
tures from the audio signal and train a SVM classifier as a
baseline approach.

3.1 Acoustic features
The acoustic features extracted from an audio signal and
combined in the tested ensembles are those used in [36]
and summarized in Table 1.
In the next section (Section 3.2), we present details

about audio image representation.

3.2 Audio image representation
As illustrated in Fig. 2, audio signals are transformed
into four different audio images. In this section, we
describe the process of transforming audio signals into
images.

3.2.1 Spectrogram images
Audio signals are converted into spectrogram images
that shows the spectrum of frequencies along the
vertical axis as they vary in time along the horizontal
axis (shown in Fig. 2a). The intensity of each point in the
image represents the signal’s amplitude. The audio sample
rate is 22,050 Hz, and spectrograms are generated using
the Hanning window function with the Discrete Fourier
Transform (DFT) computed with a window size of 1024
samples. The left channel is discarded since no consider-
able difference exists between the content of the left/right
audio channels. Spectrogram images undergo a battery of
tests to find complementarity among the different repre-
sentations; a process that led us to select three different
values of the lower limit of the amplitude: −70 dBFS,
−90 dBFS, and−120 dBFS. At this point, it is important to
highlight that as bigger the lower limit value as higher the
contrast in the spectrogram image. Thus, we train three
different classifiers, one for each of the images using the
selected values. The classifiers are combined by sum rule.

3.2.2 Harmonic and percussion images
The harmonic and percussion images are produced
using the Harmonic-Percussive Sound Separation (HPSS)
method proposed by Fitzgerald [15]. This method works
by using a median filter across successive windows of the
spectrogram of the audio signal. The harmonic and per-
cussion images are generated using two masks: (1) one
generated by performing median filtering across the fre-
quency bins (this enhances the percussive events and sup-
presses the harmonic components) and (2) one generated
by performing median filtering across the time axis (this
suppressed the percussive events and enhances the har-
monic components). These median filtered spectrograms
are applied to the original spectrogram as masks to sep-
arate the harmonic and percussive parts of the signal. In
this work, we used the Librosa [29] implementation of the
HPSS method. The rationale behind the use of these kind
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Table 1 Acoustic and visual handcrafted features

Features Descriptors Reference

Acoustic

Statistical Spectrum Descriptors (SSD) is a set of statistical measures that describe audio content taken from
the moments on the Sonogram (the Sone) of each of the twenty-four critical bands defined according to
the Bark scale.

[49]

Rhythm Histogram (RH) is a feature set where the magnitudes of each modulation frequency bin of the
twenty-four critical bands defined according to the Bark scale are summed up to form a histogram of
“rhythmic energy” per modulation frequency.

[49]

Modulation Frequency Variance Descriptor (MVD) is a 420-dimensional feature vector that measures
variation over the critical frequency bands for each modulation frequency.

[49]

Temporal Statistical SpectrumDescriptor (TSSD) is a feature set that incorporates temporal information from
the SSD (timbre variations, changes in rhythm, etc.).

[14, 44]

Temporal Rhythm Histograms (TRH) is a feature set that captures rhythmic changes in music over time. [49]

Visual

The multiscale uniform local binary pattern (LBP). [41]

The multiscale LBP histogram Fourier descriptor (LHF) obtained from the concatenation of LBP-HF. [63]

The multiscale rotation invariant co-occurrence of adjacent LBPs (LBP-RI). [40]

The Multiscale Local Phase Quantization (MLPQ). [42]

Ensemble of LPQ, where different configurations of LPQ are examined. [35]

The Heterogeneous Auto-Similarities of Characteristics (HASC) descriptor that is applied to heterogeneous
dense features maps.

[47]

Ensemble of variants of the LHF. [34]

The Gabor filter feature extraction method where several different values for scale level and orientation are
experimentally evaluated.

[17]

Extracts the standard Binarized Statistical Image Features (BSIF) by projecting subwindows of the entire
image onto subspaces.

[24]

Adaptive hybrid pattern (AHP), which is an LBP variant that is noise robust because a quantization algorithm
is applied that uses an equal probability quantization to maximize partition entropy.

[65]

Locally Encoded Transform feature histogram (LETRIST) that explicitly encodes the joint information within
an image across feature and scale spaces.

[54]

CodebookLess Model, which is a dense sampling approach similar to Bag of Features (BoF). [60]

of images is that in some audio classification tasks, the
harmonic and the percussive content may have different
behavior for different classes considered in the problem.
Examples of harmonic and percussion images are shown
respectively in Fig. 2b, c.

3.2.3 Scattergram
The scattergram is a representation built from the Scatter-
ing Network (ScatNet). This produces an image that is the
visualization of the second-order, translation-invariant
scattering transform of 1D signals. ScatNet is a wavelet
convolutional scattering network [5, 50]. It has achieved
state-of-the-art results in many image recognition and
music genre recognition challenges. ScatNet resembles a
CNN in that the scattering transform is the set of all paths
that an input signal might take from layer to layer, but
the convolutional filters are predefined as wavelets requir-
ing no learning. Each layer in ScatNet is the association
of a linear filter bank wavelet operator (Wop) with a non-
linear operator: the complexmodulus. Each operatorWop
1 + m (m is themaximal order of the scattering transform)
performs two operations resulting in two outputs: (1) an

energy averaging operation by means of a low-pass filter
according to the largest scale, φ, and (2) energy scattering
operations along all scales using band-pass filters ψj with
j the scale index.
In audio processing the linear operators are constant-Q

filter banks. Two layers are typically sufficient for captur-
ing the majority of the energy in an audio signal with an
averaging window less than 1 s. The scattering operators
rely on a set of built-in “wavelet factories” that are appro-
priate for specific classes of signals. Wavelets are built
by dilating a mother wavelet ψ by a factor 2

1
Q for some

quality factor Q to obtain the filter bank:

ψj(t) = 2
−j
Q ψ(2

−j
Q t). (1)

The mother wavelet ψ is chosen such that adjacent
wavelets barely overlap in frequency. The scattering coef-
ficients are defined by:

S1x(t, j1) = |x � ψj1| � φ(t) (2)

S2x(t, j1, j2) = x � ψj1| � ψj1| � φ(t), (3)
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Fig. 2 Four types of audio images extracted from the audio signals. In
all representation, the horizontal axis regards to time, and the vertical
axis regards to frequencies

and so on.
The scattering representation S is a cell array, whose

elements correspond to respective layers in the scattering
transform.
In this work, we use the MATLAB toolbox ScatNet to

generate the audio scattergrams. This toolbox is avail-
able at http://www.di.ens.fr/data/software/scatnet/. More
details about the inner workings of the scattergram are
available at [2].

3.2.4 Visual feature extraction
Visual feature extraction is a three-step process:

• Step 1: An audio signal is transformed into four types
of audio images (see Section 3.2 for details): (i)
spectrogram, (ii) percussion, (iii) harmonic images,
and (iv) scattergram.

• Step 2: Each image is divided into subwindows, i.e., it
is divided into three zones along the x-axis. By this
way, the visual descriptors are applied on these
non-overlaping zones, which regard to different
moments of the audio signal.

• Step 3: Sets of handcrafted texture descriptors are
extracted from the subwindows, with each type of
descriptor classified using a separate SVM. In
addition, different CNNs are tuned/trained using the
audio images (see Section 4 for details).

The handcrafted features combined with each other and
ensembles of CNNs are those tested in [36] and listed in
Table 1. As the focus of this paper is on CNN, the reader
is referred to [36] or to the original references for more
details.

4 Convolutinal neural networks
In this section, we describe each step using CNN for fea-
ture extraction and/or classification. CNNs are deep feed-
forward neural networks (NNs) composed of intercon-
nected neurons that have inputs with learnable weights,
biases, and activation functions. CNNs are built by repeat-
edly concatenating five classes of layers: convolutional
(CONV), activation (ACT), and pooling (POOL), which
are followed by a last stage that typically contains fully
connected (FC) layers and a classification (CLASS) layer.
The CONV layer performs feature extraction by convolv-
ing input to filters. After each CONV layer, a non-linear
ACT layer is applied, such as the non-saturating ReLU
(rectified linear unit) function f (x) = max(0, x) or the
saturating hyperbolic tangent f (x) = tanh(x), f (x) =
|tanh(x)|)|, or the sigmoid function f (x) = (1 + e−x)−1.
Non-linearity activation is useful to improve classification
and the learning capabilities of the network. POOL lay-
ers perform non-linear downsampling operations aimed
at reducing the spatial size of the representation while
simultaneously decreasing (1) the number of parameters,

http://www.di.ens.fr/data/software/scatnet/
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(2) the possibility of overfitting, and (3) the computational
complexity of the network. It is a common practice to
insert a POOL layer between CONV layers. Typical pool-
ing functions are max and average. FC layers have neurons
that are fully connected to all the activations in the previ-
ous layer and are applied after CONV and POOL layers. In
the higher layers, multiple FC layers and one CLASS layer
perform the final classification. A widely used activation
function in the CLASS layer is SoftMax.
For audio classification, the audio images are downsized

in order to speed up CNN classification performance [11].
Downsizing images reduces the number of neurons in the
convolutional layers as well as the number of trainable
parameters of the network. Downsizing is accomplished
by taking only the first pixel of every four pixels in 2 × 2
subwindows of the image. As a result, both image height
and width are cut by half.
The CNN used in this work (see Fig. 3) has two 2D con-

volutional layers with 64 filters followed by a max-pool
layer. The 5th layer is a fully connected layer with 500 neu-
rons. The activation function is the rectified linear units
(ReLUs), except for the neurons of the last layer, which
use Softmax, as mentioned above. It is important that the
number of neurons in the last layer equals the number
of classes for each problem. Training is performed using
backpropagation with 50 epochs. Once trained, the out-
put of the 5th layer is used for feature extraction. This
produces a 500-dimensional vector image representation.
Fine-tuning a CNN essentially restarts the training pro-

cess of a pretrained network so that it learns a differ-
ent classification problem. We fine-tune CNNs that have
already been pretrained (initialized) on natural image data
(illustrated in Fig. 4). Each of the fine-tuned CNNs is
then used in two ways: (1) as an image feature extrac-
tor, which results in a feature vector extracted from the
image (after that, these vectors are used to train and
test multiclass support vector machines (SVMs)), and

(2) as a classifier, generating SoftMax probabilities. The
posterior probabilities from the ensemble of SVMs and
SoftMax classifiers are used to determine the class of
an image.
We fine-tune the weights of the pretrained CNN by

keeping the earlier CONV layers of the network fixed
and by fine-tuning only the higher-level FC layers since
these layers are specific to the details of the classes con-
tained in the target dataset. The last layer is designed to
be the same size as the number of classes in the new data.
All the FC layers are initialized with random values and
trained from scratch using the backpropagation algorithm
with data from new target training set. The tuning proce-
dures is performed using 40 epochs, a mini-batch with 10
observations at each iteration, and learning rate of 1e − 4.
In this work, we test and combine different CNN archi-

tectures:

1. AlexNet [25]. This CNN is the winner of the
ImageNet ILSVRC challenge in 2012 and has proven
to be quite popular. AlexNet is composed of both
stacked and connected layers. It includes five CONV
layers followed by three FC layers, with some
max-POOL layers inserted in the middle. A rectified
linear unit non-linearity is applied to each
convolutional along with a fully connected layer to
enable faster training.

2. GoogleNet [56]. This CNN is the winner of the
ImageNet ILSVRC challenge in 2014. It introduces a
new “Inception” module (INC), which is a
subnetwork consisting of parallel convolutional
filters whose outputs are concatenated. INC greatly
reduces the number of parameters, much lower than
AlexNet, for example. GoogleNet is composed of 22
layers that require training and five POOL layers.

3. VGGNet [53]. This CNN placed second in ILSVRC
2014. It is a very deep network that includes 16

Fig. 3 The deep convolutional neural network architecture (adapted from [11])
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Fig. 4 Example of fine tuning

CONV/FC layers. The CONV layers are extremely
homogeneous and use very small (3 × 3) convolution
filters with a POOL layer inserted after every two or
three CONV layers (instead after each CONV layer as
in AlexNet). The two best-performing VGG models
(Vgg-16 and Vgg-19), with 16 and 19 weight layers,
respectively, are available as pretrained models.

4. ResNet [20]. This CNN is the winner of ILSVRC
2015. ResNet is a network that is approximately
twenty times deeper than AlexNet and eight times
deeper than VGGNet. The main novelty of this CNN
is the introduction of residual (RES) layers, making it
a kind of “network-in-network” architecture, which
can be treated as a set of “building blocks” to
construct the network. It uses special skip
connections and batch normalization. The FC layers
at the end of the network are substituted by global
average pooling. ResNet explicitly reformulates layers
as learning residual functions with reference to the
layer inputs, instead of learning unreferenced
functions. ResNet is much deeper than VGGNet, but
the model size is smaller and easier to optimize than
is the case with VGGNets.

5. InceptionV3. This is a recent CNN topology that was
proposed in [55]. The networks in InceptionV3 are
scaled up networks to utilize computation as
efficiently as possible. This is accomplished by
suitable factorized convolutions and aggressive
regularization. As a result, the computational cost of
Inception is lower than even ResNet.

5 Experimental settings
In this section, we describe details about the datasets used
in this work and about the classifiers and ensembles used
here.

5.1 Datasets
Our proposed approach is assessed using the recogni-
tion rate (i.e., accuracy or AUC-ROC, depending on the
dataset) as the performance indicator on the following
animal audio datasets using:

5.1.1 BIRD
The Bird Songs 46 dataset [28] that is freely available and
developed as a subset used in [38]. All bird species with
less than ten samples were removed to build this sub-
set. This dataset is composed of 2814 audio samples of
bird vocalization taken from 46 different species found in
the South of Brazil. Although the Bird Songs 46 dataset
is composed exclusively of bird songs, calls related to
other bird species are sometimes heard in the background.
The protocol used for this dataset is a stratified 10-fold
cross-validation strategy.

5.1.2 BIRDZ
The control and real-world audio dataset used in [64].
This dataset is composed of field recordings of eleven
bird species taken from the Xeno-canto Archive and was
selected because it lends itself to comparison. BIRDZ
contains 2762 bird acoustic events (11 classes) with 339
detected “unknown” events corresponding to noise and
other unknown species vocalizations.

5.1.3 WHALE
The whale identification dataset used in “The Marinex-
plore and Cornell University Whale Detection Challenge.”
WHALE is composed of 84,503 audio clips that are 2 s
long and that contain mixtures of right whale calls, non-
biological noise, and other whale calls. Thirty thousand
samples have class labels. We used 20,000 samples for the
training set and the remaining 10,000 samples for the test-
ing set. The results on this dataset are described using
the area under the receiver operating characteristic (ROC)
curve (AUC), because it is the performance indicator used
in the original whale detection challenge.

5.1.4 BAT
A dataset for tree classification from bat-like echoloca-
tion signals shared by Yovel et al. [62]. BAT contains
1000 patterns for each of the following four classes: Apple
tree (Malus sylvestris), Norway spruce tree (Picea abies),
Blackthorn tree (Prunus spinosa), and Common beech
tree (Fagus sylvatica). The dataset is built by a biomimetic
sonar system that has a sonar head with three trans-
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Table 2 Details of fine-tuned CNNs

Network Depth Size Parameters (in millions) Image input size

AlexNet 8 227 MB 61.0 227-by-227

Vgg-16 16 515 MB 138 224-by-224

Vgg-19 19 535 MB 144 224-by-224

GoogleNet 22 27 MB 7.0 224-by-224

InceptionV3 48 89 MB 23.9 299-by-299

ResNet50 50 96 MB 25.6 224-by-224

ducers that create and record the vegetation echoes. For
each tree, the echoes are recorded from different angles
thus allowing us to classify the trees independently from
the aspect angle. As in [62], the recorded echoes are
preprocessed as follows:

1. The echo regions are cut out from the recorded
signal in the time domain and are transformed into
the time-frequency space by calculating the
magnitude of their spectrograms.

2. The Hann window (with 80% overlap between
sequential windows) is used to calculate the
spectrograms.

3. A denoising technique is performed to reduce the
noise and enhance the quality of the signal. Each
echo is represented by spectrogram composed by 85
(frequency bins) ×160 (time bins).

The protocol used for this dataset is a stratified fivefold
cross-validation strategy.

5.2 SVM configuration
Sets of these features are classified using separate SVMs,
with results combined for a final ensemble decision. The
SVM parameters were not optimized aiming to avoid the
risk of overfitting. In this way, the C parameter was set
to 1000 and γ was set to 0.1 in all experiments. Before
the classification step, the features are linearly normal-
ized to [0, 1], and the Radial Basis Function (RBF) kernel
was used to perform the SVM training. In addition, CNNs

(the focus of this paper) are tuned/trained using the audio
images. Ensembles of CNNs and handcrafted features are
then tested tomaximize generalizability and performance.
The SVM used in our experiments is the one-versus-

all SVM. Features are linearly normalized to [0, 1] before
classification, and SVMs are combined by sum rule, with
the final ensemble decision for a given sample x being the
class that receives the largest support, defined as:

sum(x) = cargmax
k=1

n∑

i=1
P(ωk|yi(x)) (4)

in which x is the instance to be classified, c is the number
of classes, n is the number of classifiers in the ensemble,
yi is the label predicted by the ith classifier in a prob-
lem with the following class labels � = ω1,ω2, ...,ωc, and
P(ωk|yi(x)) is the probability of the sample x belonging to
class ωk according to the ith classifier.

5.3 Deep learning configuration
One application of deep learning we tested is a model
trained from scratch. This model is illustrated in Fig. 3.
The fine-tunedmodels we used are listed in Section 4, and
their details are presented in Table 2.

5.4 Ensemble configuration
In the experiments, we have employed ensembles of dif-
ferent fine-tuned CNNs using different audio images.
Figure 5 presents an overview of this approach. The idea is

Fig. 5 Fusion of the sets of CNNs
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that each fine-tuned deep neural network is trained using
the same visual image as input. The final classification is
given by the sum rule.
The naming convention used hereafter for each ensem-

ble is the following:

• Fus_Spec: Ensemble of the six fine-tuned CNNs
using the spectograms as audio images.

• Fus_HP: Ensemble of the six fine-tuned CNNs using
the harmonic percussive as audio images.

• Fus_Scatter: Ensemble of the six fine-tuned CNNs
using the scattergram as audio images.

• Fus_Hand: Ensemble of the handcrafted features
presented in Table 1.

6 Results and discussion
Table 3 presents the results obtained using different
approaches. In this section, we will perform different
analyses of the results in order to answer the following
research questions:

RQ1 What is the performance of the fine-tuned deep
learning approaches in comparison with the
handcrafted features?

RQ2 What is the performance of the fine-tuned deep
learning approaches in comparison with the
standard CNN?

RQ3 Does the different fine-tuned deep learning
approaches perform similarly across the different

Table 3 Performance of different approaches on each animal sound dataset

Approach Descriptor BIRD BIRDZ WHALE† BAT

Handcrafted features
with SVM

Acoustic features 80.2 82.1 85.8 –

LBP 85.8 87.0 90.6 91.2
LBP-HF 85.0 86.2 89.9 92.6
LBP-RI 86.1 87.5 91.0 93.0
MLPQ 87.5 88.8 92.1 93.5
HASC 87.9 89.1 92.0 92.9
LHF 86.0 86.9 90.5 91.9
GABOR 87.3 87.2 90.3 90.9
BSIF 88.8 87.5 90.4 92.4
AHP 84.4 77.5 89.9 92.1
LETRIST 67.7 75.6 90.3 89.5
BoF 89.9 60.4 87.2 94.2

Deep learning using the
four types of audio
images

CNN (Fig. 3) 61.8 84.4 93.5 98.6

AlexNet 79.8 88.9 95.5 97.8
GoogleNet 77.8 86.1 94.8 95.9
Vgg-16 83.6 90.4 96.6 90.1
Vgg-19 86.3 89.6 96.6 88.6
ResNet50 81.9 88.9 96.1 93.7
InceptionV3 82.3 88.5 96.5 85.9

Ensembles of deep
learning

Fus_Spec 87.9 91.0 96.6 97.3

Fus_HP 49.8 88.1 95.2 –
Fus_Scatter 46.6 91.3 96.7 –
Fus_Spec + Fus_HP + Fus_Scatter 87.2 93.9 97.1 97.3∗
Fus_Spec + Fus_Scatter 87.9 94.8 97.2 97.3∗
Fus_Spec + Fus_Scatter + CNN 84.0 95.1 96.1 98.7∗

Ensembles of DL and
handcrafted

Fus_Spec + Fus_Scatter + CNN + Fus_Hand 94.1 99.0 95.9 99.3∗

Fus_Spec + Fus_Scatter + Fus_Hand 94.7 98.9 96.5 98.9∗

Related works Deep learning, acoustic, and visual features [36] 94.8 – 93.3 –
Acoustic and visual features [39] 94.5 – 92.2 –
MFCC + SVM [64] – 93.6 – –
DFT + SVM [62] – – – 92.0

The rates are described using accuracy, except for the WHALE dataset, in which the rates are in AUC-ROC
*Fus_Scatter and Fus_HP were not used in this result once they were not available for BAT
†
The metric used for the WHALE dataset is AUC-ROC
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audio animal datasets? Or are there approaches that
perform particularly well for each dataset?

RQ4 Is it possible to improve the obtained results by
using different types of ensembles of the different
approaches?

RQ5 How does the proposed ensembles compare with
results reported in the literature?

In order to have a general feeling about the differ-
ent approaches, we have used the ranking principle from
the Friedman statistical test to compare the different
approaches under the different datasets. Table 4 presents
the approaches ordered by their average rankings across
the four datasets. The approaches which were unable to
be applied to the BAT dataset were not considered in the
rankings.
In relation to RQ1, if we analyze the results from the

ranking of the different approaches across the different
animal audio datasets, the handcrafted approaches HASC
(11) and MLPQ (11.5) obtain better average rankings,
11 and 11.5, respectively, than Vgg-19 (11.5), AlexNet
(11.875), Vgg-16 (12.5), ResNet50 (12.5), Inception V3

Table 4 Ordered rankings of the approaches

Algorithm Average ranking

Fus_Spec + Fus_Scatter + Fus_Hand 2.875

Fus_Spec + Fus_Scatter + CNN + Fus_Hand 3.500

Fus_Spec + Fus_Scatter 4.500

Fus_Spec 5.750

Fus_Spec + Fus_HP + Fus_Scatter 6.000

Fus_Spec + Fus_Scatter + CNN 7.875

HASC 11.000

MLPQ 11.500

Vgg-19 11.500

AlexNet 11.875

Vgg-16 12.500

ResNet50 12.500

BSIF 13.375

LBP-RI 13.875

BoF 15.250

CNN 15.500

InceptionV3 15.625

GoogleNet 15.750

GABOR 16.375

LBP 16.750

LHF 16.750

LBP-HF 17.875

AHP 19.375

LETRIST 22.125

(15.625), and GoogleNet (15.75). BSIF, LBP-RI, and BoF
obtained better rankings than Inception V3 (15.625) and
GoogleNet (15.75). It should be noted that these results
were obtained by considering only the approaches that
have performance scores in all four datasets. Overall, all
deep learning approaches obtained worse results than
most handcrafted approaches in the BIRD dataset, which
make their average ranks drop in comparison with the
handcrafted features.
Regarding RQ2, Vgg-19, AlexNet, Vgg-16, and ResNet50

obtained better average rankings than the standard CNN
approach (average ranking 15.5), while InceptionV3 and
GoogleNet obtained slightly lower rankings 15.625 and
15.75, respectively. Our analysis of this result is that the
fine-tuned CNNs obtained at least similar performance in
compasion with the standard CNN.
Considering the performance of the different fine-tuned

deep learning approaches across the different datasets
(RQ3), the analysis of the average rankings shows that
the Vgg-19 performs better than the other fine-tuned
deep learning approaches on average. However, the best
obtained results for each dataset (considering only the
SVM with handcrafted features and the deep learning
approaches) are as follows: 89.9% for the BIRD dataset
with BoF, 90.4% for the BIRDZ dataset with Vgg-16, 96.6%
for the WHALE dataset with Vgg-16 and Vgg-19, and
97.8% for the BAT dataset with AlexNet. As mentioned
earlier, most of the deep learning approaches were out-
performed by the handcrafted feature sets in the BIRD
dataset, but obtained competitive results for the other
three datasets.
In order to attempt to improve the results and answer

RQ4, we performed the ensemble of different approaches,
using the naming convention presented in Section 5.4.
The analysis of the average ranking results shows that the
best average rank (2.875) was obtained by the ensemble
composed of Fus_Spec + Fus_Scatter + Fus_Hand. This is
an interesting result that corroborates with our previous
results that demonstrated that there is a complementarity
between handcrafted and learned features with a CNN in
a sound classification task [11]. Another interesting result
is that all ensembles outperform (by analyzing the aver-
age rankings) the other handcrafted and deep learning
approaches in isolation.
In relation to related work (RQ5), with the exception of

Vgg-16, the other deep learning approaches outperform
the state of the art for the BAT dataset, being the best
individual result obtained by the Fus_Spec + Fus_Scatter +
CNN + Fus_Hand. For the BIRDZ and WHALE datasets,
the ensembles of deep learning and handcrafted features
outperform the state-of-the-art results. For the BIRD
dataset, although the ensembles of deep learning and
handcrafted features do not outperform the state of the
art, they obtain the best results in the dataset (94.1%
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and 94.7%, respectively), which represents an increase of
6.2 and 6.8 percent points in comparison with the best
result (87.9%) obtained by the Fus_Spec and Fus_Spec +
Fus_Scatter ensembles and an increase of 4.2 and 4.8 per-
cent points in comparison with the best individual results
89.9% obtained with the BoF. The result on this dataset
emphasizes, once again, the complementarity between
handcrafted and learned features.
Regarding the WHALE dataset, it is important to

remark that it was built for a Kaggle competition. Only the
training set is available, so we cannot report a fair com-
parison with the competitors in the contest. The winner
of the contest obtained an AUC of 0.984, but it used a
larger training set. The winner of the contest combines
contrast-enhanced spectrograms, template matching, and
gradient boosting. Our aim is to show that an ensem-
ble of descriptors based on CNN transfer learning works
very well when used to represent an audio pattern. In the
future, we plan on testing our approach for comparing
two subwindows of the spectrograms instead of the stan-
dard template matching method used by the winner of the
Kaggle competition.
All the datasets tested in this paper are freely avail-

able and tested here with a clear testing protocol. In this
way, we report a baseline performance for the audio clas-
sification that can be used to compare other methods
developed by future researchers.

7 Conclusion
In this paper, we explored the use of deep learn-
ing approaches for automated audio classification. The
approaches examined here are based on the convolu-
tional neural network (CNN), a deep learning technique
that is able to automatically learn features directly from
the dataset during the training process. Different types
of audio images (spectrograms, harmonic and percus-
sion images, and ScatNet scattering representations) were
extracted from the audio signal and used for calculat-
ing the texture descriptors and for training/fine-tuning
CNNs. In addition, a simple CNN was trained (not fine-
tuned) directly using several different types of audio
datasets and fused with the ensemble of fine-tuned CNNs
using different pretrained CNNs (AlexNet, GoogleNet,
Vgg-16, Vgg-19, ResNet, and Inception) on ImageNet. The
experimental results presented in this paper demonstrate
that an ensemble of different fine-tuned CNNsmaximizes
the performance in our tested animal audio classification
problems. In addition, the fusion between an ensemble of
handcrafted descriptors and an ensemble system based on
CNN improved results. Our proposed system was shown
to outperform previous state-of-the-art approaches. To
the best of our knowledge, this is the largest study on
CNNs in audio classification (several topologies in four
different datasets).

In the future, we aim to add other datasets to those used
in the experiments reported here, in order to obtain a
more complete validation of the proposed ensemble. We
intend to test this system with different sound classifi-
cation tasks, as well as different CNN topologies, differ-
ent parameter settings in the fine-tuning step of transfer
learning, and different approaches for data augmentation.
We also plan to evaluate strategies to select the region
of interest of the spectrograms, aiming to select only the
most important subwindow of the full spectrograms.
Finally, we want to highlight the fact that the approach

based on the extraction of visual features is freely available
to other researchers for future comparisons. MATLAB
code is located at https://github.com/LorisNanni.
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