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Ad hoc acoustic networks comprising multiple nodes, each of which consists of several microphones, are addressed.
From the ad hoc nature of the node constellation, microphone positions are unknown. Hence, typical tasks, such as
localization, tracking, and beamforming, cannot be directly applied. To tackle this challenging joint multiple speaker
localization and array calibration task, we propose a novel variant of the expectation-maximization (EM) algorithm.
The coordinates of multiple arrays relative to an anchor array are blindly estimated using naturally uttered speech
signals of multiple concurrent speakers. The speakers’ locations, relative to the anchor array, are also estimated. The
inter-distances of the microphones in each array, as well their orientations, are assumed known, which is a reasonable
assumption for many modern mobile devices (in outdoor and in a several indoor scenarios). The well-known
initialization problem of the batch EM algorithm is circumvented by an incremental procedure, also derived here. The
proposed algorithm is tested by an extensive simulation study.
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1 Introduction

Localization and tracking using multiple arrays of sen-
sors are often handled under the assumption that the
locations of the microphone arrays are precisely known.
The recent deployment of ad hoc networks introduces a
new challenge of estimating the array locations in par-
allel to routine tasks, such as speaker localization [1-5],
noise or reverberation reduction [6-8], and speaker sepa-
ration [9-13]. The solution is complex due to the amount
of unknown parameters and the dependencies between
them. Many scenarios do not even have a unique sin-
gle solution, e.g., when the numbers of arrays or active
sources are too small. In this paper, a novel expectation-
maximization (EM)-based algorithm for the integrated
task of speaker localization and array calibration is intro-
duced. The new algorithm combines two tasks: direct
positioning determination (DPD) and calibration for ad
hoc networks.
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1.1 Multiple direction of arrival estimation

The direction of arrival (DOA) estimation with known
sensor positions is a well-studied problem. In [14], the
steered response power (SRP)-phase transform (PHAT)
algorithm is suggested, which is the generalization of
the generalized cross correlation (GCC)-PHAT [15] for
an array of microphones in the far-field scenario. Other
known multi-channel algorithms are root multiple sig-
nal classification (MUSIC) [16, 17], minimum variance
distortionless response (MVDR) [18], and audio applica-
ble versions [19-21] These estimators were not proven
to be optimal in the presence of multiple speakers. The
DOA estimation [22] in the presence of various noise
types can be formulated as a maximum likelihood (ML)
estimation problem of deterministic parameters [23-26].
The DOA challenge in the presence of unknown noise
field was dealt with in [23]. The W-disjoint orthogonality
(WDO) assumption [27], commonly attributed to speech
signals due to their sparseness, is often exploited for DOA
estimations tasks [28].
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The problem of estimating multiple time difference of
arrival (TDoA) (or DOAs) was addressed in [12, 29-31]
by using the EM procedure. In [29], the task of mul-
tiple TDoA estimation is addressed considering two-
microphone (binaural) case, with the WDO [27] applied,
namely the dominance of a single speaker at each time-
frequency (TF) bin. The authors used the EM procedure
and the mixture of Gaussians (MoG) model to cluster
the phase differences from each TF bin, where each clus-
ter is associated with a TDoA value. In the E-step, a TF
mask, associating each bin with a specific TDoA, was esti-
mated. In the M-step, the probability for each TDoA was
estimated, using the number of associations of TF bins.

In [30], an algorithm for estimating multiple DOAs
in a reverberant environment was presented. Unlike the
method presented in [29], the TF raw samples were clus-
tered rather than their respective phase differences. The
MoG model consists of explicit modeling of the rever-
beration properties. The resulting algorithm was able to
localize multiple speakers with reverberation modeled as
an additive diffuse noise with time-varying power. The
reverberation power was estimated in the M-step for each
speaker and for each TF bin. Note that in [30], a noiseless
scenario was considered.

In the study presented in [12], the algorithm presented
in [30] was extended to the problem of joint localiza-
tion and separation of concurrent speakers. However, the
algorithm requires a known noise power spectral den-
sity (PSD) matrix. In [31], the DOA estimation procedure
presented in [12, 30] was adopted for deriving a DOA esti-
mator for multiple sources in a noisy environment. Sta-
tionary noise was assumed with known spatial coherence
but, unlike [12], the noise level was assumed unknown,
and its level was estimated in the M-step.

1.2 Multiple-source cartesian localization

In this paper, when we use the term localization, we refer
to higher-dimension problems (at least 2D). A straightfor-
ward solution to higher-dimension localization problems
involves a triangulation of the 1D problems solved locally
by each array of the network [32]. It has the advantage
of simplicity, especially in distributed networks, where
computations should be shared between nodes. There are
many approaches that use triangulation of separate DOAs
to solve the 2D or 3D localization problem. An example
of such an approach for an acoustic ad hoc network was
given in [33].

However, these solutions are not optimal, because
only part of the information is utilized during the
first step of the estimation. Moreover, in a small area
(for example indoor scenario), a more general solu-
tion becomes a necessity since near-field conditions
are often encountered. Since we do not rely on DOAs
and find the locations given the measured signals, our
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approach is general enough to cover both near- and
far-field.

A possible general solution, which directly estimates
the location without any intermediate steps, is frequently
referred to as DPD [34]. For acoustic localization, DPD
approaches were presented in [4, 35]. In [4], a general-
ization of the method in [29] to the estimation of the
coordinates of multiple sources, rather than only of their
associated TDoAs, was presented using a grid of Cartesian
coordinates that covers the room surface. The measured
phase differences between microphones is then clustered
to the nominal phase differences from each grid point.
The probability of a speaker to be located at each grid
point was estimated in the M-step. Note that in [4, 29],
the spatial characteristics of the noise was not explicitly
modeled and therefore not optimally treated. Some local-
ization approaches [4, 35] use a non-realistic assumption
within the context of ad hoc networks relying on perfect
knowledge of array positions. This is often referred to as
the calibration problem.

Another important challenge in ad hoc networks, tightly
connected to the calibration process, is the clock syn-
chronization. Both acoustic and non-acoustic solutions
were proposed to overcome this challenge [36—45]. In the
current work, we assume that the nodes are perfectly syn-
chronized, by possibly using one of those approaches. It
has been shown that current technology used by com-
mercial personal consumer electronics, like smartphones,
provides very small drift and jitters in the clock frequency
that can be compensated for by these algorithms. We will
hereinafter ignore the synchronization issues.

1.3 Array calibration

Finding the location of microphones is a well-covered
topic in the literature. For example [46] deals with finding
the location of a microphone utilizing a single loudspeaker
and the room known shape. Array constellation calibra-
tion has been analyzed from a theoretical point of view
for far-field [47] and near-field scenarios [48]. For acous-
tic arrays, a few approaches have already been proposed
for calibration, some of which are only suitable for sce-
narios with a dedicated time for calibrations [49]. Other
algorithms utilize ambient sound for finding the inter-
distances of microphones [50, 51].

Calibration performed jointly with localization or track-
ing of sources presents a greater challenge. A family of
algorithms called simultaneous localization and mapping
(SLAM) for robots was described in [52—54]. In these con-
tributions, the joint estimation of a single moving array
trajectory, the positions of static sources, and the major
reflectors (e.g., walls) is addressed.

Another popular problem is the estimation of static
array locations jointly with tracking of moving acoustic
sources [55, 56]. The problem is sometimes referred to as
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simultaneous localization and tracking (SLAT) [57]. Effec-
tive solutions for array calibration in dynamic scenarios
can utilize the multiple locations visited by the speakers.
Such a method, based on genetic algorithm, was recently
presented for a scenario where speakers move around a
table in the center of the room [58]. The arrays are located
on the table and the algorithm estimates the arrays’ loca-
tions and tracks the speakers. The sensitivity to small
movements are discussed in [59, 60].

Approaches suitable for static scenarios can also be
found in the literature, e.g., [61, 62]. They rely on TDoAs
between adjacent microphones. Other joint calibration
approaches are described in [63—-65]. Those methods cur-
rently work under a very specific set of geometrical condi-
tions. For example, some of them require moving speakers
or a minimum number of active speakers to guarantee
sufficient amount of data to overcome the problem of
geometrical ambiguities. In [64], the proposed algorithm
automatically determine the relative three-dimensional
positions of audio sensors and sources in an ad hoc net-
work. A closed form approximate solution is derived,
which is further refined by minimizing a nonlinear error
function. They also account for the lack of temporal syn-
chronization among different platforms. Recently, several
approaches, suitable for the static scenario, were pre-
sented. The joint estimation problem is solved by applying
various mathematical methods [66, 67].

1.4 Proposed strategy

We suggest in this paper a new EM-based speaker local-
ization and array calibration algorithm. The microphone
inter-distances in each array, as well as the orientation
of each array, are assumed known in advance, as can
be commonly verified in commercial devices, e.g., cel-
lular phones. In addition, since we use omni-directional
microphones, it enables usage of acoustic calibration
approaches such as inter distance measurements. How-
ever, the network constellation, namely the center points
of the arrays and the locations of the sources, are unknown
in advance and should be jointly estimated by the algo-
rithm.

The challenge is to solve the localization problem of
multiple concurrent speakers (more than two) jointly with
the calibration problem of multiple arrays without any
other information or any additional calibration signals.
Following [4], we use the EM and the MoG models to
cluster the observed data to centroids located on a grid
defined on the surface. An explicit model of the speech
and noise is defined within the MoG model, as used
in [12].

To address the calibration problem, we add the locations
of the array centers to the estimation task. As a result,
the locations of the array centers are estimated in the M-
step. Maximization of the auxiliary function of the EM
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with respect to (w.r.t.) the array centers does not pro-
duce a closed-form expression. We utilize the simplifying
assumption that the noise signals, as captured by the dif-
ferent arrays, are uncorrelated. This assumption enables
us to avoid a multidimensional search of the array centers,
i.e., a separate search for each array is obtained, and can
be justified empirically if the array centers are sufficiently
separated.

The initialization stage was found to be a cumbersome
task, due to the large size of the parameter set. We present
a new way for self-initialization, which utilizes the col-
lected data in an incremental fashion. One of the arrays is
designated as the anchor array and all the other elements
(arrays and sources) are localized w.r.t. this anchor. First,
the algorithm is applied with only the anchor array while
the other arrays are disabled. Then, the other arrays in the
network are sequentially added. The location of sources
is kept as a soft probability map throughout the iterative
procedure. Only after the last iteration, an actual localiza-
tion is obtained by applying a hard threshold to the final
probability map. In this paper, for simplicity, the speakers
are assumed to be spatially static across time. In the case
of moving speakers, a virtue of recursive EM (REM) algo-
rithm can be utilized [4] using our EM model for the fixed
speakers.

1.5 Main contributions
The main contributions of this paper are listed below:

1. The problem of joint estimation of the array center
positions and multiple speaker position is addressed.
The problem is statistically formulated using the
probability density function (p.d.f.) of the
observations. By maximizing the likelihood of the
observations via the EM algorithm, the source
positions are inferred.

2. Searching the array center positions is carried out
separately for each array, avoiding a simultaneous
multidimensional search of the entire set of possible
array centers.

3. The statistical model of the multiple speech signals is
based on the WDO assumption [27], which was
proven to be highly efficient for speaker separation
tasks.

2 Methods

We start from a mathematical description of the problem
in the first subsection and then derive the new algorithm
in the second subsection.

2.1 Problem formulation

We derive a batch EM solution for joint estimation of the
positions of static speakers and microphone arrays. The
problem formulation is divided into two parts. The first
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describes the ad hoc network signals in the presence of
multiple concurrent speakers and sensor noise, and the
second presents the statistical model.

2.1.1 Signal model
Consider Q arrays, each of which is equipped with N
microphones receiving signals from J speakers. The num-
ber of speakers is not necessarily known in advance. The
measured signals are linear combinations of the incom-
ing waveforms. Let Z, (¢, k) be the signals received by the
(g, n)th microphone, where g = 1, ..., Qis the array index
and n = 1,...,N is the microphone index within each
array. Overall, there are Q x N microphones. The signals
in the short-time Fourier transform (STFT) domain are

given by:

J
Zant k) = Gaujk) - Si(t, k) + Vyu(t, 6,
j=1

wheret = 0,..., 7T —1land k = 0,...,K — 1 denote the
time and frequency indexes respectively. G ,,;(k) is the
direct transfer function (DTF) associating speaker j and
microphone (g, n). S;(t, k) is the speech signal uttered by
speaker j and Vy,, (¢, k) is the ambient noise, namely noise
signals that result from the environment. Specific spatial
characteristics of the noise signals will be later discussed.
Note that the DTF model accounts for near-field sce-
narios and hence comprises the attenuation of the direct
speech wave as well as the respective inter-microphone
phase. Also note that the attenuation is known to be much
less reliable than the phase. Therefore, multiple arrays
should be used. It is demonstrated in the Section 3 by
adding arrays of sensors one by one. The DTF is given by:

2k dgny
exp| —t——=%),
K ¢ T

where ¢ is the sound velocity and T denotes the sampling
period. The distance from speaker j to microphone (g, n),
dg,nj is calculated from geometrical considerations as:

oY)

1
Gq,n,j (k) = 4 (2)

g1y

dq,n,j = ||Pj — Pgulls (3)

where p; is the location of the jth speaker and p,, is the
location of the (g, #)th microphone given by:

Pgn = Pg + Pn @), (4)

where p; is the position of the center of the gth array
and p;,(q) is the relative position of the nth microphone
w.rt. the array center. The inter-structure of the arrays
and their orientation, namely p,(g), are assumed to be
known in advance. Note that the orientation of the arrays
can be extracted by various means, for example, compass-
based technology [68, 69]. The orientation accuracy is
often reported around 5° indoor and much better for
outdoor scenarios. For simplicity, we assume hereinafter
that the orientation of the nodes is perfectly known to

(2020) 2020:9 Page 4 of 19

the algorithms, since joint estimation of positions and
orientation is too cumbersome, at this stage.

To address reverberant environments, an additional
term representing the ambient reverberation field can be
added to (1). As indicated in, e.g., [30], the reverbera-
tion components can be modeled as an additive multi-
dimensional Gaussian interference with spatially diffuse
sound field with time-varying level, following the an-
echoic speech level. In such a case, the reverberation level
can also be estimated by the M-step of the EM procedure.
In this paper, for the sake of simplicity, the reverbera-
tion phenomenon is ignored. It means that the solution
will fit indoor with low reverberation levels and outdoor
scenarios that are dominant by random noise.

The N microphone signals in the gth array can be
concatenated in a vector form:

J
246 K6) =) 84 (K)S;(t, k) + vy (8, k), (5)
j=1
where:
2,60 = [Zg1 (6, K) ... Zyn(t,k) ] (6a)
g,/ (K) = [ Gyrjk) ... Gunj(k) " (6b)
Va6, k) = [Var (k) ... Vn(t,00 )" (6¢)

The overall observation set, DTFs, and noise components
can be concatenated in compound vectors:

z(t, k) = [z{(t, k) ... zg(t, k) ]T , (7a)
T
gi(k) = [g{i(k) gg,j(k)] , (7b)
v = [k o vheh] (79)
such that:
J
2(t,k) =) gi(k)S(t, k) + V(L k). (8)
j=1

The goal of this study is to jointly estimate the speaker
locations p; and the array center positions py;, in (3),(4).

2.1.2 Statistical model

We use a MoG probability function to characterize the
speech signals of all potential speakers. Each speaker can
be assumed to be a complex-Gaussian source emitting
acoustic waveforms from location p,,, where m is the
index of the Gaussian component. Because the number of
speakers and their locations are unknown in advance, we
use a predefined grid as candidate source positions.

The various speakers are assumed to exhibit disjoint
activity in the STFT domain (WDO assumption [27]).
Therefore, by means of clustering, every TF bin of z(¢, k)
can be associated with a single active source.
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Based on the disjoint activity of the sources, the obser-
vations are given the following probabilistic description:

M
2(K) ~ Y Y N (2(5,K); 0, (£, K))
m=1
where v, is the (unknown) probability of a speaker
present at p,,; and M is the number of Gaussians. N (-; -, -)
denotes the complex Gaussian p.d.f.:

)

N¢(y;0,%) = exp(Y'Z7ly),  (10)

1
7 (@) det (X)

with y a zero-mean complex-Gaussian random vector and
¥ its PSD matrix.

The matrix ®,,(t, k) is the PSD of z(¢, k), given that
z(t, k) is associated with the speaker located at p,;:

(8, k) = g () gL (k) s, m(t, k) + Dy(K),

where the DTF g, (k) is defined in (7b).
The direct-path temporal PSD ¢s,,(t, k) and the noise
PSD matrix ®y(z, k) are defined as:

bsm(t, k) = E{|Sm(t, K)I*},
Dy(k) = E {vt, v, b}

(11)

(12)
(13)

The noise components from different arrays are often
assumed to be uncorrelated [23], and thus:

@y (k) = Blockdiag [ v, (k) ... Pyy(k) ], (14)

where @y, (k) = E { va(t, kv, k)}. This assumption is a
key assumption (as elaborated later) because it allows the
estimation of the array centers to be separately executed
for each array. This assumption can be well justified in the
presence of a spatially white or diffuse noise field, assum-
ing that the inter-array distances are large enough. For the
case of a directional noise field, this assumption is invalid.

The PSD matrices of the noise are assumed to be time-
invariant and known in advance or can be estimated
during speech absence segments.

Finally, by augmenting all observations for ¢ =
0,...,T—1landk=0,...,K —1linz = vec,x({z(¢, k)}),
the p.d.f. of the entire observation set can be stated as:

M
f@ =122 ¥m N (@(t,k;0,0,(t,k),  (15)

tk m=1

where the readings for all TF bins are assumed indepen-
dent [27].

T 1"
Let the unknown parameter set be § = [pT, /2 ¢S] )

where p = vecy(pg), ¥ = vecy, (Ym), and ¢g =
VeCy 1k (qbg,m (t, k)). It should be emphasized that, unlike
the array locations, the speaker locations are indirectly
estimated by the soft variables ¥ that form a probabil-
ity map. The number of speakers and their locations are
inferred from this probability map.
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The maximum likelihood estimation (MLE) problem
can readily be stated as:

0= argm;lxlogf (z;0). (16)
The various assumptions leading to the MLE problem
statement are summarized in the following list:

1. Noise signals for different arrays are assumed
uncorrelated in (14). This assumption is valid for
non-coherent sources (i.e., spatially white or diffuse
noise fields). This assumption will be used to simplify
the optimization problem.

2. Speakers exhibit disjoint activity in each TF bin,
namely z(¢, k), is dominated by a single source in (9),
as suggested in [27] and subsequent contributions.

3. Noise and speech signals are modeled by
complex-Gaussian variables. This assumption is
widely used in many speech processing algorithms
and can be attributed to the properties of the Fourier
transform of sufficiently long frames.

4. Each microphone array is calibrated, i.e., array
internal geometry, p,(q) is known.

5. Each microphone array orientation is also known (for
example, by using a compass-based technology or
a GPS).

6. The speakers are assumed static, namely their
positions are fixed and do not change in time. In
future research, moving speakers scenarios will be
addressed using a virtue of recursive EM, inspired
by [4].

7. The reverberation phenomenon is ignored. The
presented algorithm is therefore better suited to
scenario that are dominated by random noise, e.g.,
outdoor scenarios.

In the next subsection, an algorithm is derived for esti-
mating #. The first two components are the required
parameters (array centers and source positions). The last
component ¢g is a set of nuisance parameters. Since the
MLE in this case is of high complexity, it is necessary to
use an iterative search algorithm. A widely used algorithm
for this type of problems is the EM algorithm. We derive
the basic (batch) version of the algorithm. For perfor-
mance improvement and for mitigating the dependency
on the algorithm initialization, we also further introduce a
novel modification of that basic EM.

2.2 Localization and calibration
expectation-Maximization sequence (LACES)

The MLE of 0 is developed using the EM algorithm. It uses

three datasets and their probability models: the observa-

tions, the target parameters (these datasets were already

defined in Section 2.1), and the hidden datasets that will

be estimated by the algorithm. In our case, we set the
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hidden data to comprise: (1) the speech signals S, (¢, k),
which are potentially emitted from each location m in the
room, and (2) the association of each TF bin with a single
source emitting from a particular location, as in [4].

The association of each TF bin is expressed by x(¢, k, m),
an indicator that the bin (¢, k) is associated with a speaker
located at p,,. The total number of indicators in the prob-
lemis T x K. Note that, under the WDO assumption [27],
each TF bin is dominated by a single speaker.

This subsection is split into five parts. In the first part,
the basic EM equations are derived. The second one is
dedicated to the E-step and the third to the M-step. The
fourth summarizes the algorithm and its initialization
process. Complexity analysis is given in the last part.

2.2.1 Basic expectation-maximization steps derivation
Denote the hidden data as:

(17)
(18)

X = vec i, (x(t, k, m)})
8§ = V€Ct k,m {Sm(t, 1)} .

Following Bayes’ rule, the p.d.f. of the complete dataset, z,
x and s, is obtained by:

f(z,x,s;0) = f(z|x,s;0)f (x|s;0)f (s 0). (19)

The conditional distribution of the observed data given
the hidden data can be expressed as:

M
falxs0) =[] «t.km) fat k)l km) =1,56). (20)

tk m=1

Using the assumption that the noise signals, as captured
by the different arrays are uncorrelated (14), the p.d.f. of
the noise signals can be decomposed to a multiplication of
per-array quantities:

F@t,k)lx(t km) =1,5,0) = N (2(t, k) — g (K)Su(t, k); 0, Dy (k)
=[NV (246, 6) — g RIS (2, K); 0, Dy, (K)) .
q

(21)

Since the indicator x is independent of speech signals s, its
conditional p.d.f. is given by:

M
fxls:0) =f60) =[] D xtkm)m. (22)

t,k m=1

The speech p.d.f. is frequently assumed to follow a
complex-Gaussian distribution:

f(50) = [[ N (Sm(t: k)30, 5,m(t,K)) .

t,k,m

(23)

The p.d.f. of the complete dataset is then obtained by
collecting the terms in (19)-(23):
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M
f(x,2,8,0) = (H Z x(t, k, m)yry,

t,k m=1

X HNC (Zq(ty k) — 84,m(K)Sm (¢, k); 0, q)vq (k)) ) (24)

q

x| TT N (S, k0;0, gs,m(8, 5))

t,k,m
2.2.2 E-step
For any variable, the denotation (-) refers to
E l(~) |z; 0D } The auxiliary function in our case can be
stated as:

QO18"~") 2log /(2 x,5:6)
= Q16" D) + Qa(pl6 ) + Qs(9sl0“ ),

(25)
where:
Qu10“) = Y "Xtk m) log Y, (262)
t,k,m
QEI“) =
t,k,m,q
5(t, ke, 1) log N€ (246, K) — 8gum (K)S (£, K); 0, Dy, (6)),
(26b)
Qs(@s10 1) = 3 log N© (S,0(2, k)50, dsm (5, K)).
t,k,m
(26¢)

Note that, due to the indicator properties of x(¢, k, m), the
summation over m is carried out outside the logarithm
operation.

For implementing the E-step, the sufficient statistics
of the hidden variables are evaluated by the following
expressions:

1) x(t,k,m), (27a)
2) x(t, k, m)Sp(t, k), (27b)
3) x(t,km) - 1Su(t, K2, (27¢)
4 1St (27d)

In the next list, these expressions are mathematically
derived.

1. The expected associations:
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Ok, m) 2 E {x(t, k, m)|z(t, k); 0“—1)} -
WA (z(t k);0, LD ¢, k))

S U N (22,030,080 6, 00)
(28)

where:

@Dk =gl E) - (857 H) 9 6k + vk,
(29)

Note that the direct-path g({Z D (k) is calculated
before each E-step according to the estimated array
locations for all possible grid points. The expression
for g,(ﬁ_l) (k) is given by (7b) and (2), while
exchanging the source index j with the candidate
location index m and using the estimated array
positions py rather than its true value.

. The next term for the E-step is the first-order
statistics of the speech multiplied by the indicator,
given the measurements and the parameters. Using
the law of total expectation:

O =% xE {(-)|x —1,2(¢, k>;0<f—1>}
+(-%) xE {(-)|x —0,z(t, k);G“—D} . (30)

Accordingly, the first-order statistics of the speech
multiplied by the indicator is then given by (31).
Note that the expectation of the mth speaker when
the (t, k) bin is associated with the mth speaker is the
multichannel Wiener filter (MCWTF) (see

[70, Eq. (28)]). Otherwise, the expectation is the prior
of the signal, as defined in (23), namely identically
zero.

(b, &, m) Syt k) = %O (8, k, m)
x E {x(t, K, 1) Sy (2, K) 22, Ky 1) = 1, (¢, k);o“*U}
+ @ =70t k,m))

x E {x(t, K, m)Sya(t, K) |2, k, m) = 0, 2(2, k);o“—l)] -

O,k m) - 90 (t,k) (gﬁﬁ*”(k))H (q»gﬁ*l)(t, k))71 2(4, k).
(31)

. The third term for the E-step is the expected speech
second-order statistics multiplied by the indicator.
Using the law of total expectation, the expected
speech second-order statistics multiplied by the
indicator is given by (32). Note that, when the (¢, k)th
bin is associated with the mth speaker, the expected
speech second-order statistics is the squared MCWF
plus the associated error co variance term (see

[70, Eq. (32)]).
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w(t k) - 1St D> =3O (6 k, "4)[ B, k)\ + 5, k)~

(o8, @ h) (g8 w)" (cbﬁﬁ*“(ak))_l.ggﬁfh(k)].
(32)

4. The last term of the E-step is the expected speech
second-order statistics. Using the law of total
expectation, the expected speech second-order
statistics is given by (33), which is a weighted sum
(according to the estimate of the indicator) of the
conditional expectation in (32) and the prior variance
q')(z 1)(t, k). Note that, when the (¢, k)th bin is not
associated with the mth speaker, the expected speech
second-order statistics is simply the prior variance

ps (k).
1St 0 =3O (5, k, m)[ \ﬁﬁ,?(t,k)] + o (e k-

(61 b)) (84 ) (d>££*”(t,k))_l-g£5’”<k>}

n (1 —2O@k, m)) [¢§ﬂ;” @ k)] .
(33)

2.2.3 M-step

The second step of the iterative algorithm is the maxi-
mization of (25) w.r.t. the unknown deterministic param-
eters #, namely the M-step:

1. Similarly to [4, Eq. (20a)], ¥, is obtained by a
constrained! maximization of Q;(¥|0“~Y) in (25):

o _ SufOwkm
"o T-K '
2. The array locations are obtained by the maximization:

pi”, ... pg = argmax, o QupI#“V).  (35)

There is no closed-form solution for the array
centers, and therefore, a straightforward solution will
require a tedious evaluation of the expression (35) in
|P|Q points. Such a search is extremely complex.
However, due to the assumption that the noise
signals at different arrays are uncorrelated (14),
Qa2(plo“—) simplifies and the search can be carried

out separately for each p( ),

(34)

Py = argmax, Y 2Re{ 28 (£, K) 3, () g m (K (8, K, 1) Sy 2, k)}

t,k,m
~ (8 (0)" T gy (Rx(t, k) - 1S (8, ).
(36)

Because the search is carried out for each array
separately, it requires |P| - Q calculations of the

LThe sum of 1, equals 1. The full derivation can be found in [71, Sec. 9.2.2].
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likelihood term in (35), resulting in a significant
calculation saving. Note that p,; determines g, , (k),
as evident from (2)-(4).
3. The variance of the speech is obtained by
maximizing Q3(¢g|0“ ), resulting in:
i (1K) = 1St k)2

S,m

(37)

which is the periodogram of the speech signal, using
its second-order statistics.

2.2.4 ThelACES algorithm: summary

A conventional EM procedure for the problem at hand can
be formalized for any number of nodes, Q according to
Algorithm 1, required L iterations.

Algorithm 1: Algorithm for EM-steps.

E-step

Estimate x(¢, k, m) using (28), x(t, k,m t, k)

using (31), x(¢, k, m) - |S;, (¢, k)|? using (32), and

| (£, k)% using (33).

M-step

Calculate w(z) usin © i @
" g (34), b (6 k) using (37), and p,

using (36) Vg = 2,.. ., Q.

The classical batch EM algorithm is sensitive to initial-
ization and might converge to a local maximum instead
of the global maximum likelihood [71]. Several solutions
have been suggested [72] to circumvent the misconver-
gence phenomenon, including incremental [73], sparse
[72], recursive [74], and other variants of the batch EM
algorithm. Experimentally, it has been shown that the pro-
posed algorithm might suffer from this misconvergence if
a conventional initialization is applied.

In addition, because all locations of the microphones
and the speakers in our model are unknown, the origin of
the coordinate system should be predefined. We decided
to use one of the arrays as the origin, referred to as the
anchor node. The entire microphone/speaker constella-
tion is then measured w.r.t. this node. Consequently, the
EM algorithm should only search for Q — 1 array center
locations.

We propose the following incremental procedure that
was empirically shown to converge to the MLE. First, only
the anchor node is used by the algorithm. v, is initial-
ized to a uniform distribution, and ¢s, (¢, k) is calculated
based on the anchor position. The nodes are added incre-
mentally until all Q nodes used by the ad hoc network
are included. After adding each node, EM iterations are
applied with the current measurements, as captured by
the Q nodes. In general, the number of iterations can be
set to L > 1, but empirically, we see that L = 1 iteration is
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sufficient for each node addition. The localization and cal-
ibration EM sequence (LACES) algorithm is summarized
in Algorithm 2.

Algorithm 2: LACES algorithm for noisy environ-
ments.
Initialize

© _ 1

m =
P50 (,K) = |z(t, k)|
P=P1
E-step; (See Algorithm 1)
for Q = 2to Q do
Add node center to p: p < [pT pg] ! .
for{ =1to L do
M-step (See Algorithm 1 M-step)
E-step (See Algorithm 1 E-step)
end

end
Find J, the number of speakers, and their positions p;

Vj €[1,]] using a threshold for w,(,,L).

After finalizing all iterations of the last node, the num-
ber of speakers J and their positions p; Vj €[1,]] are
determined by applying a threshold to the probability map

L) The threshold is applied in the way it has been
suggested for iterative localization after algorithm conver-
gence [35, 75-78]. The rationale is to keep the soft values
during the EM convergence and apply the threshold only

at the end.

2.2.5 Algorithm’s complexity

The complexity of the proposed algorithm is high, even
though we apply the calibration of each array sequen-
tially, as described above. The complexity is a function
of a few parameters. For example, it is very important to
choose the correct grid resolution in the room to guar-
antee proper localization accuracy. However, the trade-off
between accuracy and computational burden should be
taken into consideration. In Table 1, the relevant param-

Table 1 Implementation parameters

Notation Meaning

L Number of algorithm iterations
Q Number of nodes

T Number of time frames

K Number of frequency bins

M Size of the grid
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eters are listed. These parameters were already defined
above during the derivation of the algorithm equations.
The resources consumed by the proposed algorithm
are summarized in Table 2 in terms of computational
complexity, communication bandwidth (BW), and mem-
ory requirements. Due to the distributed nature of the
problem at hand, these resources can be shared by the
nodes, thus increasing the algorithm’s efficacy. For exam-
ple, we can start locally from the anchor node and then
share the results with the second node and so on. The
details depends on the network topology, which is beyond
the scope of this paper.

3 Results and discussion

The proposed algorithm was evaluated using both sim-
ulations and real recordings. The performance of the
proposed algorithm was evaluated in terms of both node
calibration accuracy and concurrent speaker localization.
The simulation and recording setups are described in the
first subsection. The second subsection summarizes the
measures used to evaluate the performance. The simula-
tion results are given in the third subsection. The fourth
subsection is about the influence of imperfections on the
performance. The fifth subsection is dedicated to the eval-
uation of the proposed method using real-life recordings.
The last subsection introduces a naive algorithm that
might be applied for the same problem. We compare the
two approaches in terms of performance and their basic
assumptions.

3.1 Experimental setup

For simplicity reasons only, we focus on 2D cases, namely
both microphones and sources are located at the same
height. The 3D cases imposes high computational com-
plexity and will be therefore skipped in this manuscript.
In addition, to avoid too strong reflections from either
the floor or the ceiling of the acoustic enclosure, we
have selected the height of the sources-microphone con-
stellation in the center of the z-axis. The experimental
setup for the simulation study and the real-life recordings
were designed to be as similar as possible. Accordingly,
the speakers were positioned to imitate a group of peo-
ple sitting around a table located in the center of the
room. Three to five microphone arrays were located ran-
domly in the center area of the room to emulate mobile

Table 2 Implementation complexity table for the localization
and calibration EM sequence algorithm

Criteria LACES algorithm
Computation OL-Q*T-K-M)
BW OL-Q-T-K-M)

Memory OoQ-T-K-M)
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telecommunication devices that are located on that virtual
table, each of which with a few microphones. This geom-
etry also simulate an outdoor scenario for which the
sensors are restricted to be located within a close area and
the sources are located in the perimeter of this area.

The nodes jointly constitute an ad hoc acoustic sensor
network. The nodes are rectangular with four micro-
phones each, simulating smartphones with known dimen-
sions and orientations. An example of such an array is
shown in Fig. 1.

The sampling frequency was set to 8 kHz and the frame
length of the STFT to 64 ms with an overlap of 75%. The
number of frequency bins was 512. Utterances of simul-
taneously active male and female speakers were used (sig-
nals lengths is 1 s). The speakers were located randomly
around the table. The number of speakers was five for the
simulations and six for the real recordings.

The frequency band that was proven sufficient for our
array sizes was 500 — 2000 Hz. In the simulations, the
speech signals were convolved with simple room impulse
responses (RIRs) of an anechoic chamber. In the real-life
recordings, we recorded the signals in our acoustic lab, set
to a low reverberation level (Tg9 = 120 ms). In both cases,
a synthetic additive white Gaussian noise (AWGN) was
added with various signal to noise ratio (SNR) levels.

Fig. 1 Cellular phone form-factor array with four omnidirectional AKG
CK32 microphones at the corners
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A picture depicting the recordings setup can be found in
Fig. 2. The rectangular arrays mentioned above were used
in the acoustic lab together with Fostex model 6301BX
loudspeakers, serving as sources. A high-quality recording
system (by RME) was used to measure the Tg and to gen-
erate the input signals. Although the full size of the room
was 6 x 6 x 2.4 m, here, we focus on a smaller search area
of 5 x 5 m with a constant height of 135 cm.

3.2 Performance measures

Calibration success rate (SR) was calculated using Monte-
Carlo simulations according to the number of times the
estimation of the node center was sufficiently accurate (up
to 20 cm):

SR(%) = 100  S,/Ae, (38)

where S, is the number of successful calibrations and A,
is the total number of nodes to be calibrated. This is the
only measure used for the calibration stage. If the calibra-
tion is sufficiently accurate, then the calibration error in
centimeters will be very good; if the calibration fails, the
results of subsequent localization stage also fails.

For the localization stage, we adapted three statistical
measures used in [35, 75]. They are only calculated for the
cases of successful calibration. The misdetections (MDs)
are counted according to the percentage of misdetected
speakers:

MD(%) = 100 * M;/Rs, (39)
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where M; is the number of misdetected sources and Ry is
the total number of real sources.

The false alarm (FA) is the percentage of wrongly
detected speakers:

FA(%) = 100 x F,/R;, (40)

where F; is the number of falsely detected sources.
Localization root mean square error (RMSE) is a mea-
sure of the estimation accuracy of all detected speakers:

1 Rs—M;
RMSE= | — 2(s),
T PIRO)

s=1

(41)

where s is the source index and e(s) is its respective
localization error in meters.

3.3 Simulations of random geometric setups

The geometric setup for the simulations is shown in Fig. 3.
Three nodes with a square shape (10 x 10 cm) were ran-
domly located with a random orientation in the middle of
the room (each microphone is denoted by “o”). Six speak-
ers (denoted by the “+” sign) were located away from the
center to imitate a scenario with nodes in the center (on
a table for indoor case) and speakers around that center.
The main purpose of the simulation was to explore the
performance for random geometric setups. The perfor-
mance of the algorithm was tested for various levels of
SNR and various sensor and source locations. The number
of different setups generated was 100.

Fig. 2 Room setup example: loudspeakers, microphone arrays, and recording equipment
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Fig. 3 Simulation room random setup example. Each microphone is denoted by the sign o. Six speakers are denoted by the sign +

We noticed that a single EM iteration per new node
(L = 1) yields satisfactory results. The statistical measures
for the simulation study are summarized in Table 3. In
the presence of white sensor noise, as also demonstrated
for the real recordings, the algorithm performance rapidly
deteriorates from good results (for SNRs of 20 dB) to very
bad results (around SNRs of 0 dB). Note that the local-
ization search grid is 0.2 m x0.2 m and the localization
error is within the grid resolution. We noticed that some
compensation for low SNR could be achieved, if we add
microphones to each array as long as the noise is spatially
white. However, a detailed analysis of how the number of
microphones might affect the performance is beyond the
scope of this contribution.

To experimentally examine the LACES convergence
when arrays are added to the estimation, we plotted the

Table 3 Statistical measures for various SNR levels

Sensor SNR (dB) Calib. SR (%) MD (%) FA (%) Loc. RMSE [m]
0 455 54 - -

10 70.5 16 1 0.16

20 715 6 1 0.16

40 74 6 1 0.16

60 74.5 6 1 0.16

The node calibration SR is measured in percentage (%). The source localization
performance measures are MD percentage, FAs percentage, and RMSE in meters

intermediate results for the localization parameters, ¥ in
Fig. 4 for L = 1. The real locations of the five speakers are
marked by ‘4

The improvement of the localization maps can be
observed when additional arrays are utilized. For a single
array, only a few of the speakers are detected and many
errors are observed. As arrays are added, the estimation
improves for all speakers. The final map can be used to
infer the number of speakers and their locations.

3.4 Sensitivity to imperfections

Before discussing real recordings, it is essential to examine
what is the sensitivity of the algorithm to imperfections
that exist in any real system.

The first one is sensitivity to inaccurate offset values of
the microphones with respect to the center of the array.
We use a uniform distribution with various maximal off-
set. The performance of the algorithm is summarized
in Table 4. In the presence of errors in microphones
locations, the algorithm performance rapidly deteriorates
from good results (for maximal offset of 10 mm) to very
bad results (around offset of 20 mm). Seems realistic to
assume internal calibration accuracy of around 1 mm,
which seems to be high enough in terms of the algorithm
performance.

The second analysis is sensitivity to synchronization
issues between arrays. We examine the influence of clock
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Fig. 4 Localization soft maps intermediate results (a—e). The real locations of the simulated speakers are marked by ‘+'. The estimation is given by
colored contours. The grid resolution is 20 cm. We excluded strips of 100 cm near the walls from the search area

Table 4 Measures for various internal calibration errors

Max offset (mm)  Calib.SR(%)  MD (%)  FA(%)  Loc. RMSE [m]
0 100 0 0 0.117

10 100 0 0 0.117

20 50 33 0 0411

30 0 100 67 -

The node calibration SR is measured in percentage (%). The source localization
performance measures are MD percentage, FAs percentage, and RMSE in meters

rate differences between arrays. We use a constant fre-
quency offset between the three arrays, which is mea-
sured compared to the anchor array in parts per million
(ppm) units. One array has maximal offset as indicated
in the table and the other one has half the offset. The
performance of the algorithm is summarized in Table 5. In
the presence of very large frequency offsets, the algorithm
performance rapidly deteriorates from good results (for
maximal offset of 100 ppm) to very bad results (around an
offset of 1000 ppm). It means that even for very low quality
of internal clocks, the performance is still satisfactory.
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Table 5 Measures for various frequency offsets between arrays

Frequency offset ppm  Calib. SR (%) MD(%) FA (%) Loc. RMSE [m]
0 100 0 0 0.117

100 100 0 0 0.117

250 100 33 0 0.118

1000 100 33 0 0314

10000 0 100 83 -

The node calibration SR is measured in percentage (%). The source localization
performance measures are MD percentage, FAs percentage, and RMSE in meters

The last analysis is the sensitivity to the reverberation
level of the room. As stated above, we assume low rever-
beration levels, since we observed significant influence
on the performance. The performance of the algorithm
as a function of the reverberation level is summarized
in Table 6. As expected, when reverberation increases,
the algorithm performance rapidly deteriorates from good
results (Ts0 = 100 ms) to very bad results (759 = 300 ms).

3.5 Real-life recordings in low-reverberation indoor
environment

The geometric setup for the real recordings taken at BIU
acoustic lab is depicted in Fig. 5. Three arrays with a rect-
angular shape (8.2 x 14.7 cm) were located in the middle,
each of which consists four microphones. Each micro-
phone in the scheme is denoted by the symbol “o” Six
speakers, denoted by the symbol “4” were located around
the center in a meeting room setup. The real record-
ings are characterized by low reverberation level (Tgo =
120 ms). We tested this array constellation with various
levels of sensor AWGN. The analysis of the real record-
ings is therefore focused on the influence of the SNR level,
rather than the reverberation level, on the calibration and
localization accuracy. These acoustic conditions can also
represent outdoor environments, which are usually char-
acterized by a small number of reflections . We analyze a
single scenario in this subsection with signals of the same
length used above in the simulated subsection. Table 7
summarizes the results for various SNR conditions. In
the Calibration SR column, we designate the number of
correctly calibrated arrays out of 2 arrays (the third array
is the anchor array). MD is calculated for 6 speakers.

It can be seen that for any SNR higher than 14 dB, the
performance is very good: the calibration was good for the

Table 6 Measures for various reverberation levels

Teo Ms Calib. SR (%) MD (%) FA (%) Loc. RMSE [m]
100 100 0 0 0.117

120 100 0 17 0.126

200 50 50 33 0517

300 0 100 50 -

The node calibration SR is measured in percentage (%). The source localization
performance measures are MD percentage, FAs percentage, and RMSE in meters
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nodes, the number of MDs was zero, there were no FAs,
and the localization RMSE was 0.1 m. For an SNR of 10 dB,
there is some degradation in the localization results, but
the calibration is still good. The algorithm fails for all SNR
levels equal to or below 3 dB.

3.6 Naive algorithm

In this subsection, as a comparison to the proposed
method, we introduce a naive geometrical technique for
estimating both the array centers p, for ¢ = 2,...,Q
(assuming the reference array position p; is known) and
the speakers’ positions p; for j = 1,...,/, with J the
number of speakers.

Two simplifying assumptions are first made: (1) the
number of speakers J is known in advance and (2) the
speakers’ activity patterns are non-overlapping and the
time-segments in which they are active are known as well.
Note that the LACES algorithm does not require these
simplifying assumptions, that are rarely met in real-life
scenarios.

The naive algorithm uses two datasets: (1) 7,,—the
TDoA between each array centroid and the reference
array centroid w.r.t. each speaker; neglecting the TDoAs
between the microphones within each array, the TDoA
is estimated by maximizing the cross-correlation between
each possible pair of signals (one from each array and
one from the reference array) and average all the obtained
TDoAs—and (2) ¥,;—the DOA of each speaker w.r.t.
each array. The DOA is estimated by maximizing the SRP
steered to all possible DOAs. Note that the orientation
of the arrays are known (same as for the LACES algo-
rithm), and hence, the independently estimated DOAs are
all referring to the same coordinate system.

The positions of the speakers and arrays should match
the TDoA readings between the arrays. Accordingly,
the TDoA between the gth array centroid and the ref-
erence array centroid (namely, array #1) is given by
wl—" with ¢ the sound velocity and F; the
samphng frequency. Using the observed TDoAs 7, the
following cost function should be minimized to obtain an
estimate of the positions of the arrays’ centroids py; g =

., Q and the speakers’ positions p;; j =1,...,/:

2

—pqll — ||P'_Pl||
1 / Fs— 1] - (42)

>yt

q=2 j=1

As this cost function in (42) includes both the arrays’
and speakers’ positions, the search for a global minimum
is a cumbersome task.

The positions of the sources and the arrays should also
satisfy the relations imposed the DOAs #,; between the
arrays and the sources. Considering only the horizontal
plain, the following relation must hold:
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Fig. 5 Recordings room setup. Each microphone is denoted by the sign o. Six speakers are denoted by the sign +

[Sin(ﬁq,j), COS(l?,,”)] ( Pq) =0.

Note that this relation has an inherent ambiguity. If a spe-
cific 15q,j satisfies (43), then also zéq,j + 7 satisfies the same
equation.

Concatenating the above relations for all arrays g =
1,...,Qyields:

(43)

Ap,:(AoB)[ﬂ (a4)
where A and B are Q x 2 matrices defined by Ay 1.0 =
[sin(ﬁq,j), — cos(z?q,j)] and By 12 = pg. The symbol o
denotes the Hadamard product (element-wise product).
Equation 44 is an over-determined set of equations for p;,
provided that Q > 2, and hence can be solved by apply-
ing the least squares procedure. The position of the jth
speaker pj, as a function of the arrays’ positions is then
given by:

Table 7 Measures for room recordings in various SNR conditions

SNR (dB) Calib. SR MDs FAs Loc. RMSE [m]
> 14 2/2 0/6 0 0.1

10 2/2 1/6 0 0.1

<3 0/2 N/A N/A N/A

The node calibration SR is given as a ratio. The source localization performance
measures are MD ratio, FA ratio, and RMSE in meters

-1
B =(A"A) AT(AoB)[”. (45)
Substituting (45) into the cost function in (42), the array
positions p;; g = 2,...,Q can now be estimated inde-
pendently of the speakers’ positions, thus alleviating the
computational burden:

2

Q ] |y ~

- - ) Ip; — Pgll — lIp; — p1ll

P2,...,pQ = argmin,, .o E E " Fs — 14/
g=2 j=1

(46)

The cost function in (46) still requires a (Q — 1)-
dimensional search. To further reduce the complexity, we
propose to sequentially minimize the cost function for
the sub-network of size Q, with é = 2,...,Q. At each
step, only the position of the newly added array Pg Is esti-
mated, while all previous arrays’ positions py, ..., Po-1y
that were estimated in the previous algorithmic steps, are
kept unaltered:

2

pill
Fs — Tq’/'

Pq” Ip; —

Q J
Py = argmin,,_ Z Z

q=2 j=1

(47)

The 1-dimensional minimization can now be carried out
by a simple grid search. We chose an area of 5 x 5 m sur-
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rounding the reference array with a resolution of 0.05 m,
to obtain a similar search domain as for the LACES algo-
rithm. The number of candidate positions is denoted M
and is approximately equal 10,000 in this case. The naive
geometrical technique is summarized in Algorithm 3.

Algorithm 3: Naive geometrical technique for joint
speakers’ and arrays’ positions estimation.

Input: Obtain an estimate of the TDoA 1,,; between
each array centroid and the reference array centroid
w.r.t. each speaker
Input: Obtain an estimate of the DOAs v, of all
speakers w.r.t. all arrays
for Q =2 to Qdo
for Each of the M candidate positions of the Q-th
array do

Minimize the cost-function (47) w.r.t. Py

Correct the ambiguity problem for Q = 2, if
necessary
end

end

Output: Array positions ps, . .., PQ

A
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To exemplify the procedure, the case of six speakers and
three arrays, as depicted in Fig. 6, is examined. The ref-
erence array is located at [2.4,2.6] m and its position is
not estimated by the algorithm. In the first stage, only
the position of the second array, located at [1.8,3] m, is
estimated. The obtained cost function (47) is depicted in
Fig. 7a. Two distinct minima, in [ 1.8,2.95] and [3, 2.25],
can be observed. This is attributed to the symmetric
behavior of the cost function (47) w.r.t. the reference array,
namely for p; + p2 and p; — pg, as evident from (43).
Therefore, an additional disambiguity stage was applied
to determine the second array position. For that, we
calculated two alternative DOA estimates from the two
optional array positions (either [1.8,2.95] or [3,2.25])
towards the estimated position of an arbitrarily chosen
speaker j, using (45). The two values were compared to
the observed DOA 192,;. Since [1.8,2.95] better fits the
observed DOA than the alternative candidate [ 3, 2.25], it
was finally chosen as the position of the second array.

Next, the position of the third array ([ 3,2.2]) was esti-
mated using the known position of the first array and
the already estimated position of the second array. The
obtained cost function, which does not suffer from the
above ambiguity, is depicted in Fig. 7b, and its minimum

Output: Determine the speakers’ positions py, . .., py is obtained in [3.0,2.2]. The final estimated positions of
using (45) and the estimated array positions the arrays and the speakers versus the oracle positions are
5 -
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Fig. 6 Room setup for the comparison of the proposed and the naive algorithms. The speakers are denoted by 4+ and numbered by 1,.. ., 6.The

microphones are denoted by o. The arrays are numbered by tagged numbers 17,2/, 3’
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Fig. 7 Contour of the cost function in (47). The oracle position is denoted by x’

depicted in Fig. 8. The averaged estimation error of the
speakers is 5.5 cm. The estimation error in localizing the
second array is 0.05 cm, while the position of the third
array is accurately estimated.

The same geometrical setup was used to evaluate the
LACES algorithm, but with a more realistic scenario,
where the number of speakers unknown and their activ-
ity overlapping. The position of the array centroids were
accurately found (namely, negligible estimation error) and
the average estimation error in localizing the speakers is
11.7 cm. The final localization map is depicted in Fig. 9.
The obtained speakers positions are marked with a heat
map and the real locations marked with black +.

4 Conclusions

A major challenge for ad hoc networks is to jointly localize
sources and calibrate the positions of the arrays (or nodes)
of the network. A novel joint calibration and localization

algorithm, suitable for noisy environments, was derived
using the EM algorithm. One of the nodes is used as an
anchor node. The calibration, i.e., the estimation of the
node positions, as well as the speakers’ localization are
applied relatively to the position of this anchor node.

To alleviate the initialization challenge of the batch EM,
an incremental procedure was proposed that sequentially
adds the nodes rather than trying to concurrently solve
the entire full-dimension problem. The new algorithm,
dubbed LACES algorithm, was experimentally studied
using both an intensive simulated study and real record-
ings. It was also compared with a naive algorithm based on
geometrical considerations. While exhibiting high local-
ization accuracy for both the nodes and the speakers in
the case of non-overlapping speakers and known number
of speakers, the naive algorithm renders useless in real-
istic scenarios for which these simplifying assumptions
do not hold. The proposed LACES algorithm maintains

O | |
0 1 2

N

positions are denoted by blue “X"s

3 - 5

X-axis
Fig. 8 The final estimated positions of the arrays and the speakers vs. the oracle positions.The oracle positions of the arrays are denoted by green
circles and the estimated positions are denoted by cyan “x’s. The oracle positions of the speakers are denoted by red circles and the estimated
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Fig. 9 The localization heat map LACES result. The final speaker positions are also added for evaluation

high localization and calibration accuracy even in these
challenging scenarios.
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