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Abstract

Drone-embedded sound source localization (SSL) has interesting application perspective in challenging search and
rescue scenarios due to bad lighting conditions or occlusions. However, the problem gets complicated by severe
drone ego-noise that may result in negative signal-to-noise ratios in the recorded microphone signals. In this paper,
we present our work on drone-embedded SSL using recordings from an 8-channel cube-shaped microphone array
embedded in an unmanned aerial vehicle (UAV). We use angular spectrum-based TDOA (time difference of arrival)
estimation methods such as generalized cross-correlation phase-transform (GCC-PHAT),
minimum-variance-distortion-less-response (MVDR) as baseline, which are state-of-the-art techniques for SSL. Though
we improve the baseline method by reducing ego-noise using speed correlated harmonics cancellation (SCHC)
technique, our main focus is to utilize deep learning techniques to solve this challenging problem. Here, we propose
an end-to-end deep learning model, called DOANet, for SSL. DOANet is based on a one-dimensional dilated
convolutional neural network that computes the azimuth and elevation angles of the target sound source from the
raw audio signal. The advantage of using DOANet is that it does not require any hand-crafted audio features or
ego-noise reduction for DOA estimation. We then evaluate the SSL performance using the proposed and baseline
methods and find that the DOANet shows promising results compared to both the angular spectrum methods with
and without SCHC. To evaluate the different methods, we also introduce a well-known parameter—area under the
curve (AUC) of cumulative histogram plots of angular deviations—as a performance indicator which, to our
knowledge, has not been used as a performance indicator for this sort of problem before.
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1 Introduction
Unmanned aerial vehicles (UAVs), ubiquitously known
as drones, have found great use in a wide range of
applications—from casual use in photography to search
and rescue operations where human lives are at stake.
Reports by the United Nations and other humanitarian
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organizations document the successful deployment of
UAVs in relief efforts after natural disasters such as the
major earthquakes in Haiti and Nepal in 2010 and 2015,
respectively [1, 2]. UAVs have been effective because of
their ability to reach areas not easily accessible by humans.
They can also cover a larger area than a group of human
rescuers could on foot. In search and rescue scenarios,
UAVs have typically been equipped with cameras that help
locate areas with rubble and debris where people might
be trapped. More recently, there has been research on
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using embedded microphone arrays in the UAVs to tri-
angulate the sound coming from emergency whistles or
humans trapped beneath debris [3–7]. It is evident that
a sound source localization (SSL)-based detection system
can compliment the visual detection in scenarios where
the field of view may be occluded due to obstacles or bad
lighting or even operations carried out at night. However,
SSL is made difficult by the presence of high ego-noise
generated by the rotors and propellers of the UAV. In this
article, we report on our efforts to improve upon existing
techniques employed in SSL systems for UAVs.
SSL algorithms generally utilize the time difference of

arrival (TDOA) feature from multiple microphone pairs
[7]. The TDOA can be estimated using various algorithms
such as multiple signal classification (MUSIC) and gen-
eralized cross-correlation (GCC). For noise-robust SSL,
a generalized eigenvalue decomposition-based multiple
signal classification (GEVD-MUSIC) algorithm combined
with an adaptive estimation method of the noise cor-
relation matrix was proposed by [8]. In the context of
UAVs, the drone contains multiple sensors that can pro-
vide additional real-time data about the UAV itself such
as its rotor speeds and trajectory. It is natural to con-
clude that incorporating the additional data about the
UAV dynamics can benefit SSL. As such, a method for
combining information from the GCC between multiple
microphone inputs, the dynamics of the UAV, and the
Doppler shift in sound frequency due to motion was pro-
posed by [3]. Since the UAV is a remote platform with
limited computational capability, SSL algorithms must be
computationally efficient so that sound sources can be tri-
angulated in real time. Such an algorithmwas proposed by
[4] which involved a modified version of the MUSIC algo-
rithm based on incremental generalized singular value
decomposition (iGSVD-MUSIC). Furthermore, in order
to locate and track a moving sound source, an approach
involving time-frequency spatial filtering combined with
a particle filter was described to perform well under noisy
conditions by [6].
One of the primary challenges involved with SSL using

UAVs is the low signal-to-noise ratio (SNR) due to the
presence of several noise sources including high “ego-
noise” which is the noise emanating from all the mov-
ing parts of the UAV such as the rotors and propellers.
For accurate SSL, the ego-noise must be compensated
for somehow, perhaps via signal enhancement or noise
reduction. Recent studies have approached this problem
in different ways. A method of noise estimation using
learned dictionaries of ego-noise was proposed by [9].
Another study reported on using time-frequency spatial
filtering combined with beamforming and blind source
separation techniques [10]. Other works have utilized
order analysis-based denoising algorithms [11], adaptive
signal processing, and pitch shifting [12] methods. These

proposed techniques all involve some form of hand-
crafted modeling and fine-tuning, whichmakes the task of
ensuring robustness under different practical noise condi-
tions difficult and laborious. There is also the possibility
that the noise spectrum might overlap with the target
sound source spectrum; attempts to filter the noise might
inadvertently distort the target source and hence ham-
per SSL. More recently, there has been promising work
in data-driven approaches using deep neural networks for
ego-noise reduction which provides a way to bypass these
problems [13, 14].
SSL using neural networks (NNs) directly is still a

nascent research area, especially in the context we are
considering. Generic localization methods using differ-
ent neural network architectures such as convolutional
neural networks (CNNs) [15] and residual neural net-
works (ResNets) [16] have been proposed. In other
domains, such as image classification and segmentation,
it is reported that CNNs with dilated kernels [17] per-
form better than “vanilla” CNNs [18, 19]. To the best of
our knowledge, dilated CNN-based SSL has not yet been
proposed.
In this article, we present our method for SSL,

which was developed for the IEEE Signal Processing
Cup (SP Cup) 2019 titled “Search and Rescue with
drone-embedded SSL” [20]. Our proposed system called
DOANet (Direction of Arrival Network) uses a one-
dimensional dilated CNN fed on raw audio signals from a
microphone array, to estimate the elevation and azimuth
angles of a sound source while the UAV is both static
and moving. We compare our system against the baseline
system provided by the SP Cup organizers. The baseline
method is described in greater detail in Section 3.

2 Problem setup
The problem scenario we considered for our work
involved locating the direction of a speech sound source
from a UAV which was either hovering (static condition)
or flying (in-flight condition). The data we used for our
work was shared with us by the SP Cup organizers, a novel
dataset called DREGON (DRone EGonoise and localiza-
tiON) containing recordings of a sound source made from
a quadcopter UAV in static and in-flight conditions in
a low-reverberant large room [7]. That is, all recordings
were made with the UAV flying in an indoor environ-
ment; as such, the scope of our experiments described
in this article was limited to indoor environments. The
recordings were made using a cube-shaped 8-microphone
array mounted below the UAV as illustrated in Fig. 1.
The constellation of 8 microphones formed two paral-
lel horizontal squares, and each of them was twisted in
opposite directions in the azimuth plane, as shown in
Fig. 2. The DREGON dataset is discussed in more detail
in Section 5.1.
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Fig. 1 Graphical representation of drone-embedded SSL. The UAV in this figure was taken from Freepik.com with permission

For 3D DOA estimation, we need to predict the azimuth
and elevation angle. A naive way to evaluate the pre-
dicted DOA is to calculate the deviation of the estimated
angles from the true values. A better evaluation metric is
obtained by calculating the great-circle angular distance
between predicted and true direction. It is a measure
of angular deviation between two points in a spherical

coordinate system which considers both the azimuth and
elevation angles of the predicted and true direction. A
visual representation of the azimuth angle, the elevation
angle, and the great-circle angular distance is illustrated in
Fig. 1.
As mentioned previously, the issue that makes SSL most

daunting is the presence of ego-noise originating from

Fig. 2 Positional plot of all microphones and rotors (in meters)
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the rotors and propellers of the UAV while flying or hov-
ering. These noise sources are usually very close to the
microphones resulting in negative SNRwhich pose quite a
challenge when trying to discern the target sound source.
The noisy signal received by ith microphone, yi(t), can be
modeled as:

yi(t) = si(t) +
N∑

j
nij(t) (1)

where si(t) is the received signal originated from the target
sound source, nij(t) is the received signal originated from
jth noise source, i = 1, 2, ..., 8, and j = 1, ...,N . The most
significant sources of ego-noise for a quadcopter UAV are
its 4 rotors. So for simplicity, we can assume that N is
equal to 4. In this work, our objective is to estimate the
direction of sound source in terms of azimuth (θ ) and
elevation (ϕ) angles using the noisy audio signals, yi(t),
where yi(t) is recorded in either in-flight or static UAV
conditions.
For in-flight condition, the DREGON dataset contained

recordings of two kinds of sound sources—white noise
and human speech. We focused on the speech sound
source in our work since SSL is more challenging for
speech compared to white noise owing to the dynamic fre-
quency content in the former. Along with actual in-flight
UAV recordings, the DREGON dataset also contained
recordings where the UAV was stationary and individual
rotors were turned on one at a time and set to differ-
ent speeds. There was no target sound source when these
recordings were made. These recordings thus served as
direct recordings of the rotor noise at different speeds and
were utilized to analyze the characteristics of rotor noise
as well as generate synthetic noisy recordings for training.
For each recording in the DREGON dataset, we were also
given metadata which included the actual DOA label and
UAV rotor speeds at different timestamps.

3 Baseline
We compared our proposed system, DOANet, against
the baseline system provided by the organizers of the SP
Cup 2019. This baseline system utilized angular spectrum
techniques which are described in detail in the following
subsection. In our initial efforts, we found that we were
able to improve the baseline system by first applying an
algorithm utilizing the UAV rotor speeds to dynamically
denoise the recordings. This is discussed in Section 3.2.
We compared DOANet against this modified baseline
system as well.

3.1 Baseline: angular spectrummethod
The most common method of SSL using multiple micro-
phones is to use time difference of arrival (TDOA) calcu-
lated between microphone pairs [7]. Assuming the sound

source is far away, a one-to-one relation exists between
direction of arrival (DOA) and TDOA for each micro-
phone pair. Thus, the problem of SSL using multiple
microphones is essentially a problem of TDOA estimation
from microphone pairs. Generally, TDOA is addressed
using the short-time Fourier transform (STFT) of the
two signals. Compared to deterministic TDOA estima-
tion, probabilistic approaches called angular spectrum-
based methods perform better where a function of
TDOA is generated and calculated for every possible
TDOA [21].
Let us consider a microphone pair (i, j) from M micro-

phones. Let Yi(t, f ) and Yj(t, f ) represent the STFT of
noisy microphone signals yi(t) and yj(t), respectively, as
denoted in Eq. 1. For the microphone pair, a set of TDOA
values can be linked with all possible DOA (θ ,ϕ), where
θ and ϕ represent the azimuth and elevation angles. To
do so, a set of points S(x, y, z) is taken on the 3D plane
covering a uniform grid of (θ ,ϕ):

S(x, y, z) = S (cos(ϕ)cos(θ), cos(ϕ)sin(θ), sin(ϕ))

Denoting the displacement vector from jth to ith micro-
phone by dij and wave propagation speed by c, the TDOA
between the two microphone for each possible DOA,
τij(θ ,ϕ), can be computed as follows:

τij (θ ,ϕ) = dij · S (x, y, z)
c

(2)

The next step is to construct a function of τij(θ ,ϕ)

utilizing Yi(t, f ) and Yj(t, f ) which will peak for true
τij. This function is called local angular spectrum func-
tion and is denoted by φij(t, f , τ). One way to do this is
a technique called generalized cross-correlation phase-
transform (GCC-PHAT) [21] which produces the follow-
ing function:

φGCC−PHAT
ij

(
t, f , τ

) = �
(

Yi(t, f )Yj(t, f )
| Yi(t, f )Yj(t, f ) |e

−2jπ f τij

)

(3)

For robust DOA estimation, φij(t, f , τ) is summed over
all frequencies, microphone pairs, and time frames. In
cases where the sound source may not be active through-
out all time frames, taking the maximum is preferred to
summing over time the total time span [21]. Thus, we
obtain a global angular spectrum φ(θ ,ϕ) for each possible
direction:

φ(θ ,ϕ) =
∑

ormax
t

M−1∑

i=1

M∑

j=i+1

∑

f
φij

(
t, f , τ

)
(4)

Finally, DOA is estimated by the local peak finding
method from φ(θ ,ϕ).
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There are several techniques for building φij(t, f , τ)

other than GCC-PHAT. The GCC-PHAT method is how-
ever the most popular choice [21]. The baseline system
provided by the SP Cup organizers also considered six
other techniques for building the local angular spectrum
function, φij(t, f , τ). Generalized cross-correlation with a
non-linear function (GCC-NONLIN) is a slightly modi-
fied version of GCC-PHAT where a non-linear function
is applied on GCC-PHAT to emphasize large values. The
other five methods are SNR based and have been pro-
posed in [21]. The general scheme involves calculating
the directional SNR by extracting target signal and noise
power for every possible direction and using the assump-
tion that SNR is likely to peak for the true direction. Such
methods have the advantage of ignoring erroneous contri-
bution from other directions. Among the five SNR-based
methods, two of them use beamformer-based methods to
separate the target signal and noise, one is a statistical
method, and the rest are hybrids of the beamformer and
statistical methods.
The two beamformer methods are the minimum-

variance-distortion-less-response (MVDR) and delay-
and-sum (DS) methods which work based on Capon
(or MVDR) and classical (or Bartlett) beamformers,
respectively [22, 23]. MVDR beamformer generally per-
forms better than classical beamformer as all degrees of
freedom are used to maximize energy on the specific
direction [24]. However, these beamformer-based meth-
ods tend to overestimate the SNR at low frequencies.
This problem is addressed by the diffuse noise model
(DNM) method where SNR is estimated a priori using
a statistical mixture model of one predominant source

and noise. Weighted minimum-variance-distortion-less-
response (MVDRW) and weighted delay-and-sum (DSW)
methods are formulated by combining DNM with MVDR
and DS, respectively.

3.2 Modified baseline: speed correlated harmonics
cancellation with angular spectrum

Acoustic noise in recorded audio during UAV flights con-
sists of three major components [7]. These components
are ego-noise, air flow noise from the propellers, and wind
noise; ego-noise is the most significant in terms of noise
power spectrum and is principally generated by the rotors
of the UAV. The DREGON dataset contained recordings
where the UAV was kept stationary, with individual rotors
turned on one at a time and ramped up to various speeds.
These recordings served as noise samples for each rotor.
The paper detailing the DREGON dataset [7] showed that
the peaks of power spectral density for these individ-
ual rotor recordings varied proportionally with the rotor
speed.
In our literature review, we came across works that

also noted this type of relationship and utilized it for
UAV noise harmonics cancellation [11, 12, 14]. The noise
power spectrum of one of the rotors at different speeds
is shown in Fig. 3. We analyzed all the available record-
ings of rotor noise in the DREGON dataset and used
simple linear regression between the first harmonic of
the rotor noise and rotor speed to obtain the following
relationship:

f ego0 (rs) = α · rs (5)

Fig. 3 Frequency bins of ego-noise for different rotor speeds
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where f ego0 (rs) is the first harmonic of ego-noise as a
function of the rotor speed, and rs and α are the pro-
portionality constant, computed from the gradient of
the plot of f ego0 (rs) vs. rs. The value of α thus obtained
was 0.98.
In the modified baseline method, we designed band-

pass filters and applied them on the target sound source
recordings to extract the harmonics given by Eq. 5 for
different rotor speeds the UAV happened to be fly-
ing or hovering at during the recording. The signals
obtained from the filters were subtracted from the orig-
inal audio. The resulting signal was likely to have a
better SNR. This denoised signal was then fed through
the original baseline system described in Section 3.1.
This process is illustrated in Fig. 4. Since this modifi-
cation to the baseline system involves suppressing the
noise that is correlated with rotor speed, we refer to
this method as speed correlated harmonics cancellation
(SCHC).

4 Proposed system
We propose an end-to-end one-dimensional dilated con-
volutional neural network, called DOANet. Our network
accepts multi-channel raw audio signals from the micro-
phone array and estimates the DOA of the sound source
by predicting the azimuth and elevation angles. The SSL
system using DOANet is illustrated in Fig. 5. Over the
course of our work, we found having two separate mod-
els for predicting azimuth and elevation angle separately
worked better than trying to do so using a single model. So
DOANet is composed of two networks which are almost
identical (discussed further in Section 4.2), each taking on
the task of predicting the azimuth and elevation angles
independently.
The raw 8 channel audio signals are first passed through

a channel selection block which can be configured to
select the appropriate channels. The selected channels
are then windowed and propagated through the DOANet
model.

Fig. 4 Block diagram of the modified baseline method
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4.1 Channel selection
We have two configurable modes for the channel selec-
tion block: CS (channel separation) and ACU (all channel
utilization). In the ACU mode, DOANet uses all 8 audio
channels. In the CS configuration, we create two different
sets of audio signals—the first set consists of microphones
0, 1, 4, and 5 and is referred to as CS0145 in the rest of this
article; the second set consists of the remaining micro-
phones 2, 3, 6, and 7 and is referred to as CS2367. The
spatial location and orientation of the microphones are
illustrated in Fig. 2. These two sets were chosen to ensure
maximum spatial diversity of selected microphones. We
trained separate networks for each of these sets.

4.2 Network architecture for DOANet
The networks within DOANet follow the typical architec-
ture used in CNN-based state-of-the-art systems. How-
ever, instead of applying the usual convolution operation,
we use dilated convolutions. The convolutional kernel
or filter is expanded over different sample ranges using
different dilation rates. As the dilation rate is increased,
the gap between original convolution filter elements gets
wider. This allows a kernel of the same size to incorpo-
rate information from a larger context [18, 19]. We were
motivated to use dilated convolution for audio signals
as it had been successfully applied in speech and music

synthesis [25], and speech recognition [26] from raw audio
signals.
The detailed network architecture of DOANet is illus-

trated in Fig. 6. Overall, there are 9 convolutional layers,
each one followed by a ReLU activation function and a
batch normalization layer [27, 28]. Each layer has a higher
dilation rate than the previous. Compared to the general
scheme of using powers of 2, dilation rates following a
Fibonacci sequence were shown to perform slightly bet-
ter [18]. We thus used the following sequence of dilation
rates: 1, 2, 3, 5, 8, 13, 21, 34, and 55. After two consecutive
convolutions, there is a max pooling layer with a filter size
of 2, except the first max pooling layer whose filter size is
3. After the final convolution, we have a global max pool-
ing layer. The pooled output is passed through a couple
of layers with fully connected neurons (dense layers) and
tanh activation function at the last layer which generate
the network’s output.
As mentioned earlier, we use two different networks

trained independently for predicting the azimuth and ele-
vation angles in the DOANet. These networks primarily
differ in their hyper-parameters which are shown in Fig. 6.
Another difference is that the network for estimating
azimuth angle has two output nodes which map to the
x-axis and y-axis projections of the azimuth angle. The
reasoning for this is discussed in Section 4.3. The total

Fig. 5 DOANet-based sound source localization
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Fig. 6 Network architecture of DOANet

number of parameters for each model is summarized in
Table 1.

4.3 DOA estimation from DOANet
The elevation angle prediction network of DOANet out-
puts a number between −1 and 1 which correspond to
the scaled elevation angle (actual elevation angle between
−90 and +90◦ divided by 90). However, the output of the
azimuth angle network is not the scaled azimuth angle;
instead, it is the x-axis and y-axis projection of a unit
length two-dimensional vector. For an azimuth angle, θ

projections on the x- and y-axes are x = cos θ and
y = sin θ . We observed that having the network predict
the projections worked better than making it predict the
angle. We hypothesize that this may offer the network
more flexibility in learning the DOA on the xy plane, since
the projections on the two axes are independent. We use
the trigonometric relation θ = tan−1(y/x) to calculate
the azimuth angle from the predicted projection values.
Thus, the predicted elevation angle and azimuth angle
together provide DOANet’s estimate of the DOA of the
sound source.

5 Experiments
In this section, we describe the dataset, experimental
setup, and evaluation metric used in our study.

Table 1 Total number of parameters for DOANet models

Model Trainable Non-trainable Total

Azimuth 67,938,850 16,320 67,955,170

Elevation 34,902,177 11,200 34,913,377

5.1 SP Cup 2019 data
For training and evaluating our system, we used a
subset of the DREGON dataset [7] compiled by the
organizers of the IEEE SP Cup 2019 [29]. The dataset con-
tained multi-channel audio files recorded in a large low-
reverberant room, using the microphone array embedded
on a quadcopter UAV. A speaker was placed at the cen-
ter of the room which played different audio clips taken
from the TIMIT dataset [30] containing human speech.
The dataset also contained recordings where the speaker
played white noise instead of human speech, but we did
not include them in this study since SSL is more chal-
lenging for speech compared to white noise owing to
the dynamic frequency content in speech. The recordings
were grouped into two categories: static task and in-flight
task. Files in the static task category were recorded with
the UAV hovering in a fixed position. Similarly, the in-
flight task category contained files recorded when the
UAV was flying around the room. The dataset also con-
tained metadata for each recording related to the position
of the UAV in the room tracked with 3D Motion Capture
Hardware and UAV rotor speeds at different timestamps
within the recordings. The dataset was shared with us by
the SP Cup organizers in two phases: primary round data
and final round data. The final round data was only used
for evaluation, while the primary round data was used
for training and validation. The summary of the audio
data split into train, validation, and test sets is shown in
Table 2, while the following sections detail how the data
was prepared.

5.1.1 Primary round data
The primary round data contained 300 static audio files
around 2 to 3 s long and 16 in-flight audio files which were
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Table 2 Audio data points created from SP Cup 2019 data

Task Train Validation Test

Static 1126 569 120

In-flight 180 60 80

4 s in duration. The static files were randomly divided
into training and validation sets with 200 files for train-
ing and 100 files for validation. The train and validation
data for in-flight files were divided in a 3:1 ratio. For train-
ing DOANet, we segmented all the static audio files into
0.5-s clips. The in-flight files were also segmented in the
same way with metadata (DOA labels, rotor speeds) at 15
timestamps as follows: 0.25 s, 0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s,
1.75 s, 2 s, 2.25 s, 2.5 s, 2.75 s, 3 s, 3.25 s, 3.5 s, and 3.75 s.
As a result, we obtained 1126 and 569 static train and val-
idation data points, respectively. For in-flight data, we had
180 and 60 train and validation data points, respectively.

5.1.2 Final round data
The final round data added a further 20 static audio files
with duration ranging from 2 to 4 s and 1 in-flight audio
file with a duration of 20 s. The static audio files were split
in the same way as the primary round data, resulting in a
total of 120 data points. The in-flight speech audio file had
a total of 80 timestamps for whichmetadata was provided.
The timestamps were at intervals of 0.25 s, each covering
0.5 s of the recording. The entirety of the final round data
was used only for evaluating the trained DOANet.

5.2 Synthetic data
The amount of audio data provided in the SP Cup 2019
was not sufficient for properly training a deep neural net-
work such as DOANet. Therefore, we created a synthetic
static audio dataset using the open-source pyroomacous-
tics package [31]. This package allowed us to simulate
indoor environments where we could place a sound
source, noise sources, and microphones at different posi-
tions in the virtual space.
We created a virtual 10 m × 10 m × 5 m room which

was comparable to the environment where the DREGON
recordings were made. We also constructed a virtual UAV
to mimic the one used in the DREGON dataset, with an 8-
microphone array and 4 noise sources located at the four
rotor positions in the relative positions as shown in Fig. 2
and described in [7]. We wanted our synthetic data to
match the DREGON dataset as much as possible. To that
end, we extracted the rotor ego-noise from static audio
files in the primary round data (Section 5.1.1) using a gen-
eralized sidelobe canceller (GSC) beamformer [32]. The
noise sources placed at the rotor locations were made to
emit these extracted noise signals.
We then added a sound source located at the floor

of the room and made it emit random clips of human

speech from the TIMIT dataset, to act as our target sound
source. The virtual UAV was then placed at random posi-
tions in the virtual room, and the simulated recordings
of the microphone array were generated. The positions of
the virtual sound source and UAV were used to calculate
the DOA labels for each recording. Using this simulation
technique, we were able to generate a large 8-channel syn-
thetic audio dataset containing 2980 recordings to train
DOANet.

5.3 DOANet model training
The DOANet model was built using the Keras [33] and
Tensorflow [34] frameworks and trained on Kaggle Note-
books’ GPU instances. The model was trained in three
stages. In the first stage, DOANet was trained from
scratch on the synthetic data described in Section 5.2 until
the model converged, i.e., until validation objective func-
tion plateaued. In the subsequent two stages, the model
was fine-tuned using the training and validation parti-
tions of the DREGON dataset described in Section 5.1.1;
first, the static data points were used and then the in-
flight data points. This training scheme was inspired by
the “curriculum learning” approach proposed in [35], and
we found that it helped the final model converge faster
and more accurately than when training with all the data
mixed together in a single stage.
The objective function for the training algorithm was

the mean squared error (MSE) between the predictions
and ground truth labels (i.e., scaled elevation angles, and
x-y projections of the azimuth angles). We used the popu-
lar “Adam” [36] optimizer algorithm with an initial learn-
ing rate of 0.01 when training from scratch. During the
fine-tuning stages, the initial learning rate was set at 0.001.
We decreased the learning rate by a factor of 10 every time
the objective function on the validation data stalled or
started getting worse for consecutive training iterations.
We did this up to three times before stopping the train-
ing run. On average, the first stage of training lasted for
50 epochs on synthetic data and fine-tuning stages for
35 epochs on the real data. The total training time was
about 6 h for each azimuth model and about 4 h for each
elevation model.

5.4 Performance evaluation
The proposed system, along with the baseline and mod-
ified baseline systems described in Section 3.1 and 3.2,
respectively, was evaluated on the final round data of the
DREGON dataset as described in Section 5.1.2. For the
modified baseline using SCHC, we computed the pro-
portionality constant in Eq. 5 from the training data and
obtained a value of α = 0.98. We limited the number
of bandpass filters used to extract the ego-noise harmon-
ics to 10 after determining that no gain in accuracy was
obtained beyond this number.
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Fig. 7 Typical cumulative histograms and the shaded area in each subplot is the AUC. The normalized AUC is obtained by dividing the shaded area
by the total area of the rectangular box. In these plots, the x-axis indicates the angular value and y-axis indicates the cumulative number of data
points. Fractional AUCs are calculated and referred to as AUC(< δ), indicating the area under the curve from angular deviation = 0 to angular
deviation = δ. For example, the AUC, AUC(< 10), and AUC(< 20) are shown in a, b, and c

For each system, we calculated the azimuth and ele-
vation angle deviation and great-circle angular distance
as described in Section 2. The possible range of val-
ues for these metrics (180◦) was divided into 36 equal
bins of 5◦. The values obtained were plotted in cumula-
tive histograms using these 36 bins. Finally, we calculated
the normalized area under the curve (AUC) for all three
systems and compared them.
Figure 7 shows typical cumulative histograms, and the

shaded area in each subplot is the AUC. The normalized

AUC is obtained by dividing the shaded area by the total
area of the rectangular box. In these plots, the x-axis indi-
cates the angular value and y-axis indicates the cumulative
number of data points. Using the normalized AUC val-
ues, we sorted out the best technique or scheme for the
baseline systems and our proposed system.
We chose AUC as our key performance indicator over

conventional accuracy (number of correct predictions
divided by total predictions) because of its inherent qual-
ity of measuring the system’s consistency in predicting the

Table 3 Nomenclature used in presenting results

Technique Nomenclature

DNM + SCHC DNM with SCHC

DS + SCHC DS with SCHC

DSW + SCHC DSW with SCHC

GCC-NONLIN + SCHC GCC-NONLIN with SCHC

GCC-PHAT + SCHC GCC-PHAT with SCHC

MVDR + SCHC MVDR with SCHC

MVDRW + SCHC MVDRW with SCHC

DOANet + CS0145 DOANet with channel separation (channels = 0, 1, 4, 5)

DOANet + CS2367 DOANet with channel separation (channels = 2, 3, 6, 7)

DOANet + ACU DOANet with all channel utilization

DOANet + CS0145(A) + CS0145(E) DOANet with channel separation (channels for azimuth = 0, 1, 4, 5 and for elevation = 0, 1, 4, 5)

DOANet + CS0145(A) + CS2367(E) DOANet with channel separation (channels for azimuth = 0, 1, 4, 5 and for elevation = 2, 3, 6, 7)

DOANet + CS0145(A) + ACU(E) DOANet with channel separation for azimuth (channels = 0, 1, 4, 5) and all channel utilization for elevation

DOANet + CS2367(A) + CS0145(E) DOANet with channel separation (channels for azimuth = 2, 3, 6, 7 and for elevation = 0, 1, 4, 5)

DOANet + CS2367(A) + CS2367(E) DOANet with channel separation (channels for azimuth = 2, 3, 6, 7 and for elevation = 2, 3, 6, 7)

DOANet + CS2367(A) + ACU(E) DOANet with channel separation for azimuth (channels = 0, 1, 4, 5) and all channel utilization for elevation

DOANet + ACU(A) + CS0145(E) DOANet with all channel utilization for azimuth and channel separation for elevation (channels = 0, 1, 4, 5)

DOANet + ACU(A) + CS2367(E) DOANet with all channel utilization for azimuth and channel separation for elevation (channels = 2, 3, 6, 7)

DOANet + ACU(A) + ACU(E) DOANet with all channel utilization for both azimuth and elevation
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accurate DOA. Generally, we consider a prediction accu-
rate if the angular deviation of the prediction is within
a predefined margin of error. But the problem with this
approach is that “slightly wrong” and “grossly wrong” are
treated the same. Likewise, the granularity, in how cor-
rect a prediction is, is not preserved either. To avoid this,
we opted to use AUC for comparing different systems and
analyzing the consistency in a system’s ability to correctly
estimate the DOA.
We also calculate fractional AUCs referred to as AUC(<

δ), indicating the area under the curve from angular devi-
ation = 0 to angular deviation = δ. For example, the AUC,
AUC(< 10), and AUC(< 20) are shown in Fig. 7a–c. From
these figures, we can infer that higher AUC value results in
lower standard deviation for angular error of azimuth and
elevation and great-circle angular distance.

6 Results
This section presents and compares the results for the
baseline, modified baseline, and proposed systems con-
figured in different schemes. The nomenclature used for
specifying different configurations and techniques for
which results are presented is shown in Table 3. The best
performing techniques for the baseline system (angular
spectrum methods), modified baseline system (angular
spectrum methods with SCHC), and DOANet are shown
with blue, green, and red colors, respectively, in all the
tables in the subsequent sections.

Table 4 AUC of static azimuth angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.6917 0.0183 0.0417

DS 0.7706 0.0213 0.0509

DSW 0.6977 0.0208 0.0461

GCC-NONLIN 0.7465 0.0238 0.0521

GCC-PHAT 0.7569 0.0231 0.0516

MVDR 0.7500 0.0218 0.0498

MVDRW 0.6931 0.0194 0.0428

DNM + SCHC 0.6734 0.0183 0.0417

DS + SCHC 0.7789 0.0213 0.0509

DSW + SCHC 0.7000 0.0208 0.0461

GCC-NONLIN + SCHC 0.7498 0.0248 0.0530

GCC-PHAT + SCHC 0.7625 0.0236 0.0525

MVDR + SCHC 0.7356 0.0206 0.0479

MVDRW + SCHC 0.6931 0.0190 0.0424

DOANet + CS0145 0.6875 0.0150 0.0509

DOANet + CS2367 0.7941 0.0225 0.0653

DOANet + ACU 0.7806 0.0178 0.0549

Table 5 AUC of static elevation angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.8845 0.0206 0.0537

DS 0.8662 0.0208 0.0535

DSW 0.8731 0.0206 0.0507

GCC-NONLIN 0.8931 0.0225 0.0588

GCC-PHAT 0.8970 0.0227 0.0600

MVDR 0.8593 0.0185 0.0507

MVDRW 0.8782 0.0189 0.0528

DNM + SCHC 0.8780 0.0199 0.0507

DS + SCHC 0.8630 0.0201 0.0514

DSW + SCHC 0.8755 0.0208 0.0521

GCC-NONLIN + SCHC 0.8914 0.0222 0.0579

GCC-PHAT + SCHC 0.8988 0.0227 0.0611

MVDR + SCHC 0.8657 0.0178 0.0500

MVDRW + SCHC 0.8792 0.0197 0.0542

DOANet + CS0145 0.9162 0.0116 0.0551

DOANet + CS2367 0.9192 0.0116 0.0581

DOANet + ACU 0.9169 0.0123 0.0558

Table 6 AUC of static great-circle angular distance

Technique AUC AUC(<10) AUC(<20)

DNM 0.7102 0.0157 0.0389

DS 0.7877 0.0169 0.0426

DSW 0.7428 0.0171 0.0407

GCC-NONLIN 0.7785 0.0190 0.0456

GCC-PHAT 0.7845 0.0181 0.0447

MVDR 0.7819 0.0155 0.0405

MVDRW 0.7435 0.0146 0.0368

DNM + SCHC 0.6935 0.0146 0.0359

DS + SCHC 0.7819 0.0150 0.0394

DSW + SCHC 0.7470 0.0171 0.0412

GCC-NONLIN + SCHC 0.7803 0.0190 0.0456

GCC-PHAT + SCHC 0.7910 0.0181 0.0449

MVDR + SCHC 0.7731 0.0139 0.0389

MVDRW + SCHC 0.7440 0.0148 0.0375

DOANet + CS0145(A) + CS0145(E) 0.9014 0.0032 0.0269

DOANet + CS0145(A) + CS2367(E) 0.9028 0.0035 0.0278

DOANet + CS0145(A) + ACU(E) 0.9028 0.0037 0.0285

DOANet + CS2367(A) + CS0145(E) 0.9169 0.0063 0.0352

DOANet + CS2367(A) + CS2367(E) 0.9194 0.0067 0.0368

DOANet + CS2367(A) + ACU(E) 0.9181 0.0065 0.0361

DOANet + ACU(A) + CS0145(E) 0.9113 0.0051 0.0292

DOANet + ACU(A) + CS2367(E) 0.9150 0.0049 0.0313

DOANet + ACU(A) + ACU(E) 0.9127 0.0053 0.0303
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Fig. 8 AUCs for cumulative static azimuth angle deviation

6.1 Static task performance analysis
The AUC for azimuth angle deviation, elevation angle
deviation, and great-circle angular distance deviation
for the different systems are presented in Tables 4,
5, and 6, respectively. The AUCs for the best scheme
from each system are also provided in Figs. 8, 9,
and 10.

6.1.1 Azimuth angle deviation
Table 4 shows that for the baseline system, using the delay-
and-sum (DS) technique gave the best results. Overall, the
best performing system was DOANet using microphone
channels 2, 3, 6, and 7. From Fig. 8, it is clear that the

range of angular deviations for DOANet is much lower
than for the baseline systems. This indicates DOANet
is more consistent with its predictions than the other
systems.

6.1.2 Elevation angle deviation
Table 5 shows that for the baseline system, using the gen-
eralized cross-correlation phase-transform (GCC-PHAT)
technique gave the best results. Overall, the best perform-
ing system was still DOANet using microphone chan-
nels 2, 3, 6, and 7. From Fig. 9, we again see that the
range of angular deviation for DOANet is more restricted
compared to the baseline systems.

Fig. 9 AUCs for cumulative static elevation angle deviation



Qayyum et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2020) 2020:16 Page 13 of 18

Fig. 10 AUCs for cumulative static great-circle angular distance

6.1.3 Great-circle angular distance
Table 6 shows that when comparing the great-circle angu-
lar distance, which is a measure that combines both
the azimuth and elevation angles, all configurations of
DOANet are better than the two baseline systems by a
significant margin. This is also evident in Fig. 10, where
we can see that the angular deviations for the baseline
systems cover a wider range and therefore are less con-
sistent. We also see that using microphone channels 2,
3, 6, and 7 gave the best results for DOANet. If we con-
sider AUC(<10) and AUC(<20), however, we do see that
DOANet falls a little short. This indicates that the baseline
systems have a better angular resolution for these samples
with low angular deviation.

6.2 In-flight task performance analysis
The AUC for azimuth angle deviation, elevation angle
deviation, and great-circle angular distance deviation for
the different systems are presented in Tables 7, 8, and 9,
respectively. The AUCs for the best scheme from each sys-
tem are also provided in Figs. 11, 12, and 13. It is worth
noting that for all the metrics considered, both DOANet
and modified baseline system outperformed the baseline
system by a significant margin.

6.2.1 Azimuth angle deviation
Table 7 shows that for the baseline system, using the
weighted delay-and-sum (DSW) technique gave the best
results. Overall, the best performing system was DOANet
using microphone channels 2, 3, 6, and 7. From Fig. 11,
we can see that compared to the baseline system, both
the modified baseline system and DOANet perform
significantly better. For smaller angle deviations, the
modified baseline system has a slight edge over DOANet.

6.2.2 Elevation angle deviation
Table 8 shows that for the baseline and modified base-
line systems, using the delay-and-sum (DS) and weighted
delay-and-sum (DSW) techniques gave the best results,
respectively. Overall, the best performing system was
DOANet using microphone channels 0, 1, 4, and 5. From
Fig. 12, we can see that the performance of both the
modified baseline system and DOANet is better than the

Table 7 AUC of in-flight azimuth angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.3378 0.0045 0.0101

DS 0.3392 0.0031 0.0073

DSW 0.3587 0.0045 0.0101

GCC-NONLIN 0.3462 0.0042 0.0090

GCC-PHAT 0.3285 0.0031 0.0066

MVDR 0.3382 0.0042 0.0083

MVDRW 0.3583 0.0049 0.0097

DNM + SCHC 0.6785 0.0089 0.0253

DS + SCHC 0.6965 0.0097 0.0306

DSW + SCHC 0.6281 0.0066 0.0191

GCC-NONLIN + SCHC 0.6576 0.0063 0.0198

GCC-PHAT + SCHC 0.6313 0.0063 0.0170

MVDR + SCHC 0.6788 0.0089 0.0250

MVDRW + SCHC 0.6073 0.0028 0.0101

DOANet + CS0145 0.6875 0.0045 0.0153

DOANet + CS2367 0.7941 00.0035 0.0146

DOANet + ACU 0.7806 0.0049 0.0139
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Table 8 AUC of in-flight elevation angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.5566 0 0

DS 0.5691 0.0014 0.0035

DSW 0.5642 0 0

GCC-NONLIN 0.5545 0 0

GCC-PHAT 0.5559 0 0

MVDR 0.5552 0 0

MVDRW 0.5618 0 0

DNM + SCHC 0.9156 0.0163 0.0510

DS + SCHC 0.8837 0.0128 0.0392

DSW + SCHC 0.9233 0.0139 0.0493

GCC-NONLIN + SCHC 0.8958 0.0087 0.0337

GCC-PHAT + SCHC 0.8917 0.0097 0.0337

MVDR + SCHC 0.9097 0.0153 0.0451

MVDRW + SCHC 0.9153 0.0146 0.0431

DOANet + CS0145 0.9740 0.0330 0.0858

DOANet + CS2367 0.9726 0.0326 0.0847

DOANet + ACU 0.9653 0.0250 0.0771

Table 9 AUC of in-flight great-circle angular distance

Technique AUC AUC(<10) AUC(<20)

DNM 0.3091 0 0

DS 0.3066 0 0

DSW 0.3108 0 0

GCC-NONLIN 0.3281 0 0

GCC-PHAT 0.3302 0 0

MVDR 0.3076 0 0

MVDRW 0.3229 0 0

DNM + SCHC 0.7128 0.0045 0.0188

DS + SCHC 0.7079 0.0052 0.0191

DSW + SCHC 0.7020 0.0028 0.0115

GCC-NONLIN + SCHC 0.6975 0.0024 0.0115

GCC-PHAT + SCHC 0.6715 0.0017 0.0083

MVDR + SCHC 0.7256 0.0038 0.0156

MVDRW + SCHC 0.6857 0.0024 0.0073

DOANet + CS0145(A) + CS0145(E) 0.7344 0.0031 0.0125

DOANet + CS0145(A) + CS2367(E) 0.7382 0.0038 0.0135

DOANet + CS0145(A) + ACU(E) 0.7285 0.0035 0.0132

DOANet + CS2367(A) + CS0145(E) 0.8139 0.0031 0.0135

DOANet + CS2367(A) + CS2367(E) 0.8160 0.0028 0.0139

DOANet + CS2367(A) + ACU(E) 0.8101 0.0031 0.0132

DOANet + ACU(A) + CS0145(E) 0.7976 0.0014 0.0083

DOANet + ACU(A) + CS2367(E) 0.8000 0.0017 0.0087

DOANet + ACU(A) + ACU(E) 0.7944 0.0014 0.0076

baseline. Unlike previous scenarios, DOANet obtained a
better AUC(<10) score than the other systems.

6.2.3 Great-circle angular distance
Table 9 shows that in terms of the great-circle angular dis-
tance, DOANet using microphone channels 2, 3, 6, and 7
performed better than both baseline and modified base-
line systems. From Fig. 13, we can see that for angular
deviations less than 20, the performance of DOANet is
very similar to the modified baseline system. It should
be mentioned that for all angular spectrum techniques
available in the baseline system, all angular distances were
greater than 40◦.

6.3 Summary
DOANet is seen to outperform both the baseline and
modified baseline techniques while comparing the AUC
values. However, for the fractional AUC values, AUC(<
10) and AUC(< 20), DOANet falls behind the modified
baseline techniques in most cases. To explore the results
further, we performed statistical significance tests (p value
of two-sample t test at 0.05 significance level) using the
deviation of predicted azimuth, elevation, and the great-
circle angular distance values from ground truth. The p
values obtained when comparing the technique with the
highest AUC (DOANet or modified baseline) with the
best baseline method are summarized in Table 10. A p
value less than 0.05 indicates that the technique with
higher AUC value is indeed better, whereas a p value
greater than or equal to 0.05 indicates the higher AUC
value has no statistical significance.
To illustrate how the p values were calculated in

Table 10, let us consider the task of static azimuth
angle deviation (first row). Comparing AUC, DOANet +
CS2367 had the overall highest AUC value and DS had the
highest AUC among baseline techniques (see Table 4). So
we conducted statistical tests between DOANet + CS2367
and DS. Similarly, the pairs compared for AUC(< 10)
and AUC(< 20) were GCC-NONLIN + SCHC vs. GCC-
NONLIN and DOANet + CS2367 vs. GCC-NONLIN,
respectively. When comparing results for AUC(< 10) and
AUC(< 20), we did not consider all the data points; out of
the total 120 static test data points, we included only those
data points where the angular deviation was less than 10
and 20◦ for AUC(< 10) and AUC(< 20), respectively.
Observing Table 10, for static tasks, DOANet was

always statistically better compared to its best baseline
counterpart wherever it had the highest AUC and frac-
tional AUC values. However, techniques involving SCHC
were not always statistically better despite having higher
AUC values (p value was greater than 0.05). From this,
we can conclude that DOANet provides a statistically sig-
nificant improvement over baseline methods for static
tasks.
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Fig. 11 AUCs for cumulative in-flight azimuth angle deviation

In in-flight tasks, both DOANet and techniques with
SCHC were statistically better than the best baseline
methods. To analyze the results further, we performed
statistical tests between the best DOANet schemes and
SCHC techniques for the in-flight cases. The p values
obtained are provided in Table 11.
By looking at Tables 10 and 11 together, we can see that

whenever DOANet had the higher AUC values, the differ-
ence was always statistically significant (p value less than
0.05). Conversely, when SCHC techniques had higher
AUC values than DOANet, the difference was never
statistically significant, with the p values being much

larger than 0.05. From this, we conclude that, in most of
the cases, our proposed model does indeed provide an
improvement over baseline methods; at worst, it is never
statistically worse than modified baseline methods, and
always better than the original baseline methods.

7 Conclusion
In this article, we explored the challenge of sound source
localization (SSL) from UAVs in the context of detecting
human speech sounds for search and rescue operations.
We proposed an end-to-end one-dimensional dilated con-
volutional neural network called DOANet for tackling this

Fig. 12 AUCs for cumulative in-flight elevation angle deviation
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Fig. 13 AUCs for cumulative in-flight great-circle angular distance

challenge. To train our network, we used the DREGON
dataset along with a synthetic dataset that we gener-
ated using computer simulation.We compared our system
with a baseline that utilized traditional angular spec-
trum methods for SSL. We also augmented the baseline
system with an algorithm for reducing the ego-noise of
the UAV which utilized the UAV’s rotor speed informa-
tion and compared the modified system with our pro-
posed DOANet. The results we obtained demonstrated
that DOANet was able to achieve a statistically signifi-
cant improvement over the baseline methods in most of
the metrics considered and at worst was still statistically
comparable to the modified baseline methods. Our pro-
posed model was able to achieve this result directly from
raw audio input without needing any prior filtering of

ego-noise or hand-crafted techniques. We believe this
makes our method more flexible—in that it can be
improved simply by training it with more real data col-
lected from practical outdoor scenarios. We also observed
that while our model was more accurate overall, it scored
lower in terms of fractional AUC values—AUC(< 10) and
AUC(< 20)—compared to the modified baseline meth-
ods. This indicates our model is less accurate at fine grain
resolution of the elevation and azimuthal angles. In prac-
tical search and rescue scenarios, the UAV would need
to “home in” on the target sound source. A combina-
tion of DOANet and the modified baseline methods may
be used for better performance in such a case; DOANet
would provide the initial rough direction of the sound, and
the modified baseline methods would be used for finer

Table 10 Summary of the best techniques for different tasks along with p values of two-sample t test at 0.05 significance level when
comparing against best baseline method. AD azimuthal angle deviation, ED elevation angle deviation, GCAD great-circle angular
distance

Task Metric AUC AUC(<10) AUC(<20)

Static AD DOANet + CS2367 GCC-NONLIN + SCHC DOANet + CS2367

0.00 0.63 0.00

ED DOANet + CS2367 GCC-PHAT + SCHC GCC-PHAT + SCHC

0.01 0.87 0.01

GCAD DOANet +CS2367(A) + CS2367(E) GCC-NONLIN + SCHC GCC-NONLIN + SCHC

0.00 0.26 0.00

In-flight AD DOANet + CS2367 DS + SCHC DS + SCHC

0.00 0.01 0.00

ED DOANet + CS0145 DOANet + CS0145 DOANet + CS0145

0.00 0.00 0.00

GCAD DOANet + CS2367(A) + CS2367(E) DS + SCHC DS + SCHC

0.00 0.00 0.00
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Table 11 Computed p values of two-sample t test at 0.05
significance level when comparing the best DOANet scheme
against the best SCHC technique for in-flight tasks. GC great circle

Metric
p values of two-sample t test (α = 0.05)

AUC AUC(<10) AUC(<20)

Azimuthal deviation 0.01 0.78 0.80

Elevation deviation 0.00 0.00 0.00

GC angular distance 0.00 0.47 0.80

estimation once the UAV is closer to the target. We hope
to expand the scope of our work to include tracking the
dynamic performance of DOANet in real time to see if
it is able to gradually lead the UAV to the actual source
of the sound as well as collect more data from outdoor
environments to improve DOANet further.
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