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Abstract

Depression is a widespread mental health problem around the world with a significant burden on economies. Its
early diagnosis and treatment are critical to reduce the costs and even save lives. One key aspect to achieve that goal
is to use technology and monitor depression remotely and relatively inexpensively using automated agents. There
has been numerous efforts to automatically assess depression levels using audiovisual features as well as text-analysis
of conversational speech transcriptions. However, difficulty in data collection and the limited amounts of data
available for research present challenges that are hampering the success of the algorithms. One of the two novel
contributions in this paper is to exploit databases from multiple languages for acoustic feature selection. Since a large
number of features can be extracted from speech, given the small amounts of training data available, effective data
selection is critical for success. Our proposed multi-lingual method was effective at selecting better features than the
baseline algorithms, which significantly improved the depression assessment accuracy. The second contribution of
the paper is to extract text-based features for depression assessment and use a novel algorithm to fuse the text- and
speech-based classifiers which further boosted the performance.
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1 Introduction
Depression is a vital problem that affects a large per-
centage of the population around the world. It not only
affects the well-being and productivity of individuals but
also causes heavy economic burden on the society [1].
In fact, with more than 300 million depression patients,
world health organization (WHO) declared depression as
the leading cause of ill health and disability worldwide
[2]. Because access to the diagnosis and treatment are
expensive and sometimes not possible, inexpensive and
accurate diagnosis with the help of technology became an
increasingly important research challenge [3].
Speech signal has been investigated for detecting

depression since it carries significant information about
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mental health of the speakers [4–7]. Combined with the
pervasive use of smartphones in our daily lives, hence,
relatively easy and non-intrusive access to good-quality
speech data, remote monitoring of patients through
acoustic analysis became a promising research area [8].
In [9], phase distortion deviation that is used for voice

quality examinations is found to be helpful for detect-
ing depression. In [10], distortions in formant trajectories
were used to detect depression. In [11], degradation in
spectral variability was used. In [12], gender-dependent
feature extraction was found to improve the detection per-
formance. In [13], i-vectors and MFCC features that are
commonly used for speaker verification were found to be
helpful for depression detection even when the utterances
were only 10 s long.
In AVEC 2019 [14], depression detection subchallenge,

mel-frequency cepstral coefficients (MFCC) features, and
extended GeMAPS [15] features were extracted from
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audio. Those features were combined within a bag-of-
word (BoW) front-end that uses vector quantization to
quantize feature vectors into a limited set of centroids
[16]. Thus, sequences of features vectors are converted
into sequences of centroid-ids. The method is well-known
in the text processing field, and it has also gained recent
popularity in emotion detection [17].
Deep learning based feature extraction methods for

audio analysis also gained recent popularity in emotion
detection [14]. In that approach, convolutional neural
network (CNN)-based image recognition systems are pro-
vided with speech spectrograms and resulting activation
values are used for emotion detection [18].
Besides the speech signal, there are also audio-visual

methods for detecting depression. In [19], face analysis
and speech prosody are used for depression detection.
Similarly, audio-visual features are used in [20–23]. Retar-
dations inmotor control due to depression causes changes
in coordination and timing of speech and facemovements,
which are used for audio-visual detection in [24].
This paper has two contributions. One of the con-

tributions is novel algorithms for multi-lingual feature
selection where three databases, Turkish, German, and
English were used together to improve redundancy and
relevance computations in the case of data sparsity. The
second contribution is a novel feature fusion technique
where transcription-based predictions were used to adjust
the predictions of the acoustic-only model when the pre-
dictions of those two modalities were highly conflicting.
Significant improvements are obtained for the Turkish,
German, and English databases using the proposed
techniques.

2 Related work
2.1 Feature selection
A large number of acoustic features can be derived
from conversational speech to detect depression. How-
ever, building models with those features is challenging
because of the curse of dimensionality and the typically
small amounts of training data available in depression
studies.
One way of reducing the dimensionality of features is

to use feature selection where features that are most rele-
vant for the classification task and least correlated among
themselves are selected for classification. To that end,
Minimum Redundancy Maximum Relevance (MRMR)
algorithm is commonly used [25–27].
In [28], a two-step feature selection algorithm was pro-

posed. The conversation is segmented into topics and
features are extracted for each topic. As a first step,
correlation-based feature subset selection was applied
regardless of the topics [29]. In the second step, the
selected features for each topic were further refined
by first ranking them based on relevance and selecting

subsets using regression tests. In [30], a simple t test was
used to select features from a set of 504 acoustic features.
Besides selecting features automatically, there are

knowledge-based set of features that are designed for
emotion detection. One of the more popular examples
to that approach is the Geneva feature set (GeMAPS)
[31] which is developed by augmenting a minimum set
of acoustic features that were shown in the literature to
be reliable indicators of emotional state and that have the
highest theoretical significance.

2.2 Fusion of text and audio features
Transcriptions of the speech signal have also been used
as another mode of information [3] for depression detec-
tion. In [32], transcription-derived features were used in
addition to the speech features. Furthermore, sentiment
analysis was performed on text and sentiment features
were used to build an independent detector. Then, score
fusion was used to combine acoustic and text-based sys-
tem scores. Syntactic and semantic features were derived
from transcriptions in [33] and shown to be effective
indicators of depression.
Conversations with patients can be designed in a way

to obtain data that is more indicative of depression, as
opposed to a regular conversation. In [34], type of ques-
tions (positive and negative stimulus) during conversa-
tions have been shown to impact voice quality parameters
in psychologically distressed subjects. Speech segments
with higher articulation effort were found to be more
informative for depression detection in [6].
In [35], biomarkers that are derived from facial coordi-

nation and timing features were used together with vocal
cues and semantic features from dialogue content using a
sparse-coded lexical embedding space. In [36], depressed
individuals were shown to use less social words and more
anxiety-related words.
A depression-detection algorithm is presented in [37]

where interactions between subjects and the computer
agent were modeled without explicit topic modeling.
Long-short term memory (LSTM) neural networks were
used with audio and text features. The results in [37]
suggested that minimal knowledge of the conversation is
required for depression detection.
In [38], both conversation-level (number of sentences,

number of words used, etc.) and content-level (feeling
good/bad, extrovert/introvert personality, etc.) informa-
tion derived from the transcripts of the dialogs were used
to extract features and then scores from both audio and
text features were fused via a DNN model.
There are also attempts to extract both audio and text

features using deep networks as well as fusing those fea-
tures using a deep network. For example, deep spectrum
features [14] for audio was fused with BERT-based text
representation in [39] using fully connected layer.
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2.3 Cross-lingual depression detection
In depression detection, a less studied research chal-
lenge is to use speech data from other languages to train
models. This approach is not only important for under-
standing universal cues of depression across different cul-
tures/languages, but it also allows the use of data from
other languages, which is important given the typically
small amounts of data available in the public databases for
each language. In [40], predictionmodels built with a Ger-
man database were shown to produce prediction scores
in English that were correlated with the self-assessment
scores. In [30], combination of datasets in different lan-
guages was shown to yield high accuracy whereas if the
train and test data are in different languages, performance
was found to be lower.
In [41], transfer of models developed for the resource-

rich English language to other languages with limited
datasets was investigated. The method was shown to
be improve Aphasia detection and have promise for
Alzheimer’s disease detection.

3 Minimum redundancymaximum relevance
(MRMR) feature selection

In the MRMR approach, F-statistic is used for comput-
ing the relevance of a selected feature set (S) for a K-class
classification task. F-statistic for feature gi is defined as

F(gi) =
[

1
σ 2
i (K − 1)

K∑
k=1

nk
(
ḡi,k − ḡi

)2] (1)

where ḡi,k is the mean of gi for the training samples in class
k, ḡi is the global mean of gi over all samples in all classes,
and nk is the total number of samples in class-k. σ 2

i , the
pooled variance, is[

1
Ns − K

K∑
k=1

(nk − 1) σ 2
i,k

]
, (2)

where σ 2
i,k is the variance of gi in class-k, andNs is the total

number of samples .
Relevance of a feature set S is then defined as

VF(S) = 1
|S|

∑
i∈S

F(gi). (3)

Redundancy of the feature set S is defined using the Pear-
son’s correlation for every possible feature combination:

Wc(S) = 1
|S|2

∑
i,j

|c(i, j)|, (4)

where |c(i, j)| is the absolute value of the correlation c(i, j)
between feature i and feature j. Finally, the MRMR algo-
rithm selects the features set (S) using

argmax
S

{VF(S) − Wc(S)} . (5)

4 Proposed feature selection algorithms
The MRMR algorithm works well in many machine
learning problems. However, for the depression detection
problem, training data is typically limited, and therefore,
computation of the F-statistic and feature correlations
are often unreliable. Here, we propose three algorithms
to more reliably compute the statistics required for the
MRMR algorithm as described below.

4.1 Multi-lingual computation of relevance
The F-statistic computation in Eq. (1) requires estima-
tion of the global variance (σ 2

i ), the global mean (gi),
and the class means (ḡi,k) for each class k and feature i.
Even though the global mean and variance can usually
be estimated relatively reliably, estimating the class means
is more challenging when the number of classes is large
and the data is limited as is often the case in depression
screening tests.
The publicly available databases used in depression

studies typically have less than 200 subjects. Moreover,
commonly used depression evaluation tests BDI-II and
PHQ-8 have 64 and 25 classes, respectively. Thus, the
number of subjects available per class is usually not
enough to compute the relevance reliably. In the multi-
lingual MRMR (ml-MRMR) approach, to increase the
number of available samples for each class and improve
the computation of F-statistic, we propose populating
each class using samples available in a different language
for that same class. For example, if there is only one sub-
ject with a PHQ-8 score of 10 in the Turkish dataset, then
feature vectors of subjects with a PHQ-8 score of 10 from
the German datasets can be used to populate the Turkish
dataset.
In some cases, the number of samples is still low after

cross-lingual population of classes. In that case, samples
from the neighboring classes in a different language are
used for further increase the sample size. This approach
takes advantage of the fact that subjects in neighbor-
ing classes (PHQ-8 levels 9 and 10, for example) are
expected to be similar to each other. That assumption,
though, becomes less valid, as the neighboring class is
further away from the target class. Thus, while populat-
ing classes with cross-lingual data, each sample borrowed
from the neighboring class is weighted according to its
distance from the target class. The weight parameter γ is
defined as

γj = e−j2 . (6)

where

j = |ctar − cnb| (7)

is the distance of the target class ctar to the neighboring
class cnb.
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After cross-lingual population of class k, number of
samples, nk , is computed using the weight parameter γ as
follows:

n
′
k = nk +

+Jk∑
j=−Jk

γj�k+j (8)

where �k+j is the number of samples borrowed from class
k + j. Jk is set such that n′

k > Nmin. Thus, by including
data from the same and neighboring classes in a different
database, we ensure that there are at least Nmin samples
for each class in the target database. The adjusted mean of
each class k, ḡ ′

i,k , is then

ḡ
′
i,k = 1

n′
k

[
nkḡi,k + �i,k

]
(9)

where the cross-lingual component

�i,k =
+Jk∑

j=−Jk

nk−j∑
s=0

γjgi,k,j(s) (10)

and gi,k,j(s) is the ith feature of sample s borrowed from
the jth neighbor of class k.
Using the n′

k , and ḡ ′
i,k the new F-score is

F
′ (
gi

) =
[

1
σ 2
i (K − 1)

K∑
k=1

n
′
k

(
ḡ

′
i,k − ḡi

)2]
. (11)

An example of how sparse classes are populated is
shown in Fig. 1 where the Turkish dataset is populated
with samples from the German dataset. Note that the
classes that do not have samples are not populated in the
ml-MRMR algorithm as shown in Fig. 1. Those classes are
ignored in the MRMR computations.

Figure 2 shows the histograms of ḡi,k for all features
i and classes k using the baseline MRMR and the pro-
posed ml-MRMR algorithms with Nmin = 3. Samples
from the German database are used to populate the Turk-
ish database. The distribution gets closer to a Gaussian
with the ml-MRMR algorithm compared to the baseline
MRMR algorithm. Moreover, heavy-tails generated with
the baselineMRMR algorithm are suppressed, which indi-
cates that the ml-MRMR algorithm can effectively reduce
the outliers in the data.

4.2 Clustering approach
Depression screening tests often have large number of
classes. For example, for PHQ-8 has 24 classes and BDI-II
has 64 classes. However, in diagnosis, level of depression
(severe, moderate, etc.) corresponds to a range of classes.
For example, all subjects that have PHQ-8 scores between
20 and 24 are diagnosed as severely depressed subjects.
Thus, the distinction between classes with similar scores
is likely not represented in conversational speech. For
instance, the difference between two subjects with scores
of s or s + 1 may not be as significant to warrant different
classes for those two cases. Given the limited training data
available, we propose clustering samples that have simi-
lar scores and reducing the number of distinct classes to
increase the number of samples per class.
In the clustering approach, the depression classes are

clustered the number of classes in the MRMR training
process is reduced to improve the feature selection per-
formance by increasing the data available for each class.
In this approach, data is split uniformly into Nclus classes.
Cluster centroids are found by first uniformly dividing the
score scale. If the centroid class has no samples, then the

Fig. 1 Sample distribution before and after applying the ml-MRMR algorithm with Nmin = 3. Turkish database is used
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Fig. 2 Comparison of the distributions of ḡi,k for the baseline MRMR and the proposed ml-MRMR algorithms. Turkish database is used

nearest non-empty class is assigned as the centroid. After
setting the centroids, each class is assigned to the nearest
centroid.
Figure 3 shows the sample distribution after the clus-

tering approach is applied to the Turkish database with
Nclus = 14. Comparing the new distribution to the origi-
nal distribution in Fig. 1, distribution of samples per class
becomes more uniform after clustering, which enables
more robust computation of relevance required for the
MRMR algorithm.

4.3 Robust computation of redundancy (RCR)
Class labels are not required for the computation of
redundancy as shown in Eq.(4). Thus, large amounts of
speech data without depression scores can be exploited
for computing the redundancy. In the RCR approach,
we propose using such unlabeled speech databases to
compute redundancy for feature selection.
Figure 4 shows the distribution of correlations between

features. Enriching the English database with unlabeled
data had a significant effect on the distribution with a

Fig. 3 Number of samples for each class after the clustering algorithm is applied. Turkish database is used
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Fig. 4 Comparison of Pearson’s correlation coefficient distributions for the English database with (RCR algorithm) and without (baseline) using the
unlabelled data for computing correlations

sharper peak around zero and slightly suppressed tails.
Thus, the distribution has lower variance after apply-
ing the RCR approach, which is expected to improve the
feature selection performance.

5 Fusion with text-based features
5.1 Description of text-based features
Sentiments in questions and patient responses in the
Turkish database weremanually classified as positive, neg-
ative, and neutral. Examples of questions and answers
with their sentiment tags are shown in Table 1. Feature
vectors were generated from the sentiment tags where
each dimension holds the frequency of question-answer
sentiment pairs. Because there are three sentiments for
questions and three sentiments for answers, a total of 9-
dimensional sentiment feature vector was generated for
each conversation.

Table 1 Example of an interview in the Turkish database.
Sentiment tags of both questions and answers are shown

Phrase Sentiment

Question: Can you tell us a happy moment lately? Positive

Answer: I don’t have one for a long time. Negative

Question: Can you tell us an unhappy moment lately? Negative

Answer: Everything goes well lately. Positive

Question: What is your favorite food? Neutral

Answer: I like stuffed peppers. Neutral

Speech characteristics such as rate of speech and dura-
tion of responses can also be informative in depression
studies. For example, given two positive responses from
the subject, longer ones with elaboration are preferable
to short ones. Similarly, short negative answers may indi-
cate deeper depression than longer complaints. Thus, for
each sentiment type, average rate of speech and average
duration of responses were extracted using the timing
information in the transcriptions. Because those two fea-
tures were derived for each of the three sentiment types,
6-dimensional features were obtained for each conversa-
tion. Concatenating them with the 9 features described
above, a total of 15 features were derived from the tran-
scriptions. A summary of those features are shown in
Table 2.

Table 2 Descriptions of the text features derived from the
transcripts of the conversations

Feature Description

Average length
of the
utterances

Average length of subjects’ negative, positive, and
neutral answers separately. Three-dimensional
feature.

Rate of speech Rate of speech for negative, positive, and neutral
answers separately. Three-dimensional feature.

Sentiment
features

Sentiments of the question-answer pairs. All possible
combinations sentiments are considered.
Nine-dimensional feature.
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5.2 Fusion of acoustic- and text-based features
The fusion algorithm is designed based on the observation
that acoustics-only system sometimes makes large errors
particularly when the subjects are very depressed or not
depressed as shown in Fig. 5. Those large errors signifi-
cantly impact the overall performance of the system and
reduce its reliability.
In our approach, instead of using a typical score or

feature fusion method, we propose a novel algorithm
to adjust the acoustic-based scores using the text-based
scores. In this approach, the data is first divided into two
classes. Patients with BDI-II scores above 30 are tagged
as class 1 and patients with scores below 18 are tagged as
class 2.
If the acoustic-only system generates a depression level

estimate that is above 30 or below 18 and if the text-only
system also produces a score in the same range (agree-
ment case), then the score from the acoustics-only system
is used. If they are in disagreement, i.e., one of the systems
produces an estimate that is in class 1 and the other pro-
duces an estimate that is in class 2, the final estimate is
computed by fine-tuning the acoustics-only prediction by
getting it closer to the opposite class.
In the case of disagreement, the following algorithm is

used to adjust the estimate produced by the acoustics-
based system. If the prediction of the acoustics-based
system is pacou, final prediction pfinal is computed by the
linear model:

pfinal =
{

αpacou + �, if pacou < 18
αpacou − �, if pacou > 30 (12)

where α and � are constant parameters. Because the
training data is limited, to avoid overfit, linear regression
parameters were learned using a maximum a posteriori
(MAP) approach where the prior distribution of α was
modeled with a Gaussian distribution

p(α) = 1√
2π

e−0.5(α−1)2 (13)

where variance and mean were both set to 1. Mean is set
to 1 so that pfinal does not deviate significantly from pacou.
The prior distribution of � was also modelled with the
Gaussian

p(�) = 1√
2π

e−0.5(�−μg)
2

(14)

where variance is set to 1 and mean is set to μg . Mean of
the hyper-parameter � is learned from the data by setting
α to 1 and learning the optimal � using leave-one-out.

6 Experimental setup
6.1 Databases
Three speech databases that are in Turkish, German,
and English were used in this study. The databases are
described below.
Turkish database: The Turkish database was collected

at a hospital in Istanbul. It consists of 70 subjects. The
mean age of the patients is 34. Fourteen of them are
males and 56 of them are females. Beck scores of all sub-
jects are available using the depression questionnaire the
Beck Depression Inventory-II (BDI-II) [42]. Average BDI-
II score of the patients is 23.45 with a standard deviation
of 11.01.

Fig. 5 Sorted real scores and the baseline MRMR predictions are compared using the Turkish and English databases for the regression task with the
Turkish dataset
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The Turkish database consists of interviews with the
patients. Three types of questions were directed to the
patients: neutral, positive, and negative questions. Each
question type refers to the sentiment that we expect to
invoke in the patient. Sentiments of the responses from
the patients were manually tagged by three independent
evaluators. Majority voting was used for the final senti-
ment label of each response. Examples of sentiment labels
for the questions and answers are shown in Table 1.
Interviews consist of 16 questions. Mean length of the

conversations is approximately 5 min. Total length of the
recordings is 6 h. Recordings were done using a head-
phone microphone connected to the built-in sound card
of a laptop with a sampling rate of 48 kHz.
German database: The German database, distributed

as part of the AVEC 2014 challenge [43], consists of con-
versations with 84 patients. Some of the patients have
multiple recordings with a period of 2 weeks. Even though
Beck scores of the 100 recordings in the training and
development data are available, the scores of the 50
recordings in the test data are not available. The mean age
of German database subjects is 31.5. The duration of the
recordings ranges from 6 s to 4 min. All recordings below
20 s were removed from the experiments, which left 98
recordings for processing.
English database: The English database is part of The

Distress Analysis Interview Corpus (DAIC) [44]. It con-
tains clinical interviews designed to help diagnose psy-
chological distress conditions such as anxiety, depression,
or post-traumatic stress disorder. The depression part of
the corpus is the Wizard-of-Oz interviews that are con-
ducted by a virtual interviewer. The depression scores of
the patients were calculated by using the PHQ-8 depres-
sion inventory [45], which differs from the German and
Turkish databases. The average depression severity of the
training and development data is 6.67, and the standard
deviation is 5.75. Total of 189 recordings from 189 patients
is available.

6.2 Depression scores
We performed both regression and classification experi-
ments in this study. For the classification task, the scores
were split into two classes. For the BDI-II scores that were
available in the Turkish and German databases, subjects
that have scores below 18 were classified as non-depressed
and other patients were classified as depressed. For the
PHQ-8 scores available in the English database, subjects
that have scores below 10 were classified as non-depressed
and other patients were classified as depressed.
For regression, the ml-MRMR algorithm requires

databases to use the same depression scale for comput-
ing within class statistics. However, in our experimental
setup, the English database has PHQ-8 scores that range
from 0 to 24 and the German and Turkish databases have

Beck scores ranging from 0 to 63. Thus, a mapping func-
tion between those two scales was needed to carry out the
multi-lingual regression experiments.
The BDI-II and the PHQ-8 are both widely used as

self-rating scales to measure depression symptoms and
severity of depression in psychiatric and normal popula-
tions [46]. Recall period for items for each scale is the
last 2 weeks. There are 21 items in BDI-II and 8 items in
PHQ-8. For PHQ-8, each item is scored on a four point
scale (0–3) where 0 corresponds to not at all and 3 cor-
responds to nearly everyday. BDI-II items also have four
point scales (0–3), but those do not measure the fre-
quency of occurrence but rather general presence of a
feeling/behavior.
The BDI-II was designed to correspond to Diagnos-

tic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) criteria for diagnosing depressive dis-
orders and includes items measuring cognitive, affective,
somatic, and vegetative symptoms of depression. Simi-
larly, PHQ-8 consist of the 8 criteria of DSM-IV and
covers all of the DSM-IV criteria except self-harm.
Even though they have differences, the PHQ-8 and BDI-

II scores are strongly correlated [47]. For PHQ-8, scores
of 5, 10, 15, and 20 are cut-off points for mild, moder-
ate, moderately severe, and severe depression respectively
[45, 48]. For the BDI-II, the cut-off points for mild, moder-
ate, and severe depression are 14, 20, and 29 respectively.
Thus, the cut-off scores of the two measures have an
approximately linear relationship.
Considering the strong correlation between the BDI-

II and PHQ-8 scores, we mapped a given BDI-II score
(sb) to the corresponding PHQ-8 score, (sp), by rounding
(24sb)/63 to nearest integer.

6.3 Acoustic features extraction
The open-source toolkit OpenSMILE [49] was used for
acoustic feature extraction. The AVEC 2013 [43] and
GeMAPS [15] feature extraction protocols were used.
Feature vectors for AVEC 2013 include 32 energy- and
spectral-related low-level descriptors (LLDs) and their
functionals such as statistical functionals (maximum,
mean, skewness, flatness, etc.), regression functionals (lin-
ear regression slope, quadratic regression coefficient a,
etc.) and local minima/maxima-related functionals (mean
and standard deviation of rising and falling slopes, etc.).
2268 dimensional features were extracted per speaker.
Functionals were computed over 20 s time windows and
averaged over the recording.
GeMAPS [15] has 18 low-level descriptors. Only the

first 4 MFCC features are used in GeMAPS because
those are more crucial for affect and paralinguistic voice
analysis studies [15]. In addition, jitter, shimmer, loud-
ness, and spectral slope were used. Similar to AVEC
2013, functionals of those low-level descriptors were also



Demiroglu et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2020) 2020:17 Page 9 of 17

computed. The dimensionality of the final feature set is
62. Because GeMAPS is a hand-crafted feature set with
reduced dimensionality, it is used for comparison with the
proposed feature selection techniques here.

6.4 Baseline system
In the baseline system, MRMR feature selection method
was first applied [50] to reduce the number of acous-
tic features. Support Vector Regression (SVR) was used
for regression and SVMs were used for classification.
Because the amount of training data is small, leave-one-
out method was used for the Turkish and German exper-
iments. For the English tasks, the training set has 107
subjects and the test set has 35 subjects. Because there
is enough data both for training and test, leave-one-out
method was not used for the English tasks.
The evaluation criteria for all regression experiments

were rootmean square error (RMSE), which is also used in
the AVEC challenges [3, 43, 51, 52]. Statistical significance
of the results were tested using the t test with p < 0.05.
The evaluation criteria for all classification experiments

were F1-score, precision, and recall for both depressed
and non-depressed subjects. For the classification tasks,
statistical significance of results were measured with
McNemar’s test with p < 0.05.

7 Results and discussion
Two sets of experiments were conducted. In the first set,
the proposed feature selection algorithms were tested and
compared with the baselineMRMR algorithm for the Ger-
man, Turkish, and English regression and classification
tasks. The RCR algorithm proposed for redundancy com-
putation in Section 4.3 was used only for the German and
English tasks since unlabeled data is not available in the
Turkish database. In the second test set, text-based fea-
tures wee extracted and fused with the acoustic features
for the Turkish database. The second set was performed
only for the Turkish database because the transcriptions
were not available for the German database; and, for the
English database, the interviews were not in the ques-
tion/answer format but rather a free-form talk between a
human and computer.

7.1 Performance of the ml-MRMR feature selection and
clustering algorithms

7.1.1 Turkish task
Regression: Table 3 shows the regression test results with
the baselineMRMR and the ml-MRMR algorithms for the
Turkish task. Lowest RMSE was 9.36 with the ml-MRMR
(Nmin = 3) algorithm using the Turkish-English data,
and the improvement compared to the baseline was sta-
tistically significant. Similarly, ml-MRMR algorithm using
the Turkish-German data outperformed the baseline
system, and the difference was statistically significant.

Table 3 Regression performance of the baseline MRMR and
ml-MRMR methods for the Turkish task when the minimum
occurrence threshold (Nmin) is sets 3 and 5. In the underlined
bold case, improvement is significant compared to the baseline
system. The result with Gemaps feature set was 11.48

Dim Baseline Nmin(3) Nmin(5) Nmin(3) Nmin(5)

(Tr+Ger) (Tr+Ger) (Tr+Eng) (Tr+Eng)

2 13.30 10.84 11.98 10.79 10.88

3 12.30 10.51 11.26 10.40 11.94

4 12.45 10.85 10.74 9.85 12.68

5 12.56 10.58 11.23 9.36 13.65

10 12.45 10.82 12.13 11.87 13.93

15 12.08 11.12 12.00 11.99 13.30

20 12.87 11.91 11.46 10.92 12.00

40 13.28 12.67 11.98 10.93 10.31

80 11.58 12.28 13.06 10.80 10.50

100 11.75 11.95 13.08 10.88 10.23

200 11.32 11.55 12.14 11.05 11.06

400 11.42 11.72 12.00 10.99 11.23

800 11.31 11.39 11.35 11.10 11.08

Moreover, the ml-MRMR algorithms performed better
than the Gemaps feature set. Performance was better
when Nmin was set to 3 compared to setting it to 5.
For regression, the clustering algorithm described in

Section 4.2 was used with 2, 9, and 15 clusters instead of
the 45 distinct classes available in the Beck scores. Results
are shown in Table 4. Even though the systemwith 15 clus-
ters significantly outperformed the baseline system, the
improvement was still below what was obtained with the
multi-lingual MRMR approach.

Table 4 Regression results with feature selection using the
clustering approach with 2, 9, and 15 clusters. Turkish database is
used. Statistically significant (p < 0.05) improvement is shown in
underlined bold

Dim Baseline 2-Cluster 9-Cluster 15-Cluster

5 12.56 11.35 13.14 11.99

10 12.45 10.95 13.42 12.25

15 12.08 11.13 13.07 11.75

20 12.87 11.74 13.23 12.95

40 13.28 12.33 13.73 12.06

80 11.58 12.72 13.33 10.83

100 11.75 13.22 13.09 10.97

200 11.32 11.72 12.66 11.50

400 11.42 11.83 12.00 11.40

800 11.31 11.62 11.70 11.64
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Classification: The ml-MRMR algorithm was not
applied directly in the case of classification because there
are only two classes and each class has enough number
of samples (27 non-depressed and 50 depressed sub-
jects). However, it is still possible to use the ml-MRMR
algorithm in the binary classification case by populating
each class from a cross-lingual dataset before dividing
the data into two classes. After each regression class (1
to 45) is populated with the cross-lingual samples, train-
ing data is split into two classes for the classification
task.
Classification results are shown in Table 5. Even though

ml-MRMR algorithm improves the performance, the
improvement was not found to be statistically signifi-
cant. Thus, in the classification case, ml-MRMR algorithm
was not as effective because enough Turkish data was
available in each class. The system trained with only the
text-based features significantly outperformed the other
systems.

7.1.2 English task
Regression: Table 6 shows the regression results for the
English task. Best result was obtained by using the ml-
MRMR algorithm with Turkish (Nmin = 5). Even though

ml-MRMR using the German database performed better
than the baseline, the improvement was not significant.
Note that the English database uses the PHQ-8 scores that
are coarser than the Beck scores used in the German and
Turkish databases. Thus, there are more samples for each
class and using ml-MRMR algorithm with Nmin = 3 was
not possible for the English case.
Classification: Table 7 shows the classification results

for the English task. Similar to the regression task, the
ml-MRMR algorithm with Turkish using Nmin = 5 out-
performed the baseline system, and, when German data
was used, performance did not significantly change. The
ml-MRMR algorithm using the English-Turkish datasets
improved the F1 scores of both depressed and non-
depressed subjects. Improvement for the depressed sub-
jects were higher compared to the non-depressed sub-
jects.

7.1.3 German task
Since the German dataset contains unlabeled data, RCR
algorithm was used to compute feature correlations in
addition to the ml-MRMR algorithms. Results using those
two algorithms for the regression and classification tasks
are discussed below.

Table 5 Best classification results for Turkish Task. Avec 2013 feature set used for all results except Gemaps row. There are 50
depressed and 27 non-depressed subjects in the database. Number of selected features are shown in parenthesis for each case. Results
are statistically insignificant except the classification using text-only features

Method Classes Precision Recall F1-score

BaselineMRMR(3)

Non-depressed 0.61 0.40 0.48

Depressed 0.72 0.86 0.78

Average 0.67 0.63 0.63

Tr+Eng Nmin = 3ml-MRMR(40)

Non-depressed 0.58 0.52 0.55

Depressed 0.75 0.80 0.78

Average 0.67 0.66 0.66

Tr+Eng Nmin = 5ml-MRMR(400)

Non-depressed 0.59 0.48 0.53

Depressed 0.74 0.82 0.78

Average 0.66 0.65 0.66

Tr+Ger Nmin = 3ml-MRMR(100)

Non-depressed 0.42 0.29 0.34

Depressed 0.67 0.78 0.72

Average 0.54 0.54 0.53

Tr+Ger Nmin = 5ml-MRMR(15)

Non-depressed 0.47 0.52 0.49

Depressed 0.72 0.68 0.70

Average 0.60 0.60 0.60

Only text featuresMRMR(7)

Non-depressed 0.78 0.40 0.53

Depressed 0.74 0.94 0.83

Average 0.76 0.67 0.68

GEMAPS

Non-depressed 0.38 0.37 0.37

Depressed 0.66 0.68 0.67

Average 0.52 0.53 0.52
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Table 6 Regression performance of the ml-MRMR method for
the English task when the minimum occurrence threshold (Nmin)
is set 5. In the underlined bold case, improvement is significant
compared to the baseline system. Best result with the Tr+Eng
also significantly outperformed the Gemaps feature set that had
an RMSE of 6.72

Dim Baseline Nmin = 5 Nmin = 5

(Ger+Eng) (Tr+Eng)

3 6.85 6.66 6.66

4 6.87 7.21 7.20

5 7.31 7.78 7.78

10 7.85 7.05 7.05

15 8.08 7.94 7.70

20 7.89 7.63 7.46

40 7.25 7.12 6.63

80 7.67 6.26 6.37

100 7.57 6.38 6.15

200 7.13 6.42 6.70

400 6.95 6.72 6.73

800 6.92 6.74 6.66

Regression: Regression performance of the baseline
and the proposed ml-MRMR (with Turkish) and RCR fea-
ture selection algorithms for the German task are shown
in Table 8. ml-MRMR algorithm was not effective when
German was used with English. When German was used

Table 7 Best classification results for the development set of the
English task. Multi-lingual methods annotated with ml. There are
23 non-depressed and 12 depressed subjects in the database.
Avec 2013 feature set used for all results except Gemaps tab.
Number of selected features are shown in parenthesis for each
case. Improvement with ml-MRMR using the Turkish database is
statistically significant compared to the baseline MRMR algorithm

Method Classes Precision Recall F1-score

Baseline

Non-depressed 0.76 0.96 0.85

MRMR(20)

Depressed 0.83 0.42 0.56

Average 0.79 0.69 0.71

Eng+Tr Nmin = 5

Non-depressed 0.79 1 0.88

ml-MRMR(100)

Depressed 1 0.50 0.66

Average 0.89 0.75 0.77

Eng+Ger Nmin = 5

Non-depressed 0.76 0.96 0.85

ml-MRMR(20)

Depressed 0.83 0.42 0.56

Average 0.79 0.69 0.71

GEMAPS

Non-depressed 0.70 0.82 0.76

Depressed 0.50 0.33 0.40

Average 0.60 0.58 0.58

with Turkish, performance improved for Nmin = 3; how-
ever, the improvement was not significant. Improvement
with Nmin = 5 was found to be significant only when
the RCR algorithm was also used. RCR algorithm was not
effective when it was used without ml-MRMR.
Classification: Classification performance of the base-

line and the proposed ml-MRMR and RCR algorithms for
the German task are shown in Table 9. The ml-MRMR
algorithm with Turkish using Nmin = 3 outperformed the
rest of the systems when RCR was used.

7.2 Performance of score fusion
Text-based features were only available for the Turkish
dataset. Therefore, results for the score fusion algorithm
are reported only for the Turkish dataset.

7.2.1 Regression task
Table 10 shows results when speech-based features
were fused with text-based features using the proposed
approach described in Section 5.2. Fusion algorithm sig-
nificantly improved the performance (p value=0.00006)
compared to the baseline case by reducing the error
by more than 25% using the ml-MRMR algorithm with
English and Turkish (Nmin = 3) datasets. Spread of the
prediction errors is substantially reduced after fusion as
shown in Fig. 6.
Comparison of the real and predicted scores are shown

in Figs. 5 and 7 for the baseline and the best ml-MRMR
algorithm with fusion. Predictions get closer to the true
scores and errors significantly decrease with the proposed
fusion method, which can be seen when Figs. 4 and 7 are
compared. The best RMSE is 8.30, which is interestingly
obtained with only 5 features.
Three of the 5 selected acoustic features are MFCC

related: peak standard deviation of MFFC-5, amplitude
mean of maxima for MFCC-5 and mean segment length
of MFCC-14. The other two is mean of the rising slope
for spectral harmonicity and up-level time (25) of spectral
flatness.
The ml-MRMR algorithm with German and Turkish

datasets (Nmin = 3) worked well compared to the base-
line as shown in the fourth column in Table 10. Still, it
did not perform as well as the Turkish and English case.
Moreover, its performance was not significantly different
from the base-fusion. These results are in agreement with
the results reported in Table 3 where performance with
Turkish and English datasets was better compared to the
Turkish and German datasets.
Sixth column in Table 10 shows the results obtained

with the clustering approach together with the fusion
method. That algorithm not only outperformed the base-
line but also significantly outperformed the base-fusion
algorithm. However, it performed worse than the best
performing ml-MRMR system.
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Table 8 Regression performance of the ml-MRMR Methods for the German database when the minimum occurrence threshold Nmin is
sets 3 and 5. Results are shown both when the RCR algorithm is used and not used. In the underlined bold case, improvement is
significant compared to the baseline system. Result with Gemaps feature set was: 10.14

Dim Baseline Nmin = 5 Nmin = 5 and RCR Nmin = 3 Nmin = 3 and RCR RCR

(Ger+Tr) (Ger+Tr) (Ger+Tr) (Ger+Tr)

10 9.90 9.97 9.99 10.37 12.39 10.02

15 9.81 10.21 9.43 10.13 12.12 10.08

20 9.86 10.32 9.52 9.84 10.68 9.74

40 10.25 10.35 10.45 9.73 11.36 10.22

80 10.69 9.93 9.88 9.42 10.93 10.06

100 10.48 9.93 9.74 9.50 10.54 10.17

200 10.12 10.00 10.38 9.69 10.28 10.44

400 10.14 9.79 10.21 9.58 10.29 10.13

800 10.08 9.86 10.11 9.91 10.11 9.89

1000 10.02 9.85 10.14 9.79 10.16 9.98

7.2.2 Classification task
For the classification task, text-only model predictions
outperformed the acoustic system predictions as shown in
Table 5. When the text-only model predictions were fused
with the acoustic predictions, the F1-scores outperformed
bothmodalities when English (Nmin = 3) was used to sup-
plement the Turkish samples as shown in Table11. The
result is statistically significant with p value of p = 0.02.
When German (Nmin = 3) was used with Turkish,

the F1-score for the depressed case slightly improved.
However, the F1-score for the non-depressed case did
not improve. Performance of the Turkish-German and

Table 9 Classification results for German Task. ml-MRMR was
used with RCR. There are 56 non-depressed and 44 depressed
subjects in the database. Best results are shown in bold. Number
of selected features are shown in parenthesis for each case. The
improvements are not statistically significant with respect to
baseline system

Method Classes Precision Recall F1-score

BaselineMRMR(10)

Non-depressed 0.76 0.87 0.81

Depressed 0.80 0.65 0.72

Average 0.78 0.76 0.77

Ger+Tr Nmin = 3

Non-depressed 0.83 0.79 0.81

ml-MRMR(40)

Depressed 0.74 0.80 0.77

Average 0.79 0.80 0.79

Ger+Eng Nmin = 5

Non-depressed 0.73 0.78 0.75

ml-MRMR(800)

Depressed 0.70 0.63 0.66

Average 0.72 0.71 0.71

GEMAPS

Non-depressed 0.74 0.70 0.72

Depressed 0.64 0.68 0.66

Average 0.69 0.69 0.69

Turkish-English systems were not significantly different
for the classification task.

8 Discussion
The ml-MRMR algorithm was the best performing fea-
ture selection algorithm in regression tasks. Populating
the Turkish dataset with English, English dataset with
Turkish, and German dataset with Turkish generated the
best results. The ml-MRMR algorithm was effective for
German only when it was used together with the RCR
algorithm. Thus, the cross-lingual population of depres-
sion classes was not as effective with German as the other
two languages. The acoustic characteristics of Turkish and
English seems to be closer to each other and those two lan-
guages complement each other better than they do with
German.
Note that the English and German datasets have sig-

nificantly more training data compared to the Turkish
dataset. Thus, because the Turkish dataset is more sparse
across depression classes, Nmin = 3 performed bet-
ter than Nmin = 5. Using Nmin > 5 caused overly
aggressive population of the Turkish dataset with cross-
lingual data, which degraded the performance. Similarly,
the English and German datasets performed better when
Nmin = 5 since using a lower Nmin caused insufficient
population of their depression classes with cross-lingual
data.
The proposed feature selection algorithms were

designed for cases when the number of classes are large.
Thus, they were not as effective for binary classifica-
tion tasks as they were in regression tasks. Still, some
improvement was observed for the English classification
task when ml-MRMR was used with Turkish.
The text features were tested for the Turkish dataset

and found to outperform all acoustic feature sets for
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Table 10 Regression results after fusing with text classification. Turkish database was used since transcriptions are not available in the
required for the other databases. Baseline acoustic system predictions are used in base-fusion. Bold results show cases where the
improvement is significant compared to the baseline case but not to the base-fusion case. In the underlined bold case, improvement is
significant both compared to the baseline system and the base-fusion system

Dim Baseline Base-fusion Fusion Tr+Ger Fusion Tr+Eng Fusion

Nmin = 3 Nmin = 3 15 Clus.

3 12.30 10.71 9.76 9.43 9.75

4 12.45 10.68 9.54 8.88 9.74

5 12.56 10.69 9.61 8.30 9.78

10 12.45 10.91 9.83 9.74 10.05

15 12.08 10.44 9.63 10.12 9.95

20 12.87 10.91 9.65 9.62 9.66

40 13.28 11.33 10.45 9.55 10.88

80 11.58 10.12 10.67 9.37 9.99

100 11.75 10.25 10.77 9.45 10.24

200 11.32 10.03 9.98 9.76 10.40

400 11.42 10.29 10.00 9.60 9.78

800 11.31 10.31 10.19 9.79 9.88

the classification task. Thus, the sentiment-based text
features were found to be effective for binary classifica-
tion of depression. Similarly, when the text features were
fused with the acoustic features using the proposed fusion
algorithm, performance with the Turkish dataset signif-
icantly improved both for regression and classification

tasks. Fusion of text and acoustic features outperformed
both of the feature sets.
The clustering algorithm helped improve the perfor-

mance of the Turkish dataset with and without fusion
of text features. However, it was not as effective as the
multi-lingual approach. Thus, cross-lingual population of

Fig. 6 Distribution of squared errors for the baseline MRMR case is shown in the top figure for the Turkish task. The middle figure shows the squared
error distribution for the baseline MRMR case after fusion. Bottom figure shows the squared error distribution of the ml-MRMR system with Nmin = 3
with English and after fusion
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Fig. 7 Sorted real scores and predictions with the ml-MRMR (Nmin = 3) are compared using the Turkish and English databases for the regression
task with the Turkish dataset

depression classes was found to be more effective than
simply reducing the number of classes through cluster-
ing. The multi-lingual approach allows computation of
relevance with more data per class without reducing the
resolution of the depression scale. If the languages have
similar acoustic representations of depression, such as
Turkish and English as found in our experiments, then the
multi-lingual approach outperforms the within-language
clustering algorithm.

Table 11 Classification results after fusing acoustic- and
text-based classifier outputs. Turkish database was used. The
results are statistically insignificant except Nmin = 3 with German

Method Classes Precision Recall F1-score

Baseline

Non-depressed 0.61 0.40 0.48

MRMR(3)

Depressed 0.72 0.86 0.78

Average 0.67 0.63 0.63

Fusion Tr+Eng

Non-depressed 0.71 0.63 0.67

Nmin = 3

Depressed 0.81 0.86 0.83

ml-MRMR(100)

Average 0.76 0.75 0.75

Fusion Tr+Ger

Non-depressed 0.75 0.55 0.63

Nmin = 3

Depressed 0.78 0.90 0.84

ml-MRMR(4)

Average 0.76 0.73 0.73

Only Text

Non-depressed 0.78 0.40 0.53

FeaturesMRMR(7)

Depressed 0.74 0.94 0.83

Average 0.76 0.67 0.68

8.1 Common selected features among languages
In this study, we explored the features that are most
effective at predicting depression for three different lan-
guages. In addition, we did further analysis of our results
to find features that are common across those three lan-
guages. Table 12 shows overlapping features between
Turkish-English, Turkish-German, and English-German
pairs within the top 150 MRMR-selected features. Over-
lapping features and their functionals are described in
Tables 13 and 14, respectively.
Features that are based on spectral harmonicity and

energy in 1000–4000 Hz are dominant in the Turkish-
English comparison. 1000–4000 Hz typically contain the
second and the third formants. Thus, the rate of change
of those formants, measured with up-level time, and dis-
tance between them appear to be strong indicators of
depression for Turkish and English. Similarly, change in
spectral harmonicity is also a strong indicator for both
languages.
Interestingly, MFCC features are dominant in the

Turkish-German comparison. MFCC features are related
to the envelope of the spectrum. Thus, changes in the
locations of all formants and their bandwidths during
speech are important indicators of depression detection
both for Turkish and German.
Overlapping features between English and German

have a mix of energy, spectral harmonicity, jitter, and
MFCC features. As opposed to Turkish-English compari-
son where the second and third formants are important,
energy in the 250–650 Hz that typically contains the first
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Table 12 Overlapping features in language pairs that are in the
top 150 MRMR-selected features

Language combination LLD & functionals

Turkish-English

MFCC-13 - Relative mean of peaks

Energy in Band 1000–4000 Hz - Kurtosis

Spectral harmonicity - Up-level Time:90

Spectral harmonicity - Up-level Time:50

Energy in band 1000–4000 Hz - Up-level
Time:25

Energy in band 1000–4000 Hz - Relative
Mean of Peaks

Energy in band 1000–4000 Hz - Minimum

Segment length

Turkish-German

Spectral skewness - IQR 2-3

Spectral skewness - IQR 1-3

MFCC-4 - Mean distance between peaks

MFCC-9 - Rise-time

MFCC-11 - Rise-time

MFCC-13 - Skewness

MFCC-14 - Flatness

MFCC-14 - Kurtosis

English-German

Energy in band 250–650 Hz - Quartile 1

Energy in band 250–650 Hz - Percentile 1.0

Spectral harmonicity - Up-level time:25

JitterLocal - Mean

JitterLocal - Standard deviation

MFCC-10 - Mean segment length

MFCC-14 - Up-level time:90

MFCC-16 - Mean distance between peaks

JitterDDP - Up-level time:50

JitterDDP - Up-level time:90

Table 13 Overlapping low-level descriptors in language pairs
that are in the top 150 MRMR-selected features

Low-level descriptor Description

MFCC 1-16
Mel Frequency Cepstral Coefficient is a com-
mon used automatic speech recognition
(ASR) feature, in the Avec 2013 feature set 16
dimension were used.

Energy Sum squares of amplitudes of a signal.

Spectral harmonicity Number of the harmonics in a signal.

Spectral skewness The third order moment of the power spec-
trum.

Jitter (local) Variation of the fundamental period from
one single period towards the next.

Jitter (DDP)
Delta period-to-period jitter can be defined
as “Jitter of the Jitter”. It is explained as the
change between two successive period-to-
period jitters.

Table 14 Overlapping functionals in language pairs that are in
the top 150 MRMR-selected features

Statistical func-
tionals

Description

Relative mean
of peaks

Proportion of the mean of the peak ampli-
tudes to the mean of windowed feature.

Kurtosis Fourth order moment.

Skewness Third order moment.

Up-level time Number of frames that the feature is above
a threshold. The threshold percentiles are set
to 25, 50, 75, and 90.

Minimum
segment length

Minimum length of a particular segment.

Mean segment
length

Arithmetic mean of a particular segment.

Inter quartile
range 1-2-3
(IQR)

The range between two percentiles. The
possible combination of quartiles are 1–3,
1–2, and 2–3.

Mean distance
between peaks

The mean of distances between the peaks.

Rise-time The time where the feature contour is rising.

Percentile 1.0 The minimum value of a feature.

formant appears to be important and overlapping for
English and German. Jitter, which quantifies pitch varia-
tions is also important both for English and German but
not for Turkish.

9 Conclusion and future work
We investigated exploitingmulti-lingual databases for fea-
ture selection in the context of depression assessment.
Proposed algorithms were effective especially for the
regression tasks where there is limited amounts of data
for each class. As a second contribution, we proposed
novel features derived from transcriptions and fused them
with the acoustic features, which significantly improved
the performance.
The results are significant because they indicate that

there are similarities between entirely different languages
in the way that they manifest depression. Thus, our find-
ings is a step towards using larger multi-lingual databases
for depression detection.
The focus of this work was multi-lingual feature selec-

tion algorithms and not the classification algorithms.
Thus, even though the SVM and SVR algorithms are solid
baselines when the amount of training data is limited, in
future work, we will experiment with other types of clas-
sification/regression algorithms such as gradient boosting
and random forests.
Even though the Turkish database used here is unique

to this work, the English and German databases are pub-
licly available and have been used together in the liter-
ature as discussed in Section 2.3. A comparison of our
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proposed techniques with the previously proposed multi-
lingual techniques will be done in future work. More-
over, because our method is focused on feature selec-
tion, it can also be used together with the previously
proposed methods, which will be investigated in future
work.
Another natural extension of the proposed algorithms

is to add more languages to our database and continue to
improve and analyze the feature selection process, which
will be done in future work. In that context, we believe that
our text features are also language-independent and we
will investigate fusion algorithms in a multi-lingual setting
with more data, such as Arabic, collected in the format
required by our text-based features.
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