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Abstract

Ego-noise, i.e., the noise a robot causes by its own motions, significantly corrupts the microphone signal and severely
impairs the robot’s capability to interact seamlessly with its environment. Therefore, suitable ego-noise suppression
techniques are required. For this, it is intuitive to use also motor data collected by proprioceptors mounted to the
joints of the robot since it describes the physical state of the robot and provides additional information about the
ego-noise sources. In this paper, we use a dictionary-based approach for ego-noise suppression in a semi-supervised
manner: first, an ego-noise dictionary is learned and subsequently used to estimate the ego-noise components of a
mixture by computing a weighted sum of dictionary entries. The estimation of the weights is very sensitive against
other signals beside ego-noise contained in the mixture. For increased robustness, we therefore propose to
incorporate knowledge about the physical state of the robot to the estimation of the weights. This is achieved by
introducing a motor data-based regularization term to the estimation problem which promotes similar weights for
similar physical states. The regularization is derived by representing the motor data as a graph and imprints the
intrinsic structure of the motor data space onto the dictionary model. We analyze the proposed method and evaluate
its ego-noise suppression performance for a large variety of different movements and demonstrate the superiority of
the proposed method compared to an approach without using motor data.

Keywords: Ego-noise, Motor data, Robot audition, Humanoïd robot

1 Introduction
Microphone-equipped robots are exposed to various
kinds of noise, specifically to self-created noise, which is
referred to as ego-noise in the following. It is caused by
the robot’s electrical and mechanical components such as
rotating motors and joints as well as the moving body
parts. Ego-noise is a crucial problem in robot audition
[1, 2] since it severely corrupts the recorded microphone
signals and impairs the robot’s capability to react to unan-
ticipated acoustic events. For this reason, ego-noise sup-
pression is a crucial preprocessing step in robot audition.
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Ego-noise suppression is particularly challenging for
several reasons. First, ego-noise is usually louder than
other signals of interest, e.g., a desired speech signal (“tar-
get”), since the ego-noise sources are typically located
in immediate proximity of the microphones. For exam-
ple, for the humanoïd robot NAOTM, which we will use
as experimental platform in this paper, the microphones
are mounted to the head of the robot. Thereby, they are
only few centimeters away from the shoulder motors and
joints, cf. Fig. 1. Another challenging aspect of ego-noise
is that it cannot be modeled as a single static point inter-
ferer as the joints are located all over the body of the robot
and the resulting structure-borne sound is transduced
to air not just at isolated points. Furthermore, ego-noise
is highly non-stationary since typically different move-
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Fig. 1 Illustration of a typical human-robot interaction scenario. The desired source ("target") is shown on the left. Two exemplary, spatially distributed
ego-noise sources are shown in blue. Besides, typical distances between the sources and the microphones are given. Obviously, the ego-noise
sources are located close to the microphones while the distance between target and microphones is typically larger. Image of robot taken from [12]

ments are performed successively with varying speeds and
accelerations.
One of the first approaches for ego-noise suppression

goes back to the SIG humanoïd robot [1] which was
equipped with microphones mounted inside the robot’s
housing near the motors in order to record ego-noise
reference signals. These signals were subsequently used
as reference for adaptive filtering-based ego-noise can-
celation. Interestingly, these reference signals were inter-
preted as additional auditory perception channels of the
robot. Internal microphones were also used in [3] for
speech enhancement for a human-robot dialog system. In
this approach, the recorded reference signals are incor-
porated into a frequency-domain semi-blind source sep-
aration algorithm with subsequent multichannel Wiener
filtering.
In many robot designs, it is not possible to mount

additional reference microphones inside the robot due to
space and hardware constraints. Furthermore, a poten-
tially large number of internal microphones are required
to obtain reference signals for each ego-noise source.
This drawback motivates approaches which operate on
the external microphone signals only. Here, it can be
exploited that ego-noise exhibits a characteristic struc-
ture in the Short-Time Fourier Transform (STFT) domain.
Due to the limited number of degrees of freedom for
the movements of the robot, those spectral patterns can-
not be arbitrarily diverse. These two properties motivate
the use of learning-based dictionary methods where the
ego-noise signals are approximated by prototype signals,
so-called atoms, which are collected in a dictionary. Then,
for each time frame, a linear combination of atoms has
to be found which optimally fits the current ego-noise

signal with respect to the chosen criterion. An example
for such a dictionary learning algorithm is K-SVD [4],
which has been applied for multichannel ego-noise sup-
pression in [5]. Another widely used approach to train a
dictionary is nonnegative matrix factorization (NMF) [6–
8]. For NMF, the dictionary is restricted to nonnegative
elements only which is well-suited to model power spec-
tral densities (PSDs) of acoustic sources. An according
approach for ego-noise suppression has been investigated,
e.g., in [9]. The concept of NMF has been extended for
multichannel recordings [10] by extending the (nonnega-
tive) sourcemodel by an additional spatial model. This has
been applied for ego-noise suppression in [11].
Besidesmethods using the audiomodality only (referred

to as audio only-based methods in the following), other
ego-noise suppression approaches use knowledge about
motor information given by, e.g., motor commands or
motor data such as engine rotation frequency, joints’
angle, or angular velocities collected by proprioceptors.
The advantage of using motor data compared to motor
commands is that the emitted ego-noise is directly related
to the instantaneous internal state of the robot, measured
by motor data. Since a robot is not a fully deterministic
system, this measured state may be significantly different
from the target state defined by the motor command.
Typically, a sufficiently accurate analytical model of

the dependency between motor data and emitted ego-
noise can usually not be obtained since the mechani-
cal dependencies and interactions between structure and
airborne sounds are highly complex. Therefore, current
ego-noise suppression approachesmodel these dependen-
cies entirely or partly by learning-based strategies. For
example in [13], a neural network-based approach is used
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to predict the PSDs of ego-noise caused by the AiboTM
robot. The feedforward neural network, consisting of two
hidden layers containing thirty nodes each, is fed with
angular position and velocity data of current and past
time frames. The PSD estimates are subsequently used
for spectral subtraction which was shown to result in
a significant improvement of speech recognition rates.
In [14], it is demonstrated that the harmonic structure
of ego-noise can be estimated using motor data. This
prior knowledge is included to a single-channel NMF-
based ego-noise modeling. It is proposed to approximate
the currently observed ego-noise spectrogram by com-
bining elements from a dictionary DH which models the
harmonic structure and another dictionaryDR which cap-
tures the residual part of the ego-noise. The benefit of this
approach is that only DR requires a prior learning step
whileDH is completely motor data-driven. It is shown that
the proposed approach significantly outperforms an audio
only-based method for the suppression of ego-noise that
is not well represented in the training data. Although this
approach is close to the proposed method from amethod-
ical point of view, it aims at a different direction since it
explicitly addresses the suppression of ego-noise if train-
ing and test data are unbalanced. This is not the case in
the scenario considered in this paper.
Other popular methods for ego-noise suppression com-

bining audio and motor information are template-based
approaches. Here, the key idea is to save the characteris-
tic spectral shape of the ego-noise as PSD templates in a
data base. In [15], each template is associated with amotor
command which triggered the current movement. Based
on this, during application, matching templates are iden-
tified and temporally aligned to the recorded signal. An
alternative template-based approach was presented in [16,
17], where motor data instead of motor commands are
used to identify the templates in the data base. For a cur-
rent motor data sample, the nearest neighbor in the motor
data space is searched and the associated template used as
ego-noise estimate.
The concept to associate motor data with ego-noise

templates was adopted in [18]. However, there, motor
data samples are linked to a set of atoms from a learned
dictionary-based ego-noisemodel. Nonlinear classifiers in
the motor data space are used to associate a motor data
sample to a set of atoms, whose elements are subsequently
combined to approximate the current ego-noise record-
ing. Thereby, the classifiers replace the expensive iterative
search for atoms in the dictionary.
In this paper, the idea of choosing atoms depending

on motor data is adopted from [18] and we propose to
expand the conventional, audio only-based NMF model
by a motor data-dependent regularization term, which
promotes similar atom activations in those time frames
in which similar motor data is measured. The proposed

regularization term is derived from a graph structure
which encodes the similarity between themotor data sam-
ples. While the main benefit of the method in [18] was
a reduction of computational complexity, the presented
approach in this paper results in a significant performance
improvement. The proposedmethod is inspired by graph-
regularized NMF [19, 20], which was proposed in the
context of clustering and classification of text documents.
There, the NMF model and the regularization are operat-
ing in the same data space. In this work, however, we learn
an NMF model on acoustic data while the regularization
encodes the geometry of the motor data space. Thus, we
combine an acoustic model with non-acoustic reference
information.
This paper is structured as follows. In Section 2.1, we

describe the usedmotor data. After succinctly introducing
NMF in Section 2.2, we present the novel motor data-
regularized NMF in Section 2.3 Thereby, we first describe
the construction of the motor data graph structure in Sub-
section 2.3.1 and derive the proposed regularization term
in Subsection. 2.3.2. Then, the modified NMF optimiza-
tion problem is formulated and according update rules are
presented in Subsection. 2.3.3. The resulting novel ego-
noise suppression algorithm is summarized in Section 2.4
and its efficacy is demonstrated in Section 3.

2 Motor data-regularized NMF for ego-noise
suppression

In the following, we consider the bin-wise squared mag-
nitude of a single-channel microphone signal in the STFT
domain, represented in spectrograms denoted as Y =[
y1, . . . , yL

] ∈ R
F×L+ , where F is the number of frequency

bins and L is the number of considered time frames.

2.1 Motor data descriptions and definitions
The physical state of a robot can be described by motor
data, collected by proprioceptors providing angular posi-
tion information of the joints driven by the motors. In
the following, we consider a robot which is equipped with
m = 1, . . . ,M proprioceptors each capturing one angle
of a joint. We denote the s-th observed angular posi-
tion in STFT frame � for proprioceptor m by α

(s)
�,m ∈ R.

Within frame �, a total number of S� motor data sam-
ples is observed, i.e., s = 1, . . . , S�. In this paper, we
account for the fact that the motor data is not necessar-
ily synchronized with the audio data recording so that for
a fixed observation interval for the audio data, the num-
ber of motor data may vary, i.e., S� may change with �.
This is specifically the case for the NAO robot used for the
experiments in this paper.
Depending on the kind of ego-noise, only a subset of

proprioceptors is relevant for ego-noise suppression. For
example, if only ego-noise caused by arm movements is
present, only motor data of the arm joints are required.
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Fig. 2 Left: Illustration of data collection and processing. We consider a robot for which motor data of 23 joints and a single-channel microphone
signal are recorded. The �th STFT frame is processed. Note that the total number of motor data samples can be varying from frame to frame, c.f.,
Section 2.1. Right: Example spectrogram for right arm shoulder ego-noise and corresponding normalized motor data samples (angular position
and angular velocity) of this joint

In the following, we denote the index set of relevant
proprioceptors for these joints byM.
From proprioceptor data collected for proprioceptorm,

the instantaneous angular velocity can be estimated by

α̇
(s)
�,m = α

(s)
�,m − α

(s−1)
�,m

�T (s)
�

, m ∈ M, (1)

where�T (s)
� denotes the time difference between adjacent

observations α
(s)
�,m and α

(s−1)
�,m . Note that for s = 1, α(s−1)

�,m is
chosen to be the last angular sample of previous the frame
� − 1. Analogously, angular acceleration α̈

(s)
�,m can be com-

puted from successive angular velocity estimates α̇
(s)
�,m and

α̇
(s−1)
�,m .
To associate each spectrogram frame y� with a single

motor data sample, we propose first to compute the arith-
metic average of all S� angular positions in STFT frame
�

ᾱ�,m = 1
S�

S�∑

s=1
α

(s)
�,m, m ∈ M. (2)

We proceed analogously for angular velocity and accel-
eration and obtain ¯̇α�,m, ¯̈α�,m, respectively. We then con-
catenate the averaged angular data for all considered
proprioceptors in a feature vector

ᾱ� = [
ᾱ�,1, . . . , ᾱ�,m, ¯̇α�,m, ¯̈α�,m, . . . , ¯̈α�,M

]T , (3)

which we will refer to as motor data vector for frame � in
the following. The left part of Fig. 2 exemplarily illustrates
the described preprocessing of the data.

2.2 NMF for ego-noise suppression
In the following, we briefly summarize NMF. We intro-
duce succinctly how semi-supervised NMF can be used
for ego-noise suppression and explain the main drawback
of the known approach before we introduce the proposed
motor data-based regularization.
The objective of NMF is to approximate the nonnegative

matrix Y , i.e., a matrix whose elements are all larger or
equal than zero, by a product of two nonnegative matrices
D and H

Y ≈ Ŷ = DH = [Dh1, . . . ,DhL] , (4)

where D ∈ R
F×K+ is the so-called dictionary of size F × K

and H = [h1, . . . ,hL] ∈ R
K×L+ is referred to as activa-

tion matrix [8, 21]. This approach can be interpreted as
approximating each column of Y by a weighted sum of
columns of D (the so-called atoms or bases), where the
weights are given by the corresponding column entries of
H. K is referred to as size of the dictionary and describes
the number of atoms in D. Typically, K � F , L holds, i.e.,
NMF can be considered as a compact representation of
data.
The factorization is achieved by minimizing a cost func-

tion which penalizes the dissimilarity between Y and Ŷ
defined by the model parameters D,H. Typically, the cost
function is applied element-wise on the elements of the
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matrices Y and Ŷ . In this paper, we consider the Euclidean
distance between Y and Ŷ as cost function yielding the
optimization problem

min
D,H

‖Y − DH‖2F
s.t. D,H � 0,

(5)

where ‖·‖F denotes the Frobenius norm and D,H � 0
means that all elements of D,H are larger or equal to
zero, ensuring nonnegativity. The optimization problem
in Eq. 5 is typically solved using iterative updates alter-
nating between D,H such that the nonnegativity of D,H
is implicitly guaranteed if they are initialized with pos-
itive values. The update rules can be derived based on,
e.g., the Majorization-Minimization principle or heuristic
approaches [7, 8].
For ego-noise suppression, we apply a semi-supervised,

two-stage strategy [21], c.f. Section 2.4: first, we use audio
data containing ego-noise only and train an ego-noise dic-
tionary. Then, given a mixture of ego-noise and speech,
these dictionary elements remain constant and only its
activations are estimated. For this, again, the same itera-
tive update rules are used, which have shown to be sen-
sitive to the additional speech signal. As a consequence,
the atom activations are no longer estimated correctly. For
improved robustness, we therefore propose to extend this
audio only-based estimation of the activations by taking
also the physical state of the robot, measured in terms
of motor data, into account. Thus, the estimation of the
activations is additionally guided by reference information
which is completely unaffected by the speech signal.

2.3 Motor data-regularized NMF
The basic idea of our approach is that activations should
be similar if the physical state of the robot is similar. For
this, we measure the similarity between robot states in
frames � and j by comparing motor data vectors ᾱ� and
ᾱj and enforce similar activations h� and hj if ᾱ� and ᾱj
are close. This will be achieved by imprinting the intrin-
sic geometry of the motor data space to the NMF cost
function. Results from spectral graph theory [22, 23] and
manifold learning theory [24] have shown that local geo-
metric structure of given data points can be modeled
using an undirected graph. Based on these results, we first
introduce a motor data-based graph structure and sum-
marize subsequently how a regularization term, enforcing
similar activations for similar motor data, can be derived.
We then reformulate the NMF optimization problem Eq. 5
and present according update rules for its minimization.

2.3.1 Motor data graph structure
In the following, we define a graph where the motor data
vectors ᾱ1, . . . , ᾱL constitute the nodes. The edges con-
necting the nodes are assumed to be bidirectional, i.e.,

Fig. 3 Part of an undirected graph where motor data vectors ᾱ� ,
� = 1, . . . , L are the nodes of the graph. The weights of the edges are
given by Eq. 6: the more similar two motor data vectors are, the larger
the weight of the connecting edge is

we obtain an undirected graph. A part of an exemplary
graph is illustrated in Fig. 3. The edge which connects
nodes ᾱ� and ᾱj has weightW�j = Wj� and should reflect
the affinity between the two motor data points. Depen-
dent on the considered scenario, numerousmeasures have
been proposed to quantify the affinity between ᾱ� and ᾱj
[22], e.g., a nearest-neighbor or dot-product weighting. In
this paper, we determine the weightW�j using a Gaussian
kernel

W�j = Wj� = exp
(

−‖ᾱ� − ᾱj‖22
2ε2

)

∈ (0, 1] , (6)

with scale parameter ε ∈ R+. The largerW�j, the higher
the affinity between two motor data samples is and we
obtain W�j = 1 if ᾱ� = ᾱj. Note that by adjusting ε, the
connectivity of the graph can be controlled, e.g., for larger
ε, the neighbors of a node are connected with a larger
weight. Therefore, ε can be used to control the reach of
the local neighborhood of a node. Based on the affin-
ity weights, we define the affinity matrix W = WT ∈
[ 0, 1]L×L, where the [W ]�j = W�j. Furthermore, we intro-
duce the diagonal matrix Z of size L × L with Z�� =∑

j W�j = ∑
j Wj� and zero else.

2.3.2 Motor data-based regularization term
The derivation of the regularization term is based on
results from [24, 25]. It is assumed that the considered
motor data lie on a Riemannian manifoldA. We are look-
ing for a mapping f : A → R, which can be interpreted
as a mapping from the manifold to a line. f should pre-
serve the local geometry of the manifold, i.e., close points
on the manifold should be mapped to close points on the
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line. This implies that f is allowed to vary only smoothly
for similar arguments. Appropriate mappings f can be
obtained by an optimization on the manifold which can
be discretely approximated on the motor data graph by
searching for an f which minimizes

1
2

L∑

�=1

L∑

j=1

(
f (ᾱ�) − f (ᾱj)

)2W�j, (7)

where f is a function of the nodes of the graph [24, 25].
To exploit the geometric information of the motor data

manifold for the estimation of the activation vectors, we
manipulate Eq. 7 and replace the abstract mapping f by
the activation of atom k

Rk = 1
2

L∑

�=1

L∑

j=1

(
hk� − hkj

)2W�j, (8)

where hk� denotes the �-th element of hk , i.e., hk� is the
scaling of atom � in time frame k. The regularization term
Rk needs to be minimized jointly with Eq. 5 with respect
to the activations for every atom k, c.f. Section 2.3.3. Note
that the motor data-based regularization Rk implicitly
influences also the structure of the dictionary elements
since the optimized activations directly affect the update
of D.
Note that in Eq. 8, affinities W�j can be interpreted as

weighting parameter: if two motor data vectors ᾱ� and
ᾱj are similar, W�j is close to one according to Eq. 6 and

the minimization of Eq. 8 enforces similar hk� and hkj.
Using the parameters defined in Section 2.3.1, Eq. 8 can
be directly related to the so-called graph Laplacian L =
Z − W [22]

Rk = hTk Zhk − hTkWhk
= hTk Lhk .

(9)

Summing over all atoms results in the final regularization
term

R =
K∑

k=1
Rk = tr

(
HTLH

)
, (10)

where tr(·) denotes the trace operator.
2.3.3 Motor data-regularized NMF
The derived regularization term Eq. 10 can be directly
included into Eq. 4. We obtain as modified optimization
problem

min
D,H

‖Y − DH‖2F + λtr
(
HTLH

)

s.t. D,H � 0,
(11)

where λ ≥ 0 controls the influence of the motor data-
based regularization.
For minimization, we form the partial derivatives with

respect to D and H in Eq. 11 and obtain iterative update
rules [19, 20]

Fig. 4 Overview of the proposed semi-supervised, two-stage algorithm for ego-noise suppression: Learning of D (left) and ego-noise suppression
(right)
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[D]fk ← [D]fk ·
[
YHT]

fk[
ŶHT

]

fk

, (12)

[H]k� ← [H]k� ·
[
DTY + λHW

]
k�[

DTŶ + λHZ
]

k�

, (13)

where [D]fk selects the fk-th element from D. Similar to
conventional NMF, the iterative update can be stopped,
e.g., after a fixed number of iterations. In this paper, in
each iteration we additionally compute the cost accord-
ing to Eq. 11 and terminate updating Eqs. 12,13 after
convergence.
Eqs. 12 and 13 reduce to the conventional update rules

for NMF if λ = 0 [8]. Note that since the proposedmethod
aims at enforcing similar activations for close motor data
vectors, the regularization has an effect on the update rule
for H only, while the update for D is unaffected.

2.4 Proposed algorithm for ego-noise suppression
As mentioned in Section 2.2, we apply a semi-supervised,
two-stage strategy for ego-noise suppression [21]. We first
employ audio data containing ego-noise only and train D
imprinting the intrinsic geometry of the motor data space
onto the model using the proposed regularization. Given
a mixture of ego-noise and speech, we use D to model
and suppress the current ego-noise and to obtain a speech
estimate. In the following, we describe the proposed algo-
rithm for ego-noise suppression in detail, c.f. Fig. 4 for an
overview.

• LearningD: As input, spectrograms Y = [
y1, . . . yL

]

are given containing ego-noise only. Per spectrogram
frame y�, a motor data vector ᾱ� is computed.
ᾱ�, � = 1, . . . , L is used to construct the affinity and
degree matrix,W and Z, respectively. Subsequently,
the update rules Eqs. 12 and 13 are used to compute
dictionary D, where the introduced regularization
term is weighted by λT.

• Ego-noise suppression: Another dictionary DS of
size KS and according activation HS is initialized to
model the additional speech signal in the considered
mixture Y . Analogously to the learning step before,
W and Z are constructed from the new motor data
vectors possibly representing different movements.
Using the same update rules as before, DS, H and HS
are updated while D remains constant. The motor
data-based regularization term is weighted by λE.
Note that for optimizing the activations of the speech
model HS, we set λE = 0 since the motor data-based
regularization should affect only the estimation of the
ego-noise activations. After identifying the optimum
model parameters captured by DS, H and HS, we use
a spectral enhancement filter to obtain an estimate for
the desired speech signal

[
Ŷ S

]
f � = [

F
]
f � · [

Y
]
f � for

the f �-th bin where the enhancement filter is given by

[
F
]
f � =

[
DSHS

]
f �[

DH
]
f � + [

DSHS
]
f �
. (14)

Fig. 5 Overview of recording setup. A detailed explanation is given in Section 3.1
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Note that typically λE 
= λT holds, i.e, the regularization
terms in both steps have different weights. This is further
detailed in the following section.

3 Experimental evaluation
In the following, we evaluate the proposed method using
real microphone recordings. We first describe the hard-
ware setup, the synchronization of audio and motor data
and the recording scenarios, and introduce the evaluation
metrics. Then, we present suppression results for ego-
noise of different movements and discuss the influence of
crucial parameters.

3.1 Recording setup
For our experiments, we conducted experiments with
a commercially available NAO H25 robot [12]. For the
audio recordings, we used a self-constructed head [26]
with a microphone array of 12 sensors. For all follow-
ing experiments, we used the frontmost microphone.
Since the NAO platform does not provide an in-built
synchronization on audio sample level, we developed a
synchronization scheme which is illustrated in Fig. 5: the
microphone signals are fed into an external analog-to-
digital (A/D) converter using conventional phone con-
nectors (IEC 60603-11). The sampled data is forwarded
to the robot’s internal CPU via USB, where it is syn-
chronized with the motor data collected by the pro-
prioceptors of the robot. The resulting data stream,
containing audio and motor data, is finally transmit-
ted to an external PC via Ethernet, which is used for
recording.

3.2 Scenario description
The recordings were conducted in a room with moderate
reverberation (T60 = 200 ms). We investigate ego-noise
of different right arm movements of the robot. Compared
to movement noise of other body parts, ego-noise of the
arms has the most severe effect on the microphone sig-
nals due to the immediate closeness of the active joints to
the microphones. In total, we recorded ego-noise of three
motion sequences:

• Sequence I consists of repeating right arm waving
movements, activating all six joints of the arm. The
robot lifts the arm using the right shoulder pitch
motor, while performing waving movements with the
remaining five motors of the right arm.

• Sequence II resembles Sequence I; however, the
lifting of the arm is performed with randomly varying
velocity and acceleration of the right shoulder pitch
motor. The number of employed joints is identical to
Sequence I.

• Sequence III is a mixture of left and right arm
movements where both left and right joints are

controlled independently with varying speeds. Since
movements of the left and right arm are considered,
12 joints are used in total, i.e., compared to Sequence
I/II the number of joints is doubled.

While Sequence I is a relatively simple scenario due to its
repetitive character, Sequence II and Sequence III aremore
challenging for a description by a dictionary. For Sequence
II, the random accelerations of the right shoulder pitch
motor result in a large variety of spectral patterns which
must be captured by the dictionary. The same holds for
ego-noise of Sequence III, where the doubling of employed
joints causes more spectral diversity.
The recorded ego-noise was used for training the dic-

tionary and evaluation, where the data for evaluation was
not contained in the training data. In total, we recorded
60 s for each motion sequence and split the ego-noise data
such that approximately 30 s ego-noise for the learning of
D is available.
To evaluate the suppression performance, we consider a

scenario in which a target source is talking to the robot.
The robot is standing on the floor level while it performs
different waving movements of the right arm. The micro-
phones of the robot are at a height of 55 cm. For the speech
signal, utterances from male and female speakers of the
GRID corpus [27] were used. The loudspeaker was posi-
tioned at 1 m distance of the robot, at a height of 1 m.
The recorded reverberant utterances were added to the
ego-noise with varying signal-to-noise (SNR) ratios (see
Section 3.3).
The audio signals are sampled at fS = 16 kHz and trans-

formed to the STFT domain using a Hamming window of
length 64 ms with overlap of 50 %. The internal operating
system of the NAO robot saves motor data samples of all
joints into an internal cache which can be accessed by the
user. This cache is typically updated every 10 ms. Conse-
quently, the sampling frequency of the motor data is given
by fS ≈ 100 Hz, i.e, typically S� = 6 motor data samples
are available per time frame.
We evaluated the overall performance of the ego-noise

suppression in terms of signal-to-distortion ratio (SDR
in dB) and signal-to-artifacts ratio (SAR in dB). For the

Table 1 Performance achieved by the proposed method and
audio only-based NMF for different λT and λE. Ego-noise is
caused by movements of Sequence I (K = 20, KS = 20, SNR =
3 dB, ε = 5 · 10−3)

NMF

Proposed

λT = 0.9 λT = 0.0 λT = 0.9

λE = 0.0 λE = 19.0 λE = 19.0

SDR [dB] 7.37 (± 0.11) 7.7 (± 0.1) 9.5 (± 0.03) 9.77 (± 0.03)

SAR [dB] 9.63 (± 0.18) 10.09 (± 0.1) 12.1 (± 0.01) 12.64 (± 0.03)

PESQ 1.35 (± 0.02) 1.36 (± 0.02) 1.42 (± 0.01) 1.45 (± 0.01)
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computation of both, Matlab functions provided by [28]
are used. In practice, it must be expected that the ego-
noise and speech estimates, i.e., DH and DSHS, contain
estimation errors resulting in imperfect enhancement fil-
ter F , cf. Eq. 14. As a consequence, the ego-noise can-
not be removed entirely from the mixture and/or the
desired speech is distorted. The severity of both effects
is reflected in the selected performance criteria SDR and
SAR, respectively. While SDR measures the amount of

remaining ego-noise and speech distortion after process-
ing, SAR considers introduced speech distortion only. For
unprocessed data, the SDR corresponds to the SNR of the
input mixture while SAR is infinite. Beside SDR and SAR,
we also evaluate PESQ (perceptual evaluation of speech
quality [29]). To obtain representative results, we averaged
over 100 runs with random initialization of the matrices
in NMF. Standard deviations for all results are given in
brackets.

Fig. 6 Estimated ego-noise activations by a NMF and bmotor data-regularized NMF for time frames � and j, where � and j were chosen such that
W�j is large (hereW�j ≈ 0.9). The considered mixture of ego-noise (Sequence I) and speech has SNR = 3 dB, dictionary sizes K = 20 and KS = 20. For
motor data-regularized NMF, λT = 0.9, λE = 19 were used
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Fig. 7 Spectrograms of an exemplary ego-noise extract from Sequence II (logarithm of magnitude). The left figure shows the original ego-noise. In
the center and right figures, ego-noise estimates using audio-only NMF and the proposed method are depicted, respectively. Without motor data
regularization, the ego-noise is in parts incorrectly estimated and adapts to the speech signal. Corresponding components are marked with red
ellipses (middle). Note that these undesired components are not or significantly less visible in the ego-noise estimate of the proposedmethod (right)

3.3 Evaluation and discussion of the results
For evaluating the proposed method for ego noise of
motion Sequence I, II, and III, the size of the ego-noise
dictionary and speech dictionary has been chosen to K =
KS = 20 for Sequence I and K = 30, KS = 20 for
Sequence II and III. These parameters have shown best
suppression performance in terms of SDR for audio only-
based NMF on the respective ego-noise recordings. We
first discuss the choice of λT and λE and illustrate the
effect of the regularization term R. Subsequently, we
evaluate the suppression performance for different SNRs
and finally discuss alternative choices for the motor data
vector ᾱ�.

3.3.1 Impact and choice of λT and λE

In Table 1, the suppression results for particular choices of
λT and λE are given. First, we incorporate the motor data
information only into the training (λT = 0.9) and leave the
suppression step unchanged λE = 0. Compared to audio
only-based NMF (denoted as “NMF” in the following),
this already shows a slight improvement of the results. For
λT = 0 and λE = 19, we obtain significantly better results
than for NMF, which shows that enforcing similar acti-
vations for similar physical states of the robot helps even
if this constraint has not be learnt during the learning of
the dictionary. Best results are obtained if the regulariza-
tion term is included to both learning and suppression.
Note that λT and λE are of different orders of magni-
tude, what will be further investigated and interpreted in
Section 3.3.2.
The effect of the proposed regularization term is illus-

trated in Fig. 6. We consider two time frames � and
j of a mixture of ego-noise (Sequence I) and speech.
Frames � and j are chosen such that W�j is large, i.e.,

ᾱ� and ᾱj are close indicating that the robot has simi-
lar physical states. Hence, similar activations are desired.
Figure 6a shows elements of the activation vectors h�

and hj obtained if audio only-based NMF is used. It
is obvious that the activations differ significantly, which
can be explained by the additional speech signal present
in frames � and j which affects the estimation of the

Fig. 8 Performance for varying λE and ε . For this experiment, K = 20,
KS = 20, SNR = 3 dB is chosen and ego-noise caused by movements
of Sequence I is used
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ego-noise activations. Figure 6 b illustrates the ele-
ments of h� and hj estimated by proposed motor data-
regularized NMF. Here, in contrast to audio only-based
NMF, the activations coincide even if additional speech is
present.
For further illustration, Fig. 7 shows spectrograms of an

ego-noise extract and its estimates using audio-only NMF
and the proposed method. Without motor data regular-
ization, the speech signal leads to additional, undesired
components in the ego-noise estimate. In contrast, this
effect is not or only weakly pronounced for the proposed
method.
The effect of varying λE and ε on the suppression result

is illustrated in Fig. 8. For λE = 0, the regularization
is ineffective and the proposed method reduces to audio
only-based NMF (λT = 0 holds during the learning of D).
If λE is chosen too large, the effect of the motor data domi-
nates and the suppression performance degrades. λE = 19
appears to result in the best result for the considered mix-
ture. However, note that the optimal choice of λE depends
on the SNR of the mixture, as will be discussed in more

detail in Section 3.3.2. We now consider the suppression
performance for varying scale parameter ε, c.f. Eq. 6. For
ε → 0, we obtain according to Eq. 6

W�j → 0, ∀�, j ∈ 1, . . . , L,

i.e, all connections in the graph are set to zero. Accord-
ingly, the regularization term in Eq. 10 equals zero and
the results of the proposed method and audio only-based
NMF coincide. For increasing ε, Eq. 6 gets less selective
and the number neighbors of a node with large affinity
increases. For the setup in Fig. 8, the maximum SDR is
obtained for ε = 5 · 10−3, which turned out to result
in robust performance even for ego-noise of other move-
ments. For larger ε, the suppression performance deteri-
orates since more and more connections between nodes
obtain large weights and the discriminative nature of the
graph is reduced.

3.3.2 Varying SNRs
So far, we only considered mixtures with constant SNR.
In a typical human-robot interaction, the SNR is however

Table 2 Suppression performance achieved by NMF and the proposed method for varying SNRs. For this experiment, ego-noise by
movements of Sequence I is used. Parameters used for proposed methods are given in the last rows. For all SNRs, dictionaries of size
K = 20, KS = 20 are used

SNR SDR [dB] SAR [dB] PESQ Parameters

(PESQ) NMF Proposed NMF Proposed NMF Proposed

− 10 dB − 3.95 (± 0.21) −3.95 (± 0.21) 4.53 (± 0.26) 4.53 (± 0.26) 1.09 (± 0.00) 1.09 (± 0.00) λT = 0, λE = 0

(1.08) ε = 5 · 10−3

− 5 dB 2.76 (± 0.43) 2.82 (± 0.33) 6.01 (± 0.04) 6.52 (± 0.06) 1.19 (± 0.01) 1.22 (± 0.00) λT = 0.1, λE = 0.1

(1.11) ε = 5 · 10−3

− 2 dB 5.82 (± 0.03) 6.19 (± 0.04) 7.86 (± 0.03) 8.77 (± 0.02) 1.27 (± 0.01) 1.32 (± 0.01) λT = 1.1, λE = 1.0

(1.12) ε = 5 · 10−3

− 1 dB 6.24 (± 0.02) 7.04 (± 0.02) 8.31 (± 0.06) 9.49 (± 0.02) 1.28 (± 0.02) 1.37 (± 0.03) λT = 1.1, λE = 1.5

(− 1) ε = 5 · 10−3

0 dB 6.60 (± 0.03) 7.76 (± 0.04) 8.70 (± 0.08) 10.32 (± 0.01) 1.28 (± 0.01) 1.37 (± 0.02) λT = 1.0, λE = 4.0

(1.13) ε = 5 · 10−3

1 dB 6.89 (± 0.05) 8.41 (± 0.06) 9.05 (± 0.12) 11.12 (± 0.01) 1.3 (± 0.01) 1.4 (± 0.02) λT = 1.0, λE = 8.4

(1.14) ε = 5 · 10−3

2 dB 7.15 (± 0.08) 9.15 (± 0.04) 9.36 (± 0.14) 11.84 (± 0.02) 1.31 (± 0.03) 1.41 (± 0.02) λT = 1.0, λE = 11.0

(1.15) ε = 5 · 10−3

5 dB 7.58 (± 0.09) 10.92 (± 0.1) 9.96 (± 0.2) 13.88 (± 0.04) 1.35 (± 0.02) 1.45 (± 0.01) λT = 1.1, λE = 16.8

(1.21) ε = 5 · 10−3

10 dB 8.17 (± 0.24) 13.59 (± 0.03) 10.66 (± 0.41) 16.29 (± 0.10) 1.41 (± 0.00) 1.54 (± 0.00) λT = 1.1, λE = 20.1

(1.37) ε = 5 · 10−3
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changing due to, e.g., varying distances between desired
source and robot or different power levels of the signal
of interest. Therefore, a robust ego-noise suppression at
different SNRs is of high importance.
In the following, we evaluate the proposed approach for

SNR ∈ {± 10,± 5,± 2,± 1, 0} dB of the input mixture.
For this, we added scaled versions of the speech signal to
the ego-noise. Note that for the considered NAO robot
SNR=10 dB is an unlikely scenario since it corresponds to
an human-robot distance of only a couple of centimeters
or a very loud human voice. We acknowledge, however,
that for robots which emit less loud ego-noise, such a high
SNR could be realistic.
Results for ego-noise Sequence I are given in Table 2.

In the right part of Table 2, parameters λT, λE, and ε

used for the proposed method are summarized. Interest-
ingly, for SNR=− 10 dB, the proposed method shows best
result if the regularization is ineffective. Consequently, it
does not show any benefit compared to audio only-based
NMF. For larger SNRs, SDR and SAR increase both for
audio only-based NMF and the proposed method. Motor

data-regularized NMF consistently shows superior per-
formance, while the relative improvement between the
proposed approach and NMF increases for growing SNR,
e.g., for SNR=+ 2 dB, a gain of + 2 dB in SDR and
2.5 dB in SAR is achieved. This effect can be explained
by the fact that for audio only-based NMF, the esti-
mation of the activations is more severely impaired by
the additional speech signal. This effect becomes more
pronounced for increasing SNR. Since motor data is a
non-acoustic reference signal, the regularization term is
not affected by the increasing power of the additional
speech component. This also explains why almost no ben-
efit could be observed for low SNR when the additional
speech signal does not have an impact on the ego-noise
estimation.
While ε is constant for all SNRs, especially λE has to

be increased continuously for larger SNRs. By this, the
influence of the motor data-dependent regularization gets
more aggressive compensating the increasingly negative
impact of the speech on the estimation of the ego-noise
activations.

Table 3 Suppression performance achieved by NMF and the proposed method for varying SNRs. For this experiment, ego-noise by
movements of Sequence II is used. Parameters used for proposed methods are given in the last rows. For all SNRs, dictionaries of size
K = 30, KS = 20 are used

SNR SDR [dB] SAR [dB] PESQ Parameters

(PESQ) NMF Proposed NMF Proposed NMF Proposed

− 10 dB − 2.59 (± 0.09) − 2.59 (± 0.09) 3.48 (± 0.05) 3.48 (± 0.05) 1.16 (± 0.02) 1.16 (± 0.02) λT = 0, λE = 0

(1.14) ε = 5 · 10−3

− 5 dB 2.33 (± 0.04) 2.45 (± 0.05) 5.40 (± 0.01) 5.41 (± 0.02) 1.19 (± 0.00) 1.19 (±0 .00) λT = 0.1, λE = 0.5

(1.15) ε = 5 · 10−3

− 2 dB 4.82 (± 0.02) 5.36 (± 0.03) 6.77 (± 0.01) 7.64 (± 0.04) 1.22 (± 0.01) 1.23 (± 0.01) λT = 1, λE = 1

(1.15) ε = 5 · 10−3

− 1 dB 5.27 (± 0.02) 6.16 (± 0.03) 7.15 (± 0.02) 8.25 (± 0.04) 1.25 (± 0.04) 1.28 (± 0.02) λT = 1.5, λE = 1.5

(1.15) ε = 5 · 10−3

0 dB 5.60 (± 0.03) 6.82 (± 0.04) 7.52 (± 0.08) 8.75 (± 0.07) 1.26 (± 0.01) 1.31 (± 0.01) λT = 0.9, λE = 2.0

(1.16) ε = 5 · 10−3

1 dB 5.82 (± 0.01) 7.45 (± 0.03) 7.8 (± 0.01) 9.48 (± 0.08) 1.26 (± 0.03) 1.37 (± 0.02) λT = 1.0, λE = 4.0

(1.16) ε = 5 · 10−3

2 dB 5.89 (± 0.01) 8.05 (± 0.01) 6.12 (± 0.02) 10.38 (± 0.06) 1.27 (± 0.01) 1.37 (± 0.01) λT = 3.0, λE = 9.1

(1.18) ε = 5 · 10−3

5 dB 6.37 (± 0.03) 10.00 (± 0.04) 8.6 (± 0.03) 12.26 (± 0.18) 1.30 (± 0.02) 1.39 (± 0.00) λT = 2.1, λE = 14.9

(1.24) ε = 5 · 10−3

10 dB 6.69 (± 0.03) 12.20 (± 0.15) 9.06 (± 0.04) 14.09 (± 0.21) 1.40 (± 0.03) 1.48 (± 0.00) λT = 2.5, λE = 19.5

(1.35) ε = 5 · 10−3
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Table 4 Suppression performance achieved by NMF and the proposed method for varying SNRs. For this experiment, ego-noise by
movements of Sequence III is used. Parameters used for proposed methods are given in the last rows. For all SNRs, dictionaries of size
K = 30, KS = 20 are used

SNR SDR [dB] SAR [dB] PESQ Parameters

(PESQ) NMF Proposed NMF Proposed NMF Proposed

− 10 dB − 2.34 (± 0.75) − 2.34 (± 0.75) 3.46 (± 0.09) 3.46 (± 0.09) 1.07 (± 0.00) 1.07 (± 0.00) λT = 0, λE = 0

(1.05) ε = 5 · 10−3

− 5 dB 3.7 (± 0.29) 3.91 (± 0.17) 6.00 (± 0.05) 6.14 (± 0.1) 1.11 (± 0.05) 1.13 (± 0.01) λT = 0.9, λE = 0.9

(1.05) ε = 5 · 10−3

− 2 dB 5.53 (± 0.02) 5.81 (± 0.02) 7.46 (± 0.04) 8.06 (± 0.03) 1.2 (± 0.01) 1.25 (± 0.01) λT = 0.6, λE = 2.5

(1.06) ε = 5 · 10−3

− 1 dB 5.88 (± 0.03) 6.40 (± 0.02) 7.88 (± 0.04) 8.65 (± 0.05) 1.25 (± 0.01) 1.3 (± 0.01) λT = 0.3, λE = 4.4

(1.06) ε = 5 · 10−3

0 dB 6.08 (± 0.02) 6.97 (± 0.04) 8.14 (± 0.03) 9.26 (± 0.09) 1.26 (± 0.01) 1.32 (± 0.01) λT = 0.4, λE = 6.9

(1.07) ε = 5 · 10−3

1 dB 6.34 (± 0.03) 7.46 (±0.01) 8.48 (± 0.03) 9.78 (± 0.03) 1.29 (± 0.04) 1.38 (± 0.02) λT = 0.5, λE = 8.0

(1.08) ε = 5 · 10−3

2 dB 6.55 (± 0.05) 7.98 (± 0.01) 8.76 (± 0.04) 10.38 (± 0.04) 1.31 (± 0.03) 1.39 (± 0.01) λT = 0.5, λE = 12.5

(1.09) ε = 5 · 10−3

5 dB 6.99 (±0.06) 9.10 (± 0.02) 9.38 (± 0.05) 11.59 (± 0.05) 1.35 (± 0.01) 1.41 (± 0.01) λT = 0.5, λE = 22.5

(1.12) ε = 5 · 10−3

10 dB 7.73 (± 0.1) 10.5 (± 0.05) 9.95 (± 0.04) 13.2 (± 0.06) 1.42 (± 0.0) 1.51 (± 0.02) λT = 0.4, λE = 29.5

(1.23) ε = 5 · 10−3

Table 5 Performance degradation of proposed method for suboptimal parameter settings. We chose λT = 0.5 = const. and
λE = 8.0 = const. which are optimal for SNR= 1 dB and evaluated SNRs − 1 dB, . . . , 3 dB. For each performance value of the proposed
method, the degradation relative to optimum parameter settings for λE and λT is given in parentheses. For this experiment, ego-noise
by movements of Sequence III is used

SNR=− 1 dB SNR=0 dB SNR=+ 1 dB SNR=+ 2 dB SNR=+ 3 dB

PESQ=1.06 PESQ=1.07 PESQ=1.08 PESQ=1.09 PESQ=1.1

NMF

SDR [dB] 5.88 6.08 6.34 6.55 6.72

SAR [dB] 7.88 8.14 8.48 8.76 9.00

PESQ 1.25 1.26 1.29 1.31 1.33

Proposed

SDR [dB] 6.25 (− 0.15) 6.87 (− 0.1) 7.46 (± 0.0) 7.87 (− 0.11) 8.19 (− 0.22)

SAR [dB] 8.41 (− 0.24) 9.36 (− 0.1) 9.78 (± 0.0) 10.19 (− 0.19) 10.51 (− 0.38)

PESQ 1.26 (− 0.04) 1.30 (− 0.02) 1.38 (± 0.0) 1.37 (− 0.02) 1.39 (− 0.02)
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Table 6 Performance for different designs of ᾱ� : if no derivatives are considered, ᾱ� is composed of angular positions only. If one
derivative is considered, ᾱ� contains angular positions and their first order temporal derivatives. For this experiment, ego-noise caused
by movements of Sequence II is used, SNR=0 dB, K = 30, KS = 20, ε = 5 · 10−3, λT = 0.9, and λE = 2

NMF Proposed

# of derivatives of ᾱ� 0 1 2 3 4

SDR [dB] 5.60 (± 0.03) 3.87 (± 0.08) 6.63 (± 0.06) 6.82 (± 0.04) 6.68 (± 0.04) 6.35 (± 0.05)

SAR [dB] 7.52 (± 0.08) 5.46 (± 0.07) 8.3 (± 0.02) 8.75 (± 0.07) 8.60 (± 0.06) 8.26 (± 0.06)

PESQ 1.23 (± 0.01) 1.18 (± 0.02) 1.29 (± 0.03) 1.31 (± 0.01) 1.3 (± 0.02) 1.29 (± 0.01)

We conducted the same experiments for ego-noise
caused by motions of Sequence II and Sequence III. The
results are summarized in Tables 3 and 4. In principle, the
results obtained for Sequence I can be confirmed: the pro-
posed method outperforms audio only-based NMF con-
sistently, especially for high SNRs, and λE shows a signif-
icant dependence on the SNR. Interestingly for Sequence
II, the absolute values for λE have to be chosen slightly
smaller for optimum performance than for Sequence I.
Overall, the suppression results are ≈ 1 dB (Sequence II)
and ≈ 0.5 dB (Sequence III) worse than for Sequence I,
which can be explained by the more complex movements,
c.f., movement description in Section 3.2.
Note that for an optimal choice of λE knowledge of the

SNR is required for which a single-channel or multichan-
nel SNR estimator can be employed. However, it must be
expected that the SNR estimation is imperfect leading to
a suboptimal choice of λE. The resulting effect on the sup-
pression performance is shown in Table 5. We chose λE =
8.0 and λT = 0.5, i.e, optimal parameters for SNR= 1 dB,
and evaluated the proposed method for SNRs −1 dB, . . . ,
3 dB, simulating imperfect SNR estimates. Overall, a sub-
optimal parameter choice leads to a degradation of the
suppression performance. However, the proposedmethod
still shows superior results compared to audio only-based
NMF.

3.3.3 Alternative choices for ᾱ�

In the previous experiments, the motor data vector ᾱ�

was composed of the angular position and its first- and
second-order temporal derivatives, i.e., angular velocity
and acceleration. By complementing angular position by
its first and second order derivatives, we implicitly added
temporal information to our model since not only current,
but also past motor data samples are taken into account
for the construction of ᾱ�, c.f. Eq. 1.
In the following, we evaluate how the performance of

the proposed method depends on the amount of temporal
context included into ᾱ�.
Results are given in Table 6. First, we consider a motor

data vector ᾱ� which contains only angular positions, i.e.,
no derivatives are used. The suppression result lags sig-
nificantly behind audio only-based NMF. This drop in

performance is not surprising since by considering angu-
lar position alone it cannot be distinguished whether, e.g.,
the robot raises or drops its arm if up- and downwards
movements have the same trajectory. Consequently, the
ego-noise caused by these two movements is assessed as
similar. The results improve drastically if angular veloc-
ity is added to motor data vector ᾱ�. If also angular
acceleration is included, the results further improve; how-
ever, the additional gain is clearly smaller compared to
that of adding the first derivative. Adding higher order
derivatives to ᾱ� does not offer further benefit as results
get slightly worse with increasing number of derivatives
incorporated to ᾱ�.

4 Summary and outlook
In this paper, we proposed motor data-regularized NMF
and used it in a semi-supervised manner for ego-noise
suppression.
The basic idea of the presented method is to improve

the approximation of the ego-noise by taking motor data
describing the physical state of the robot into account. We
propose to construct a motor data graph which encodes
the similarities between motor data samples. Based on
this, a regularization term can be derived and added to
the conventional, audio only-based NMF cost function. It
enforces the activation of similar dictionary entries when
the robot is in similar physical states. We evaluated the
proposed method for mixtures of desired speech signals
and ego-noise of different movements and considered
various SNRs of the mixture. The presented approach
showed superior performance in all scenarios, especially
for high SNR when the power of the additional speech
signal is large and the estimation of the ego-noise acti-
vations based on audio data-only is challenging. Con-
sequently, the weighting of the motor data-dependent
regularization term has to be increased for larger SNR.
For future work, we plan to evaluate the proposed

method for other NMF cost functions, such as Itakuro-
Saito and Kullback divergence. Furthermore, we plan to
evaluate the presented concept for multichannel NMF,
where dictionary-activation-modeling of single-channel
NMF is extended by a spatial covariance matrix for each
atom and frequency bin.
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