
Sørensen et al. EURASIP Journal on Audio, Speech, andMusic
Processing (2020) 2020:10
https://doi.org/10.1186/s13636-020-00176-2

RESEARCH Open Access

A depthwise separable convolutional
neural network for keyword spotting on an
embedded system
Peter Mølgaard Sørensen, Bastian Epp and Tobias May*

Abstract

A keyword spotting algorithm implemented on an embedded system using a depthwise separable convolutional
neural network classifier is reported. The proposed system was derived from a high-complexity system with the goal
to reduce complexity and to increase efficiency. In order to meet the requirements set by hardware resource
constraints, a limited hyper-parameter grid search was performed, which showed that network complexity could be
drastically reduced with little effect on classification accuracy. It was furthermore found that quantization of
pre-trained networks using mixed and dynamic fixed point principles could reduce the memory footprint and
computational requirements without lowering classification accuracy. Data augmentation techniques were used to
increase network robustness in unseen acoustic conditions by mixing training data with realistic noise recordings.
Finally, the system’s ability to detect keywords in a continuous audio stream was successfully demonstrated.

Keywords: Keyword spotting, Speech recognition, Embedded software, Deep learning, Convolutional neural
networks, Quantization

1 Introduction
During the last decade, deep learning algorithms have
continuously improved performances in a wide range of
applications, among others automatic speech recogni-
tion (ASR) [1]. Enabled by this, voice-controlled devices
constitute a growing part of the market for consumer elec-
tronics. Artificial intelligence (AI) digital assistants utilize
natural speech as the primary user interface and often
require access to cloud computation for the demanding
processing tasks. However, such cloud-based solutions are
impractical for many devices and cause user concerns
due to the requirement of continuous internet access
and due to concerns regarding privacy when transmitting
audio continuously to the cloud [2]. In contrast to these
large-vocabulary ASR systems, devices with more limited
functionality could be more efficiently controlled using

*Correspondence: tobmay@dtu.dk
Center for Applied Hearing Research, Technical University of Denmark, Ørsteds
Plads, Lyngby, Denmark

only a few speech commands, without the need of cloud
processing.
Keyword spotting (KWS) is the task of detecting key-

words or phrases in an audio stream. The detection
of a keyword can then trigger a specific action of the
device. Wake-word detection is a specific implementation
of a KWS system where only a single word or phrase is
detected which can then be used to, for example, trigger
a second, more complex recognition system. Early pop-
ular KWS systems have typically been based on hidden
Markov models (HMMs) [3–5]. In recent years, however,
neural network-based systems have dominated the area
and improved the accuracies of these systems. Popular
architectures include standard feedforward deep neural
networks (DNNs) [6–8] and recurrent neural networks
(RNNs) [9–12]. Strongly inspired by advancements in
techniques used in computer vision (e.g., image classifi-
cation and facial recognition), the convolutional neural
network (CNN) [13] has recently gained popularity for
KWS in small memory footprint applications [14]. The

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-020-00176-2&domain=pdf
http://orcid.org/0000-0002-5463-5509
mailto: tobmay@dtu.dk
http://creativecommons.org/licenses/by/4.0/

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 2 of 14

depthwise separable convolutional neural network (DS-
CNN) [15, 16] was proposed as an efficient alternative to
the standard CNN. The DS-CNN decomposes the stan-
dard 3-D convolution into 2-D convolutions followed by
1-D convolutions, which drastically reduces the number
of required weights and computations. In a comparison
of multiple neural network architectures for KWS on
embedded platforms, the DS-CNN was found to be the
best performing architecture [17].
For speech recognition and KWS, the most commonly

used speech features are the mel-frequency cepstral coef-
ficients (MFCCs) [17–20]. In recent years, there has,
however, been a tendency to use mel-frequency spectral
coefficients (MFSCs) directly with neural network-based
speech recognition systems [6, 14, 21] instead of applying
the discrete cosine transform (DCT) to obtain MFCCs.
This is mainly because the strong correlations between
adjacent time-frequency components of speech signals
can be exploited efficiently by neural network architec-
tures such as the CNN [22, 23]. An important property of
MFSC features is that they attenuate the characteristics of
the acoustic signal irrelevant to the spoken content, such
as the intonation or accent [24].
One of the major challenges of supervised learning algo-

rithms is the ability to generalize from training data to
unseen observations [25]. Reducing the impact of speaker
variability on the input features can make it easier for the
network to generalize. Another way to improve the gener-
alization is to ensure a high diversity of the training data,
which can be realized by augmenting the training data.
For audio data, augmentation techniques include filter-
ing [26], time shifting and time warping [27], and adding
background noise. However, the majority of KWS sys-
tems either have used artificial noises, such as white or
pink noise, which are not relevant for real-life applications
or have considered only a limited number of background
noises [14, 17, 28].
Because of the limited complexity of KWS compared to

large-vocabulary ASR, low-power embedded micropro-
cessor systems are suitable targets for running real-time
KWS without access to cloud computing [17]. Imple-
menting neural networks on microprocessors presents
two major challenges in terms of the limited resources
of the platform: (1) memory capacity to store weights,
activations, input/output, and the network structure itself
is very limited for microprocessors; (2) computational
power on microprocessors is limited. The number of
computations per network inference is therefore limited
by the real-time requirements of the KWS system. To
meet these strict resource constraints, the size of the net-
works must be restricted in order to reduce the number
of network parameters. Techniques like quantization can
further be used to reduce the computational load and
memory footprint. The training and inference of neural

networks is typically done using floating-point precision
for weights and layer outputs, but for implementation on
mobile devices or embedded platforms, fixed point for-
mats at low bit widths are often more efficient. Many
microprocessors support single instruction, multiple data
(SIMD) instructions, which perform arithmetic on mul-
tiple data points simultaneously, but typically only for
8/16 bit integers. Using low bit width representations
will therefore increase the throughput and thus lower the
execution time of network inference. Previous research
has shown that, for image classification tasks, it is pos-
sible to quantize CNN weights and activations to 8-bit
fixed point format with a minimum loss of accuracy
[29, 30]. However, the impact of quantization on the per-
formance of a DS-CNN-based KWS system has not yet
been investigated.
This paper extends previous efforts [17] to implement

a KWS system based on a DS-CNN by (a) identifying
performance-critical elements in the system when scal-
ing the network complexity, (b) augmenting training data
with a wider variety of realistic noise recordings and by
using a controlled range of signal-to-noise ratios (SNRs)
that are realistic for practical KWS applications during
both training and testing. Moreover, the ability of the
KWS system to generalize to unseen acoustic conditions
was tested by evaluating the system performance in both
matched and mismatched background noise conditions,
(c) evaluating the effect of quantizing individual network
elements and (d) evaluating the small-footprint KWS sys-
tem on a continuous audio stream rather than single infer-
ences. Specifically, the paper reports the implementation
of a 10-word KWS system based on a DS-CNN clas-
sifier on a low-power embedded microprocessor (ARM
Cortex M4), motivated by the system in [17]. The KWS
system described in the present study is targeted at real-
time applications, which can be either always on or only
active when triggered by an external system, e.g., a wake-
word system. To quantify the network complexity where
the performance decreases relative to the system in [17],
we tested a wide range of system parameters between 2
layers and 10 filters per layer up to 9 layers and 300 fil-
ters per layer. The network was trained with keywords
augmented with realistic background noises at a wide
range of SNRs and the network’s ability to generalize to
unseen acoustic conditions was evaluated. With the goal
to reduce the memory footprint of the system, it was
investigated how quantization of weights and activations
affected performance by gradually lowering the bit widths
using principles of mixed and dynamic fixed point repre-
sentations. In this process, single-inference performance
was evaluated, motivated by the smaller parameter space
and the close connection between the performance in
single-inference testing and continuous audio presenta-
tion. In the final step, the performance of the suggested

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 3 of 14

Fig. 1 Overview of the different stages in the KWS system. (A) A 1000-ms window of input signal. (B) Speech features are extracted from the input
signal. (C) DS-CNN classifier generates probabilities of output classes. (D) Probabilities are combined in a posterior handling stage

KWS system was tested when detecting keywords in a
continuous audio stream and compared to the reference
system of high complexity.

2 System
2.1 KWS system
The proposed DS-CNN-based KWS system consisted of
three major building blocks as shown in Fig. 1. First,
MFSC features were extracted based on short time blocks
of the raw input signal stream (pre-processing stage).
TheseMFSC features were then fed to the DS-CNN-based
classifier, which generated probabilities for each of the
output classes in individual time blocks. Finally, a pos-
terior handling stage combined probabilities across time
blocks to improve the confidence of the detection. Each
of the three building blocks is described in detail in the
following subsections.

2.2 Feature extraction
The MFSC extraction consisted of three major steps, as
shown in Fig. 2. The input signal was sampled at a rate
of 16 kHz and processed by the feature extraction stage
in blocks of 1000 ms. For each block, the short-time dis-
crete Fourier transform (STFT) was computed by using a
Hann window of 40-ms duration with 50% overlap, giv-
ing a total of 49 frames. Each frame was zero-padded to
a length of 1024 samples before computing a 1024-point
discrete Fourier transform (DFT). Afterwards, a filterbank

Fig. 2 Stages of MFSC feature extraction used as input to the DS-CNN
classifier. A spectrogram was computed based on the audio signal.
From the spectrogram, a mel-frequency spectrogram with
log-compression was derived to produce MFSC features

with 20 triangular bandpass filters with a constant Q-
factor spaced equidistantly on the mel-scale between 20
and 4000 Hz [31] was applied. The mel-frequency band
energies were then logarithmically compressed, produc-
ing the MFSC features, resulting in a 2-D feature matrix
of size 20 × 49 for each inference. The number of log-
mel features was derived from initial investigations on a
few selected network configurations where it was found
that 20 log-mel features proved most efficient in terms of
performance vs the resources used.

2.3 DS-CNN classifier
The classifier had one output class for each of the key-
words it should detect. It furthermore had an output class
for unknown speech signals and one for signals containing
silence. The input to the network was a 2-dimensional
feature map consisting of the extracted MFSC features.
Each convolutional layer of the network then applied a
number of filters, Nfilters, to detect local time-frequency
patterns across input channels. The output of each net-
work inference was a probability vector, containing the
probability for each output class. The general architec-
ture of the DS-CNN classifier is shown in Fig. 3. The
first layer of the network was in all cases a standard con-
volutional layer. Following the convolutional layer was
a batch-normalization layer with a rectified linear unit
(ReLU) [32] activation function.
Batch normalization [33] was employed to accelerate

training and to reduce the risk of overfitting through reg-
ularization. By equalizing the distributions of activations,
higher learning rates can be used because the magni-
tude of the gradients of each layer is more similar, which
results in faster model convergence. Because the activa-
tions of a single audio file are not normalized by the mean
and variance of each audio file, but instead by the mean
and variance of the mini-batch [32] in which it appears,
a regularization effect is created by the random selection
of audio files in the mini-batch. The batch-normalization
layer was followed by a number of depthwise separable
convolutions (DS-convs) [16], which each consisted of a
depthwise convolution (DW-conv) and pointwise convo-
lution (PW-conv) as illustrated in Fig. 4, both followed by a

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 4 of 14

Fig. 3 General architecture of the DS-CNN. The input feature map is
passed onto the first convolution layer, followed by batch
normalization and ReLU activations. The following DS-convolution
layers 1-N each consist of a depthwise convolution, followed by
batch-normalization and ReLU activation, passed on to a pointwise
convolution and another batch normalization and ReLU activation. At
the end of the convolutional layers, the output undergoes average
pooling and a fully connected (FC) layer with softmax activations

batch-normalization layer with ReLU activation. An aver-
age pooling layer then reduced the number of activations
by applying an averaging window to the entire time-
frequency feature map of each input channel. Finally, a
fully connected (FC) layer with softmax [32] activations
generated the probabilities for each output class.

2.4 Posterior handling
The classifier was run 4 times per second, resulting in
a 250-ms shift and an overlap of 75%. As the selected
keywords were quite short in duration, they typically
appeared in full length in multiple input blocks. In
order to increase the confidence of the classification an
integration period, Tintegrate, was introduced, in which
the predicted output probabilities of each output class
were averaged. The system then detected a keyword if
any of these averaged probabilities exceeded a prede-
termined detection threshold. To avoid that the same
word would trigger multiple detections by the system,
a refractory period, Trefractory, was introduced. When
the system detected a keyword, it would be suppressed
from detecting the same keyword during the refractory
period. For this paper, an integration period of Tintegrate =
750 ms and a refractory period of Trefractory = 1000 ms
were used.

3 Methods
3.1 Dataset
The Speech Commands dataset [34] was used for train-
ing and evaluation of the networks. The dataset consisted
of 65000 single-speaker, single-word recordings of 30 dif-
ferent words. A total of 1881 speakers contributed to
the dataset, ensuring a high speaker diversity. The fol-
lowing 10 words were used as keywords: {“Yes,” “No,”
“Up,” “Down,” “Left,” “Right,” “On,” “Off,” “Go,” “Stop”}. The
remaining 20 words of the dataset were used to train the
category “unknown.” The dataset was split into “training,”
“validation,” and “test” sets with the ratio 80 : 10 : 10,
while restricting recordings of the same speaker to only

Fig. 4 Overview of a single depthwise separable convolutional layer consisting of a depthwise convolution followed by a pointwise convolution. (1)
The depthwise convolution separately applies a 2-dimensional filter to each of the channels in the input, extracting time-frequency patterns. (2) The
pointwise convolution then applies a number of 1-dimensional filters to the output of the depthwise convolution across all channels

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 5 of 14

appear in one of the three sets. For training, 10% of the
presented audio files were labeled silence, i.e., containing
no spoken word; 10% were unknown words; and the
remaining contained keywords.

3.2 Data augmentation
For training, validation, and testing, the speech files were
mixed with 13 diverse background noises at a wide range
of SNRs. The background noise signals were real-world
recordings, some containing speech, obtained from two
publicly available databases, the TUT database [35] and
the DEMAND database [36]. The noise signals were split
into two sets, reflecting matched and mismatched condi-
tions (see Table 1). The networks were either trained on
the clean speech files or trained on speech files mixed with
noise signals from noise set 1 with uniformly distributed
A-weighted SNRs in the range between 0 and 15 dB. To
add background noise to the speech files, the filtering and
noise adding tool (FaNT) [37] was used. Noise set 2 was
then used to evaluate the network performance in acoustic
conditions that were not included in the training. Separate
recordings of each noise type were used for training and
evaluation.

3.3 Resource estimation
To compare the resources used by different network con-
figurations, the following definitions were used to esti-
mate number of operations, memory, and execution time.

3.3.1 Operations
The number of operations are per inference of the net-
work, defined as the total number of multiplications and
additions in the convolutional layers of the DS-CNN.

3.3.2 Memory
The memory reported is the total memory required to
store the network weights/biases and layer activations,
assuming 8-bit variables. As the activations of one layer
are only used as input for the next layer, the memory
for the activations can be reused. The total memory allo-
cated for activations is then equal to the maximum of the
required memory for inputs and outputs of a single layer.

3.3.3 Execution time
The execution times reported in this paper are estimations
based on measured execution times of multiple different-

Table 1 Matched and mismatched noise sets

Noise set 1 (matched) Noise set 2 (mismatched)

Exercise bike, running tap, bus, cafe,
car, city center, grocery store, metro
station, office, park, miaowing, train,
tram

Dish washing, beach, forest path,
home, library, residential area,
sports field, river, living room, office
meeting, office hallway, public
cafeteria, traffic

The specific recordings were taken from [35] and [36]

sized networks. The actual network inference execution
time of implemented DS-CNNs on the Cortex M4 was
measured using the Cortex M4’s on-chip timers, with the
processor running at a clock frequency of 180 MHz. In
this study, only two hyper-parameters were altered: the
number of DS-conv layers, Nlayers, and the number of fil-
ters applied per layer, Nfilters. The number of layers was
varied between 2 and 9, and the number of filters per layer
was varied between 10 and 300. Convolutional layers after
layer 7 had the same parameters as seen in the last layers
in Table 2 in terms of filter size and strides.

3.4 Quantization methods
The fixed point format represents floating-point numbers
as N-bit 2’s complement signed integers, where the BI
leftmost bits (including the sign-bit) represent the inte-
ger part, and the remaining BF rightmost bits represent
the fractional part. The following two main concepts were
applied when quantizing a pre-trained neural network
effectively [29].

3.4.1 Mixed fixed point precision
The fully connected and convolutional layers of a DS-
CNN consist of a long series of multiply-and-accumulate
(MAC) operations, where network weights multiplied
with layer activations are accumulated to give the out-
put. Using different bit widths for different parts of the
network, i.e., mixed precision, has been shown to be an
effective approach when quantizing CNNs [38], as the
precision required to avoid performance degradation may
vary in different parts of the network.

3.4.2 Dynamic fixed point
The weights and activations of different CNN layers will
have different dynamic ranges. The fixed point format
requires that the range of the values to represent is known
beforehand, as this determines BI and BF . To ensure a high
utilization of the fixed point range, dynamic fixed point
[39] can be used, which assigns the weights/activations
into groups of constant BI .
For faster inference, the batch-norm operations were

fused into the weights of the preceding convolutional layer

Table 2 Default hyper-parameters for the test network
investigated in experiments

Layer Op. Nfilters Filter dim. (Wt × Wf) Stridet Stridef

Conv. 76 10 × 4 2 1

DS-conv. 76 3 × 3 2 2

DS-conv. 76 3 × 3 1 1

DS-conv. 76 3 × 3 1 1

DS-conv. 76 3 × 3 1 1

DS-conv. 76 3 × 3 1 1

DS-conv. 76 3 × 3 1 1

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 6 of 14

and quantized after this fusion. BI and BF were deter-
mined by splitting the network variables for each layer into
groups of weights, biases, and activations, and estimating
the dynamic range of each group. The dynamic ranges of
groups with weights and biases were fixed after training,
while the ranges of activations were estimated by running
inference on a large number of representative audio files
from the dataset and generating statistical parameters for
the activations of each layer. BI and BF were then cho-
sen such that saturation is avoided. The optimal bit widths
were determined by dividing the variables in the network
into separate categories based on the operation, while the
layer activations were kept as one category. The effects
on performance were then examined when reducing the
bit width of a single category while keeping the rest of
the network at floating-point precision. The precision of
the weights and activations in the network was varied in
experiment 3 between 32-bit floating-point precision and
low bit width fixed point formats ranging from 8 to 2 bit.

3.5 Training
All networks were trained with Google’s TensorFlow
machine learning framework [40] using an Adam opti-
mizer to minimize the cross-entropy loss. The networks
were trained in 30,000 iterations with a batch size of 100.
Similar to [17], an initial learning rate of 0.0005 was used;
after 10,000 iterations, it was reduced to 0.0001; and for
the remaining 10,000 iterations, it was reduced to 0.00002.
During training, audio files were randomly shifted in time
up to 100 ms to reduce the risk of overfitting.

3.6 Evaluation
To evaluate the DS-CNN classifier performance in the
presence of background noise, test sets with different
SNRs between −5 and 30 dB were used. Separate test
sets were created for noise signals from noise set 1 and
noise set 2. The system was tested by presenting single
inferences (single-inference testing) to evaluate the per-
formance of the network in isolation. In addition, the sys-
tem was tested by presenting a continuous audio stream
(continuous-stream testing) to approximate a more realis-
tic application environment.

3.6.1 Single-inference testing
For single-inference testing, the system was tested with-
out the posterior handling stage. For each inference, the
maximum output probability was selected as the detected
output class and compared to the label of the input sig-
nal. When testing, 10% of the samples were silence, 10%
were unknown words, and the remaining contained key-
words. Each test set consisted of 3081 audio files, and
the reported test accuracy specified the ratio of correctly
labeled audio files to the total amount of audio files in
the test. To compare different network configurations, the

accuracy was averaged across the range 0− 20 dB SNR, as
this reflects SNRs in realistic conditions [41].

3.6.2 Continuous audio stream testing
Test signals with a duration of 1000 s were created for
each SNR and noise set, with words from the dataset
appearing approximately every 3 s. Seventy percent of
the words in the test signal were keywords. The test sig-
nals were constructed with a high ratio of keywords to
reflect the use case in which the KWS system is not run
in an always-on state but instead triggered externally by,
e.g., a wake-word detector. A hit was counted if the sys-
tem detected the keyword within 750ms after occurrence,
and the hit rate (also called true positive rate (TPR)) then
corresponds to the number of hits relative to the total
number of keywords in the test signal. The false alarm rate
(also called false positive rate (FPR)) reported is the total
number of incorrect keyword detections relative to the
duration of the test signal, here reported as false alarms
per hour.

3.7 Network test configuration
Unless stated otherwise, the parameters summarized in
Table 2 are used. The network had 7 convolutional layers
with 76 filters for each layer.
As a baseline for comparison, a high-complexity net-

work was introduced. The baseline network had 8 con-
volutional layers with 300 filters for each layer with
hyper-parameters as summarized in Table 3. The baseline
network was trained using the noise-augmented dataset
and evaluated using floating-point precision weights and
activations.

3.8 Platform description
Table 4 shows the key specifications for the FRDM
K66F development platform used for verification of the
designed systems. The deployed network used 8-bit
weights and activations, but performed feature extrac-
tion using 32-bit floating-point precision. The network
was implemented using the CMSIS-NN library [42] which

Table 3 Default hyper-parameters for the baseline network

Layer Op. Nfilters Filter dim. (Wt × Wf) Stridet Stridef

Conv. 300 10 × 4 2 1

DS-conv. 300 3 × 3 2 2

DS-conv. 300 3 × 3 1 1

DS-conv. 300 3 × 3 1 1

DS-conv. 300 3 × 3 1 1

DS-conv. 300 3 × 3 1 1

DS-conv. 300 3 × 3 1 1

DS-conv. 300 3 × 3 1 1

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 7 of 14

Table 4 FRDM K66F key specs

Processor Arm Cortex M4 32-bit core, with floating-
point unit

Architecture Armv7E-M Harvard

DSP extensions Single cycle 16/32-bit MAC Single cycle dual
16-bit MAC

Max. CPU Frequency 180 MHz

SRAM 256 KB

Flash 2MB

features neural network operations optimized for Cortex-
M processors.

4 Results
In experiment 1, the effect of training the network on
noise-augmented speech on single-inference accuracy
was investigated. The influence of network complexity
was assessed in experiment 2 by systematically varying the
number of convolutional layers and the number of filters
per layer. Experiment 3 investigated the effects on perfor-
mance when quantizing network weights and activations
for fixed point implementation. Finally, the best perform-
ing network was tested on a continuous audio stream and
the impact of the detection threshold on hit rate and false
positive rate was evaluated.

4.1 Experiment 1: Data augmentation
Figure 5 shows the single-inference accuracies when
using noise-augmented speech files for training. For SNRs
below 20 dB, the network trained on noisy data had a
higher test accuracy than the network trained on clean
data, while the accuracy was slightly lower for SNRs
higher than 20 dB. In the range between−5 and 5 dB SNR,

the average accuracy for the network trained on noisy data
was increased by 11.1% and 8.6% for the matched and
mismatched noise sets respectively relative to the training
on clean data. Under clean test conditions, it was found
that the classification accuracy of the network trained
on noisy data was 4% lower than the network trained
on clean data. For both networks, there was a difference
between the accuracy on the matched and mismatched
test. The average difference in accuracy in the range from
−5 to 20 dB SNR was 3.3% and 4.4% for the network
trained on clean and noisy data, respectively. The high-
complexity baseline network performed on average 3%
better than the test network trained on noisy data.

4.2 Experiment 2: Network complexity
Figure 6 shows a selection of the most feasible net-
works for different numbers of layers and numbers of
filters per layer. For each trained network, the table spec-
ifies single-inference average accuracy in the range 0 −
20 dB SNR for both test sets (accuracy in parenthe-
ses for the mismatched test). Moreover, the number of
operations per inference, the memory required by the
model for weights/activations, and the estimated execu-
tion time per inference on the Cortex M4 are speci-
fied. For networks with more than 5 layers, no signifi-
cant improvement (<1%) was obtained when increasing
the number of filters beyond 125. Networks with less
than 5 layers gained larger improvements from using
more than 125 filters, though none of those networks
reached the accuracies obtained with networks with
more layers.
Figure 7 shows the accuracies of all the layer/filter com-

binations of the hyper-parameter search as a function
of the operations. For the complex network structures,
the deviation of the accuracies was very small, while for

Fig. 5 Single-inference test accuracy of networks trained on clean and noisy speech. Networks were tested in both noise set 1 (matched) and noise
set 2 (mismatched). The number in parentheses specifies the average accuracy in the range from 0 to 20 dB SNR. The performance of the baseline
model trained on noisy data is shown for comparison

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 8 of 14

Fig. 6 Selection of hyper-parameter grid search. The first line in each box indicates the average accuracy in the range of 0 − 20 dB SNR for the
matched and mismatched (in brackets) test. The number in the second line shows the number of operations and the required memory (in brackets).
The third line indicates the execution time. The color indicates the accuracy (lighter color lower accuracy)

networks using few operations, there was a large differ-
ence in accuracy depending on the specific combination of
layers and filters. For networks ranging between 5 and 200
million operations, the difference in classification accu-
racy between the best performing models was less than
2.5%. Depending on the configuration of the network,
it is therefore possible to drastically reduce the num-
ber of operations while maintaining a high classification
accuracy.

In Fig. 8, a selection of the best performing networks
is shown as a function of required memory and opera-
tions per inference. The label for each network specifies
the parameter configuration [Nlayers,Nfilters] and the aver-
age accuracy in 0 − 20 dB SNR for noise set 1 and 2.
The figure illustrates the achievable performance given
the platform resources and shows that high accuracy was
reached with relatively simple networks. From this inves-
tigation, it was found that the best performing network

Fig. 7 Average accuracy in the range between 0 and 20 dB SNR of all trained networks in hyper-parameter search as a function of the number of
operations per inference

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 9 of 14

Fig. 8 Best performing networks of grid search for different memory
and computational requirements

fitting the resource requirements of the platform con-
sisted of 7 DS-CNN layers with 76 filters per layer, as
described in Section 3.7.

4.3 Experiment 3: Quantization
Table 5 shows the single-inference test results of the quan-
tized networks, where each part of the network specified
in Section 3.7 was quantized separately, while the remain-
der of the network was kept at floating-point precision.
All of the weights and activations could be quantized

to 8-bit using dynamic fixed point representation with no
loss of classification accuracy, and the bit widths of the
weights could be further reduced to 4 bits with only small
reductions in accuracy. In contrast, reducing the bit width
of activations to less than 8 bits significantly reduced clas-
sification accuracy. While the classification accuracy was
substantially reduced when using only 2 bits for regular
convolution parameters and FC parameters, the perfor-
mance completely broke downwhen quantizing pointwise
and depthwise convolution parameters and layer activa-
tions with 2 bits. The average test accuracy in the range of
0− 20 dB SNR of the network with all weights and activa-
tions quantized to 8 bits was 83.2% for test set 1 (matched)
and 79.2% for test set 2 (mismatched), which was the same
performance as using floating-point precision.

Table 5 Single-inference accuracies of networks with
individually quantized network parts

Floating point accuracy 83.2% (79.3%)

Bit width 8-bit 4-bit 2-bit

Convolution weights 83.2% (79.1%) 82.3% (78.8%) 46.8% (44.6%)

DW-Convolution weigths 83.3% (79.3%) 80.0% (76.7%) 12.0% (12.1%)

PW-Convolution weights 83.4% (79.2%) 78.9% (75.4%) 11.2% (10.8%)

Fully connected weights 83.2% (79.3%) 82.9% (79.1%) 70.1% (63.9%)

Layer activations 83.2% (79.2%) 53.6% (52.0%) 8.6% (8.7%)

Using 8-bit fixed point numbers instead of 32-bit float-
ing point reduced the required memory by a factor of 4,
from 366 to 92KB, with 48KB reserved for activations and
44KB for storing weights. Utilizing mixed fixed point pre-
cision and quantizing activations to 8 bits and weights to
4 bits would reduce the required memory to 70KB.

4.4 Experiment 4: Continuous audio stream
Figure 9 shows the hit rate and false positive rate obtained
by the KWS system on the continuous audio signals. The
system was tested using different detection thresholds,
which affected the system’s inclination towards detecting
a keyword. It was found that the difference in hit rates
was constant as a function of SNR when the detection
threshold was altered, while the difference in false posi-
tive rates increased towards low SNRs. For both test sets,
the hit rate and false positive rate saturated at SNRs higher
than 15 dB. Figure 10 shows the corresponding DET curve
obtained for the test network and baseline network.

4.5 FRDM K66F implementation
Table 6 shows the distribution of execution time over
network layers for a single inference for the implemen-
tation on the FRDM K66F development board. The total
execution time of the network inference was 227.4 ms
, which leaves sufficient time for feature extraction and
audio input handling, assuming 4 inferences per second.

5 Discussion
Experiment 1 showed that adding noise to the training
material increased the classifier robustness in low SNR
conditions. The increase in accuracy, compared to the
same network trained on clean speech files, was most sig-
nificant for the matched noise test, where the test data
featured the same noise types as the training material. For
the mismatched test, the increase in accuracy was slightly
smaller. A larger difference in performance between clean
and noisy training was expected, but as explained in [43],
the dataset used was inherently noisy and featured invalid
audio files, which could diminish the effect of adding
more noise. For both test sets, the network trained on
clean data performed better under high SNRs, i.e., SNR >

20 dB. From the perspective of this paper however, the
performance in high SNRs was of less interest as the
focus was on real-world application. If the performance in
clean conditions is also of concern, [28] demonstrated that
the performance decrease in clean conditions could be
reduced by including clean audio files in the noisy train-
ing. As was also found in [28], it was observed that the
noisy training enabled the network to adapt to the noise
signals and improve the generalization ability, by forcing
it to detect patterns more unique to the keywords. Even
though the two noise sets consisted of different noise envi-
ronment recordings, many of the basic noise types, such

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 10 of 14

Fig. 9 Continuous audio stream test results. Hit rate and false alarm rates are shown as a function of SNR and detection threshold in amatched
noise conditions (noise set 1) and bmismatched noise conditions (noise set 2). The trade-off between the hit rate and the false alarm rate can be
controlled by selection of the detection threshold

as speech, motor noise, or running water, were present in
both noise sets. This would explain why, that even though
the network was only trained on data mixed with noise
set 1 (matched), it also performed better on test set 2
(mismatched) than the network trained on clean data.
The main result of experiment 2 was that the classi-

fication accuracy as a function of network complexity
reached a saturation point. Increasing the number of lay-
ers or the number of filters per layer beyond this point

Fig. 10 Continuous audio stream test results showing the mean hit
rate and false alarm rate in the range 0 − 20 dB SNR. Results are
shown for the test network and the baseline network in matched and
mismatched noise conditions. The test network was quantized to
8-bit activations and weights while the baseline network used
floating-point precision

only resulted in negligible accuracy gains, < 2%. This
was explicitly shown in Fig. 5 for the single-inference
classification accuracy and Fig. 10 for continuous audio
streaming, where the high-complexity baseline network
was directly compared with the smaller network chosen
for the implementation. It was also found that, given a
fixed computational and memory constraint, higher accu-
racies were achieved by networks with many layers and
few filters than by networks with few layers and many

Table 6 Layer distribution of execution time and operations for
classifier inference

Layer Execution time [ms] Millions of operations

Conv 1 99.0 (43.5%) 3.04 (23.2%)

DW-conv 1 8.3 (3.7%) 0.17 (1.4%)

PW-conv 1 13.0 (5.7%) 1.50 (11.5%)

DW-conv 2 8.3 (3.7%) 0.17 (1.4%)

PW-conv 2 13.0 (5.7%) 1.50 (11.5%)

DW-conv 3 8.3 (3.7%) 0.17 (1.4%)

PW-conv 3 13.0 (5.7%) 1.50 (11.5%)

DW-conv 4 8.3 (3.7%) 0.17 (1.4%)

PW-conv 4 13.0 (5.7%) 1.50 (11.5%)

DW-conv 5 8.3 (3.7%) 0.17 (1.4%)

PW-conv 5 13.0 (5.7%) 1.50 (11.5%)

DW-conv 6 8.3 (3.7%) 0.17 (1.4%)

PW-conv 6 13.0 (5.7%) 1.50 (11.5%)

Avg-pool 0.5 (0.2%) 0.01 (0.1%)

FC 0.1 (0.04%) 0.001 (< 0.1%)

Total 227.4 13.12

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 11 of 14

filters. In a convolutional layer, the number of filters deter-
mines how many different patterns can be detected in the
input features. The first layer detects characteristic pat-
terns of the input speech features, and each subsequent
convolutional layer will detect patterns in the patterns
detected by the previous layer, adding another level of
abstraction. One interpretation of the grid-search results
could therefore be, that if the network has sufficient lev-
els of abstraction (layers), then the number of distinct
patterns needed at each abstraction level to character-
ize the spoken content (number of filters) can be quite
low. As the classifier should run 4 times per second, fea-
sible network configurations were limited to inference
execution times below 250 ms , which ruled out the
majority of the configurations tested. In terms of the
resource constraints set by the platform, execution time
was the limiting factor for these networks and not the
memory required for weights and activations. This was
not unexpected as the DS-CNN, contrary to network
architectures such as the DNN, reuses the same weights
(filters) for computing multiple neurons. The DS-CNN
therefore needs fewer weights relative to the number
of computations it must perform, making this approach
especially suitable for platforms with very limitedmemory
capacity.
The results from experiment 3 showed that weights

and activations of a network trained using floating-point
precision could be quantized to low bit widths with-
out affecting the classification accuracy. Quantizing all
numbers in the network to 8 bit resulted in the same
classification accuracy as using floating-point precision.
It was also found that the weights of the network could
all be quantized to 4 bit with no substantial loss of accu-
racy, which can significantly reduce the memory footprint
and possibly reduce the processing time spent on fetching
data frommemory. These results showed that mixed fixed
point precision leads to the most memory-efficient net-
work, because the different network components (weights
and activations) are robust to different reductions in bit
width. For many deep CNN classifiers [29, 30, 38], it was
reported that networks are very robust to the reduced
resolution caused by quantization. The reason for this
robustness could be that the networks are designed and
trained to ignore the background noise and the devia-
tions of the speech samples. The quantization errors are
then simply another noise source for the network, which
it can handle up to a certain magnitude. Gysel et al.
[29] found that small accuracy decreases of CNN classi-
fiers, caused by fixed point quantization of weights and
activations, could be compensated for by partially retrain-
ing the networks using these fixed point weights and
activations. A natural next step for the KWS system pro-
posed in this paper would therefore also be to fine tune
the quantized networks. Because the network variables

were categorized, the quantization effects on the overall
performance could be evaluated individually for each
category. Results showed that different bit widths were
required for the different categories, in order to maintain
the classification accuracy achieved using floating-point
numbers. It is however suspected that, because some of
the categories span multiple network layers, a bottleneck
effect could occur. For example, if the activations of a sin-
gle layer require high precision, i.e., large bit width, but
the other layers’ activations required fewer bits, this would
be masked in the experiment because they were all in the
same category. It is therefore expected that using different
bit widths for each of the layers in each of the categories
would potentially result in a lower memory footprint. In
this paper, the fixed point representations had symmetric,
zero-centered ranges. However, all of the convolutional
layers use ReLU activations functions, so the activations
effectively only utilize half of the available range as val-
ues below zero are cutoff. By shifting the range, such that
zero becomes the minimum value, the total range can be
halved, i.e., BI is decreased by one. This in turn frees a
bit, which could be used to increase BF by one, thereby
increasing the resolution, or it could be used to reduce the
total bit width by one.
Experiment 4 tested the KWS system performance on a

continuous audio stream. As found in most signal detec-
tion tasks, lowering the decision criterion, i.e., the detec-
tion threshold, increases the hit rate but also the FPR,
which means there is a trade-off. The detection thresh-
old should match the intended application of the system.
For always-on systems, it is crucial to keep the number
of false alarms as low as possible, while for externally
activated systems where the KWS is only active for a
short time window in which a keyword is expected, a
higher hit rate is more desirable. One method for lower-
ing the FPR and increasing the true negative rate could
be to increase the ratio of negative to positive samples
in the training, i.e., use more “unknown” and “silence”
samples. This has been shown as an effective method in
other machine learning detection tasks [44, 45]. Another
approach for lowering the FPR could be to create a
loss function for the optimizer during training, which
penalizes errors that cause false alarms more than errors
that cause misses. There were significant discrepancies
between the estimated number of operations and actual
execution time of the different layers of the implemented
network (see Table 6). The convolutional functions in
the software library used for the implementation [42] all
use highly optimized matrix multiplications (i.e. general
matrix-matrix multiplication, GEMM) to compute the
convolution. However, in order to compute 2D convolu-
tions using matrix multiplications, it is necessary to first
rearrange the input data and weights during run time. It
was argued that, despite this time consuming andmemory

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 12 of 14

expanding data reordering, using matrix multiplications
is still the most efficient implementation of convolutional
layers [46, 47]. The discrepancies between operations and
execution time could be explained by the fact that the
reordering of data was not accounted for in the operation
parameter and that the different layers required different
degrees of reordering. For the pointwise-convolutions and
fully connected layer, the activations were stored in mem-
ory in an order such that no reordering was required to do
the matrix multiplication, whereas this was not possible
for the standard convolution or depthwise convolution.
The number of arithmetic operations for running network
inference should therefore not solely be used to asses the
feasibility of implementing neural networks on embed-
ded processors, as done in [17], as this parameter does
not directly reflect the execution time. Instead, this esti-
mate should also include the additional work for data
reordering required by some network layers. Based on the
results presented in this paper, there are several possi-
ble actions to take to improve performance or optimize
implementation of the proposed KWS system. Increasing
the size of the dataset and removing corrupt recordings,
or augmenting training data with more varied background
noises, such as music, could increase network accuracy
and generalization. Reducing the number of weights of
a trained network using techniques such as pruning [48]
could be used to further reduce memory footprint and
execution time.
Python training scripts and FRDM K66F deployment

source code as well as a quantitative comparison of per-
formance for using MFCC vs MFSC features for a subset
of networks are available on Github [49].

6 Conclusion
In this paper, methods for training and implementing a
DS-CNN-based KWS system for low-resource embedded
platforms were presented and evaluated. Experimental
results showed that augmenting training data with realis-
tic noise recordings increased the classification accuracy
in both matched and mismatched noise conditions. By
performing a limited hyper-parameter grid search, it was
found that network accuracy saturated when increasing
the number of layers and filters in the DS-CNN and that
feasible networks for implementation on the ARM Cor-
tex M4 processor were in this saturated region. It was
also shown that using dynamic fixed point representations
allowed network weights and activations to be quantized
to 8-bit precision with no loss in accuracy. By quan-
tizing different network components individually, it was
found that layer activations were most sensitive to further
quantization, while weights could be quantized to 4 bits
with only small decreases in accuracy. The ability of the
KWS system to detect keywords in a continuous audio

stream was tested, and it was seen how altering the detec-
tion threshold affected the hit rate and false alarm rate.
Finally, the system was verified by the implementation
on the Cortex M4, where it was found that the num-
ber of arithmetic operations per inference are not directly
related to execution time. Ultimately, this paper shows
that the number of layers and the number of filters per
layers provide a useful parameter when scaling system
complexity. In addition, it was shown that a 8-bit quan-
tization provides a significant reduction in memory foot-
print and processing time and does not result in a loss of
accuracy.

Abbreviations
AI: Artificial intelligence; ASR: Automatic speech recognition; CNN:
Convolutional neural network; DCT: Discrete cosine transform; DFT: Discrete
Fourier transform; DNN: Deep neural network; DS-CNN: Depthwise separable
convolutional neural network; DS-conv: Depthwise separable convolution;
DW-conv: Depthwise convolution; FaNT: Filtering and noise adding tool; FC:
Fully connected; FPR: False positive rate; HMM: Hidden Markov model; KWS:
Keyword spotting; MAC: Multiply and accumulate; MFCC: Mel-frequency
cepstral coefficients; MFSC: Mel-frequency spectral coefficients; PW-conv:
Pointwise convolution; ReLU: Rectified linear unit; RNN: Recurrent neural
network; SIMD: Singe instruction, multiple data; SNR: Signal-to-noise ratio;
STFT: Short-time discrete Fourier transform; TPR: True positive rate

Acknowledgements
This research was supported by the Centre for Applied Hearing Research
(CAHR). We would like to thank Andreas Krebs for the helpful input regarding
the implementation on the hardware target and fruitful discussions.

Authors’ contributions
PMS carried out the numerical experiments. PMS, BE, and TM participated in
the design of the study and drafted and revised the manuscript. The authors
read and approved the final manuscript.

Funding
This research was supported by the Centre for Applied Hearing Research
(CAHR).

Availability of data andmaterials
The data that support the findings of this study are available from [34].

Competing interests
The authors declare that they have no competing interests.

Received: 8 July 2019 Accepted: 10 May 2020

References
1. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V.

Vanhoucke, P. Nguyen, T. N. Sainath, B. Kingsbury, Deep neural networks
for acoustic modeling in speech recognition: the shared views of four
research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.
org/10.1109/MSP.2012.2205597

2. New Electronic Friends. https://pages.arm.com/machine-learning-voice-
recognition-report.html. Accessed 30 May 2018

3. R. C. Rose, D. B. Paul, in International Conference on Acoustics, Speech, and
Signal Processing. A hidden Markov model based keyword recognition
system, (1990), pp. 129–1321. https://doi.org/10.1109/ICASSP.1990.
115555

4. J. R. Rohlicek, W. Russell, S. Roukos, H. Gish, in International Conference on
Acoustics, Speech, and Signal Processing,. Continuous hidden Markov
modeling for speaker-independent word spotting, (1989), pp. 627–6301.
https://doi.org/10.1109/ICASSP.1989.266505

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://pages.arm.com/machine-learning-voice-recognition-report.html
https://pages.arm.com/machine-learning-voice-recognition-report.html
https://doi.org/10.1109/ICASSP.1990.115555
https://doi.org/10.1109/ICASSP.1990.115555
https://doi.org/10.1109/ICASSP.1989.266505

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 13 of 14

5. J. G. Wilpon, L. G. Miller, P. Modi, in [Proceedings] ICASSP 91: 1991
International Conference on Acoustics, Speech, and Signal Processing.
Improvements and applications for key word recognition using hidden
Markov modeling techniques, (1991), pp. 309–312. https://doi.org/10.
1109/ICASSP.1991.150338. http://ieeexplore.ieee.org/document/150338/

6. G. Chen, C. Parada, G. Heigold. Small-footprint keyword spotting using
deep neural networks, (2014). https://doi.org/10.1109/icassp.2014.
6854370

7. K. Shen, M. Cai, W.-Q. Zhang, Y. Tian, J. Liu, Investigation of DNN-based
keyword spotting in low resource environments. Int. J. Future Comput.
Commun. 5(2), 125–129 (2016). https://doi.org/10.18178/ijfcc.2016.5.2.
458

8. G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, S. Vitaladevuni. Model
compression applied to small-footprint keyword spotting, (2016),
pp. 1878–1882. https://doi.org/10.21437/Interspeech.2016-1393

9. S. Fernández, A. Graves, J. Schmidhuber, in Artificial Neural Networks –
ICANN 2007, ed. by J. M. de Sá, L. A. Alexandre, W. Duch, and D. Mandic. An
application of recurrent neural networks to discriminative keyword
spotting (Springer, Berlin, Heidelberg, 2007), pp. 220–229

10. K. P. Li, J. A. Naylor, M. L. Rossen, in [Proceedings] ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 2.
A whole word recurrent neural network for keyword spotting, (1992),
pp. 81–842. https://doi.org/10.1109/ICASSP.1992.226115

11. M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal, S.
Matsoukas, N. Strom, S. Vitaladevuni, Max-pooling loss training of long
short-term memory networks for small-footprint keyword spotting. CoRR.
abs/1705.02411 (2017). 1705.02411

12. S. Ö,.. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner, R.
Prenger, A. Coates, Convolutional recurrent neural networks for
small-footprint keyword spotting. CoRR. abs/1703.05390 (2017).
1703.05390

13. Y. LeCun, Y. Bengio, in Chap. Convolutional Networks for Images, Speech,
and Time Series. The Handbook of Brain Theory and Neural Networks
(Press, MIT, Cambridge, MA, USA, 1998), pp. 255–258. http://dl.acm.org/
citation.cfm?id=303568.303704

14. T. N. Sainath, C. Parada, in INTERSPEECH. Convolutional neural networks
for small-footprint keyword spotting, (2015)

15. F. Chollet, Xception: deep learning with depthwise separable
convolutions. CoRR. abs/1610.02357 (2016). 1610.02357

16. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: efficient convolutional neural networks
for mobile vision applications. CoRR. abs/1704.04861 (2017). 1704.04861

17. Y. Zhang, N. Suda, L. Lai, V. Chandra, Hello edge: keyword spotting on
microcontrollers. CoRR. abs/1711.07128 (2017). 1711.07128

18. S. Davis, P. Mermelstein, Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE
Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980). https://doi.
org/10.1109/TASSP.1980.1163420

19. I. Chadawan, S. Siwat, Y. Thaweesak, in International Conference on
Computer Graphics, Simulation andModeling (ICGSM’2012). Speech
recognition using MFCC, (Pattaya (Thailand), 2012)

20. Bhadragiri Jagan Mohan, Ramesh Babu N., in 2014 International
Conference on Advances in Electrical Engineering (ICAEE). Speech
recognition using MFCC and DTW, (2014), pp. 1–4. https://doi.org/10.
1109/ICAEE.2014.6838564

21. O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu,
Convolutional neural networks for speech recognition. IEEE/ACM Trans.
Audio Speech Lang. Process. 22(10), 1533–1545 (2014). https://doi.org/
10.1109/TASLP.2014.2339736

22. A.-R. Mohamed, Deep Neural Network acoustic models for ASR. PhD thesis.
(University of Toronto, 2014). https://tspace.library.utoronto.ca/bitstream/
1807/44123/1/Mohamed_Abdel-rahman_201406_PhD_thesis.pdf

23. S. Watanabe, M. Delcroix, F. Metze, J. R. Hershey, in Springer International
Publishing. New era for robust speech recognition, (2017), p. 205. https://
doi.org/10.1007/978-3-319-64680-0

24. J. W. Picone, Signal modeling techniques in speech recognition. Proc.
IEEE. 81, 1215–1247 (1993). https://doi.org/10.1109/5.237532

25. X. Xiao, J. Li, Chng. E.S., H. Li, C.-H. Lee, A study on the generalization
capability of acoustic models for robust speech recognition. IEEE Trans.

Audio Speech Lang. Process. 18(6), 1158–1169 (2010). https://doi.org/10.
1109/TASL.2009.2031236

26. I. Rebai, Y. BenAyed, W. Mahdi, J.-P. Lorré, Improving speech recognition
using data augmentation and acoustic model fusion. Procedia Comput.
Sci. 112, 316–322 (2017). https://doi.org/10.1016/J.PROCS.2017.08.003

27. T. Ko, V. Peddinti, D. Povey, S. Khudanpur, in INTERSPEECH. Audio
augmentation for speech recognition, (2015)

28. S. Yin, C. Liu, Z. Zhang, Y. Lin, D. Wang, J. Tejedor, T. F. Zheng, Y. Li, Noisy
training for deep neural networks in speech recognition. EURASIP J.
Audio Speech Music Process. 2015(1), 2 (2015). https://doi.org/10.1186/
s13636-014-0047-0

29. P. Gysel, M. Motamedi, S. Ghiasi, Hardware-oriented approximation of
convolutional neural networks. CoRR. abs/1604.03168 (2016).
1604.03168

30. D. D. Lin, S. S. Talathi, V. S. Annapureddy, Fixed point quantization of deep
convolutional networks. CoRR. abs/1511.06393 (2015). 1511.06393

31. D. O’Shaughnessy, Speech Communication: Human andMachine, (1987),
p. 150

32. M. A. Nielsen, Neural Networks and Deep Learning, (2015). http://
neuralnetworksanddeeplearning.com/. Accessed 26 May 2020

33. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network
training by reducing internal covariate shift. CoRR. abs/1502.03167
(2015). 1502.03167

34. P. Warden, Speech commands: a public dataset for single-word speech
recognition (2017). Dataset available from http://download.tensorflow.
org/data/speech_commands_v0.01.tar.gz

35. A. Mesaros, T. Heittola, T. Virtanen, in 2016 24th European Signal Processing
Conference (EUSIPCO). TUT database for acoustic scene classification and
sound event detection, (2016), pp. 1128–1132. https://doi.org/10.1109/
EUSIPCO.2016.7760424

36. J. Thiemann, N. Ito, E. Vincent, DEMAND: a collection of multi-channel
recordings of acoustic noise in diverse environments. Supported by Inria
under the Associate Team Program VERSAMUS (2013). https://doi.org/10.
5281/zenodo.1227121

37. H.-G. Hirsch, FaNT -filtering and noise adding tool. Technical report.
Hochschule Niederrhein (2005). http://dnt.kr.hs-niederrhein.de/
download/fant_manual.pdf. Accessed 26 May 2020

38. N. Mellempudi, A. Kundu, D. Das, D. Mudigere, B. Kaul, Mixed
low-precision deep learning inference using dynamic fixed point. CoRR.
abs/1701.08978 (2017). 1701.08978

39. D. Williamson, in IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing Conference Proceedings. Dynamically
scaled fixed point arithmetic (IEEE, 1991), pp. 315–318. https://doi.org/10.
1109/PACRIM.1991.160742. http://ieeexplore.ieee.org/document/
160742/

40. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R.
Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org (2015). https://www.tensorflow.org/.
Accessed 26 May 2020

41. K. Smeds, F. Wolters, M. Rung, Estimation of signal-to-noise ratios in
realistic sound scenarios. J. Am. Acad. Audiol. 26 2, 183–96 (2015)

42. L. Lai, N. Suda, V. Chandra, CMSIS-NN: efficient neural network kernels for
arm cortex-M CPUS. CoRR. abs/1801.06601 (2018). 1801.06601

43. P. Warden, Speech commands: a dataset for limited-vocabulary speech
recognition. CoRR. abs/1804.03209 (2018). http://arxiv.org/abs/1804.
03209

44. Z. Cheng, K. Huang, Y. Wang, H. Liu, J. Guan, S. Zhou, Selecting high-quality
negative samples for effectively predicting protein-RNA interactions. BMC
Syst. Biol. 11(2), 9 (2017). https://doi.org/10.1186/s12918-017-0390-8

45. R. Kurczab, S. Smusz, A. J. Bojarski, The influence of negative training set
size on machine learning-based virtual screening,. J Cheminformatics. 6,
32 (2014). https://doi.org/10.1186/1758-2946-6-32

46. P. Warden, Why GEMM is at the heart of deep learning. https://
petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-
learning/. Accessed 19 May 2018

https://doi.org/10.1109/ICASSP.1991.150338
https://doi.org/10.1109/ICASSP.1991.150338
http://ieeexplore.ieee.org/document/150338/
https://doi.org/10.1109/icassp.2014.6854370
https://doi.org/10.1109/icassp.2014.6854370
https://doi.org/10.18178/ijfcc.2016.5.2.458
https://doi.org/10.18178/ijfcc.2016.5.2.458
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.1109/ICASSP.1992.226115
http://arxiv.org/abs/1705.02411
http://arxiv.org/abs/1703.05390
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1711.07128
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/ICAEE.2014.6838564
https://doi.org/10.1109/ICAEE.2014.6838564
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736
https://tspace.library.utoronto.ca/bitstream/1807/44123/1/Mohamed_Abdel-rahman_201406_PhD_thesis.pdf
https://tspace.library.utoronto.ca/bitstream/1807/44123/1/Mohamed_Abdel-rahman_201406_PhD_thesis.pdf
https://doi.org/10.1007/978-3-319-64680-0
https://doi.org/10.1007/978-3-319-64680-0
https://doi.org/10.1109/5.237532
https://doi.org/10.1109/TASL.2009.2031236
https://doi.org/10.1109/TASL.2009.2031236
https://doi.org/10.1016/J.PROCS.2017.08.003
https://doi.org/10.1186/s13636-014-0047-0
https://doi.org/10.1186/s13636-014-0047-0
http://arxiv.org/abs/1604.03168
http://arxiv.org/abs/1511.06393
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://arxiv.org/abs/1502.03167
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://doi.org/10.1109/EUSIPCO.2016.7760424
https://doi.org/10.1109/EUSIPCO.2016.7760424
https://doi.org/10.5281/zenodo.1227121
https://doi.org/10.5281/zenodo.1227121
http://dnt.kr.hs-niederrhein.de/download/fant_manual.pdf
http://dnt.kr.hs-niederrhein.de/download/fant_manual.pdf
http://arxiv.org/abs/1701.08978
https://doi.org/10.1109/PACRIM.1991.160742
https://doi.org/10.1109/PACRIM.1991.160742
http://ieeexplore.ieee.org/document/160742/
http://ieeexplore.ieee.org/document/160742/
https://www.tensorflow.org/
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
https://doi.org/10.1186/s12918-017-0390-8
https://doi.org/10.1186/1758-2946-6-32
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Sørensen et al. EURASIP Journal on Audio, Speech, andMusic Processing (2020) 2020:10 Page 14 of 14

47. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E.
Shelhamer, cudnn: efficient primitives for deep learning. CoRR.
abs/1410.0759 (2014). 1410.0759

48. P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional
neural networks for resource efficient transfer learning. CoRR.
abs/1611.06440 (2016). 1611.06440

49. P. M. Sørensen, A depthwise separable convolutional neural network for
keyword spotting on embedded systems. GitHub (2018). https://github.
com/PeterMS123/KWS-DS-CNN-for-embedded

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1611.06440
https://github.com/PeterMS123/KWS-DS-CNN-for-embedded
https://github.com/PeterMS123/KWS-DS-CNN-for-embedded

	Abstract
	Keywords

	Introduction
	System
	KWS system
	Feature extraction
	DS-CNN classifier
	Posterior handling

	Methods
	Dataset
	Data augmentation
	Resource estimation
	Operations
	Memory
	Execution time

	Quantization methods
	Mixed fixed point precision
	Dynamic fixed point

	Training
	Evaluation
	Single-inference testing
	Continuous audio stream testing

	Network test configuration
	Platform description

	Results
	Experiment 1: Data augmentation
	Experiment 2: Network complexity
	Experiment 3: Quantization
	Experiment 4: Continuous audio stream
	FRDM K66F implementation

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

