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Abstract

Humanoid robots require to use microphone arrays to acquire speech signals from the human communication
partner while suppressing noise, reverberation, and interferences. Unlike many other applications, microphone arrays
in humanoid robots have to face the restrictions in size and geometry. To address these challenges, this paper
presents an approach to differential beamforming with arbitrary planar array geometries. The major contributions of
this work are as follows: (1) a method is presented to design differential beamformers, which works for regular
geometries such as linear, circular, and concentric circular ones, as well as irregular geometries, as long as the sensors’
positions are given or can be measured; (2) fundamental requirements for the design of different orders of linear
differential microphone arrays (DMAs), partially steerable DMAs, fully steerable DMAs, and robust DMAs are discussed;
(3) the validity and limitations of the Jacobi-Anger expansion approximation is analyzed, where we discuss how to
achieve an optimal approximation by properly choosing the reference point; and (4) we show how to design an
Nth-order DMA with 2Nmicrophones using the Jacobi-Anger expansion.

Keywords: Robot audition, Microphone arrays, Beamforming, Differential beamforming, Frequency-invariant
beampattern

1 Introduction
It has long been a dream of researchers and engineers to
create humanoid robots, which can communicate natu-
rally with humans through speech and language. A pre-
requisite for this is the ability to acquire speech from the
human communication partner with high fidelity/quality
and, meanwhile, mitigate or even eliminate the effects
of background noise, acoustic feedback, interferences,
reverberation, and robot ego noise. This requires to use
sensor arrays with multiple microphones arranged into a
certain geometry. Unlike many well-studied applications
such as teleconferencing, microphone arrays for robot
audition are limited by size and geometry [1–5]. There-
fore, how to design small arrays with a flexible geome-
try and the associated beamforming algorithms that can
process broadband speech signals is a critical problem
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[6–13]. Among different types of available arrays, differ-
ential microphone arrays (DMAs), which are designed to
measure the differentials of the sound pressure field, are
more appropriate for robot audition since they are small
in size and can achieve high directivity and frequency-
invariant beampatterns [14–23]. From the early efforts
of designing linear DMAs in a multistage manner
[24, 25], to the recently developed null-constraint-based
linear DMAs in the short-time Fourier transform (STFT)
domain [26], the flexibility in forming different beampat-
terns and the robustness of differential beamformers have
been significantly improved [27–31].
An important issue in applications of DMAs is the steer-

ing flexibility. Linear DMAs do not have much flexibility
in terms of beam steering: the beampattern varies with
the steering angle and the optimal performance in terms
of directivity factor (DF) occurs only at the endfire direc-
tions, i.e., the directions along the line that connects all
sensors [26, 32]. A number of efforts have been devoted
to improving the steering flexibility of DMAs. In [33, 34],
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two-dimensional arrays are used to form multiple linear
DMAs, and the resulting beampatterns can be steered
to a certain number of directions. In [35, 36], first-order
steerable DMAs were constructed by a linear combi-
nation of monopole and two orthogonal dipoles using
a four-element square array. In [37], uniform circular
DMAs (CDMAs) were designed and their beampatterns
can be perfectly steered to M different directions, i.e., the
M angular positions of the array elements. In [38], the
authors proposed a steerable second-order DMA as a lin-
ear combination of a monopole and dipoles with seven
or nine microphones. In [39], a method was proposed to
design a nearly constant beampattern, which can be con-
tinuously steered between two directions of the reference
beams. In [40], an approach was developed to the design
of CDMAs based on an approximation of the beampat-
tern from a least-squares error (LSE) perspective, where
the designed beampattern is almost frequency invariant
and can be steered to any look direction in the sen-
sor plane. In [41], concentric circular DMAs (CCDMAs)
were developed, which can achieve full flexibility in beam
steering in the sensor’s plane and have a flexible array
structure (a smaller ring can have less microphones than a
larger one).
While great progress has been achieved in the design

of DMAs with high directivity, frequency-invariant beam-
patterns, high robustness, and good steering flexibility,
only a few efforts can be found in the literature to deal with
flexibility in array geometry. In [42, 43], a method was pre-
sented to design a frequency-invariant beamformer based
on spherical harmonic decompositions. While it is adapt-
able to an arbitrary array and it is steerable, the solution
does not guarantee a perfectly frequency-invariant beam-
pattern. In [44], a broadband beamformer was proposed
for spherical arrays with arbitrary sensor configurations,
where the sensors’ positions do not have to satisfy the
orthonormality criterion, but the shape of the array is lim-
ited to spherical. In [45], a general model was developed
to design superdirective beamformers for arbitrary sen-
sor arrays. In [46], the authors extended the work in [43]
to develop a steerable beamformer for arbitrary planar
arrays, but the beampatterns are not frequency invariant.
While they have led to many interesting results, the afore-
mentioned efforts did not address the general problem
of differential beamforming. Therefore, further efforts are
indispensable to study how to design differential beam-
formers with flexibility in sensor configurations.
In a recent work [7], we studied the problem of dif-

ferential beamforming with microphone arrays of arbi-
trary planar geometry, but many important issues such
as beampattern steering, influence of array geometry on
beamforming performance, and requirements for design-
ing different beampatterns were not addressed. This
work is basically an extension of the study in [7]. In

comparison with [7], the major contributions of this paper
are as follows. First, a detailed analysis is presented on
the design of DMAs to address such issues as the basic
requirements for the design of different orders of lin-
ear DMAs (LDMAs), limited steerable DMAs (LSDMAs),
continuously steerable DMAs (CSDMAs), and robust
DMAs. Second, we discuss the validity and limitations
of the Jacobi-Anger expansion approximation, where we
propose to achieve an optimal approximation with fixed
array geometry and number of microphones by choos-
ing an appropriate reference. Generally, the value of rm,
i.e., the distance from the reference point to the mth
sensor, determines the accuracy of the approximation.
Consequently, with fixed array geometry and number of
microphones, we can improve DMAs performance by
choosing appropriate reference points, i.e., making the
value of rm as small as possible. Third, we present the case
of designing an Nth-order DMA with 2N microphones.
In previous studies of designing differential beamformers
with Jacobi-Anger expansion, at least 2N+1 microphones
are needed to design an Nth-order DMAs. We prove that
with the Jacobi-Anger expansion, we can also design an
Nth-order DMA with 2N microphones, but the designed
beampattern can be only perfectly steered to M differ-
ent directions, i.e., the angular positions of the M array
elements. This is consistent with the previous conclu-
sion of null-constraint circular differential microphone
arrays [37].
The organization of this paper is as follows. Section 2

presents the signal model, problem formulation, and
performance measures. Section 3 describes the desired
target frequency-invariant beampattern. Section 4 dis-
cusses how to design differential beamformers with arbi-
trary array geometries and presents some special cases.
Section 5 demonstrates the design of first-, second-, and
third-order DMAs and analyzes the steering flexibility.
Section 6 presents some simulation results to validate
the theoretical derivations, and conclusions are given in
Section 7.

2 Signal model, problem formulation, and
performancemeasures

We consider an array consisting of M sensors, which
are distributed in a specified area on a plane. Assume
that the center of the array coincides with the origin of
the two-dimensional Cartesian coordinate system and the
azimuthal angles are measured anti-clockwise from the x
axis. The coordinates of the microphones are then writ-
ten as rm = rm [cosψm sinψm]T , with m = 1, 2, . . . ,M,
where the superscript T is the transpose operator, rm is
the distance from themth microphone to the origin point,
and ψm is the angular position of the mth array element.
The distance between microphones i and j (for i, j =
1, 2, . . . ,M) is then
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δij = ∥
∥ri − rj

∥
∥
2 , (1)

where ‖ · ‖2 denotes the Euclidean norm. In this paper, we
consider small-size arrays and assume that δmax � λmin,
where δmax = max{δij, i, j = 1, 2, . . . ,M}, with λmin being
the smallest acoustic wavelength in the frequency band of
interest. This assumption ensures that the true acoustic
pressure differentials can be approximated by finite differ-
ences between the microphones’ outputs in the design of
DMAs.
With the small spacing assumption, it is natural to con-

sider the farfield scenario. Assume that the incidence
angle is characterized by azimuthal angle θ . If we define
the wavenumber as k = − (ω/c) [cos θ sin θ ]T , the steer-
ing vector of length M corresponding to the array is
written as [47]

d (ω, θ) =
[

e−jkT r1 · · · e−jkT rM
]T

=
[

ejωr1 cos(θ−ψ1)/c · · · ejωrM cos(θ−ψM)/c
]T

,
(2)

where j is the imaginary unit , ω = 2π f is the angular
frequency, and f > 0 is the temporal frequency.
The objective of beamforming is to recover the source

signal of interest that is corrupted by spatial acoustic
noise. For that, the signal received at each microphone is
multiplied by a complex weight,H∗

m (ω) , m = 1, 2, . . . ,M,
where the superscript ∗ stands for complex conjugation.
The weighted outputs are then summed together to form
the beamformer’s output [8]. Stacking all the weights
together in a vector of lengthM, we get

h(ω) = [

H1 (ω) H2 (ω) · · · HM (ω)
]T . (3)

Without loss of generality, the distortionless constraint at
the look direction (where the desired source is located, θs)
is desired, i.e.,

hH(ω)d (ω, θs) = 1, (4)

where the superscript H is the conjugate-transpose oper-
ator. Then, the problem of beamforming is to find the
optimal filter with the constraint in (4) so that the beam-
former’s output is a good estimate of the source signal
of interest. One way of finding such a filter is by mak-
ing its beampattern as close as possible to a desired target
beampattern, which is the approach taken in this work.
In order to evaluate the performance of the designed

beamformers, we will use the three commonly used met-
rics, i.e., the white noise gain (WNG), the directivity factor
(DF), and the beampattern.
The WNG evaluates the robustness of a beamformer

with respect to the presence of array imperfections as well

as other uncertainties. It is defined as [25]

W [h(ω)] =
∣
∣hH(ω)d (ω, θs)

∣
∣
2

hH(ω)h(ω)
. (5)

The DF quantifies the ability of the beamformer in sup-
pressing spatial noise from directions other than the look
direction and it can be written as [48]

D [h(ω)] =
∣
∣hH(ω)d (ω, θs)

∣
∣
2

hH(ω)�d(ω)h(ω)
, (6)

where �d(ω) is the pseudo-coherence matrix of the noise
signal in a diffuse (spherically isotropic) noise field, whose
(i, j)th element is

[�d(ω)]ij = sinc
(

ωδij

c

)

, (7)

with δij being defined in (1).
The beampattern describes the sensitivity of the beam-

former to a plane wave impinging on the array from the
direction θ . Mathematically, it is defined as

B [h(ω), θ ] = hH(ω)d (ω, θ) (8)

=
M

∑

m=1
H∗
m(ω)ejωrm cos(θ−ψm)/c.

3 Desired target beampattern for DMAs
DMAs refer to arrays that combine closely spaced sensors
to respond to the spatial derivatives of the acoustic pres-
sure field. Early DMAs are based on the uniform linear
geometry where differential beamformers are designed
in a multistage manner and measure the differentials of
the acoustic pressure field by combining the outputs of a
number of omnidirectional sensors [25, 49]. A different
DMA design method was developed in the STFT domain
involves solving a system of linear equations to make the
designed beampattern equal a target beampattern [26],
which provides a better way to deal with white noise
amplification. In this paper, we follow the framework to
design differential beamformers with their beampatterns
being as close as possible to a target beampattern.
Conventionally, in the design of linear DMAs, the best

DF is at the endfire direction, i.e., θ = 0◦ (or 180◦). The
Nth-order frequency-invariant beampattern with its main
beam pointing to the direction of 0◦ is given by [26, 49]

B (aN , θ) =
N

∑

n=0
aN ,n cos (nθ) , (9)

where aN ,n, n = 0, 1, . . . ,N are real-valued coefficients
and

aN = [

aN ,0 · · · aN ,1 · · · aN ,N
]T . (10)

The values of the coefficients aN ,n, n = 0, 1, . . . ,N in
(9) affect the shape of the beampattern of the Nth-order
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DMA as well as its DF and WNG [25, 49]. One can deter-
mine the values of those coefficients using either the a
priori information or based on some optimization crite-
ria. For example, maximizing the directivity factor gives
the hypercardioid beampattern andmaximizing the front-
to-back ratio leads to the supercardioid beampattern.
In the direction of the main beam, which is assumed to

be θ = 0◦ for linear DMAs, the directivity pattern should
be equal to 1, i.e., B (aN , 0◦) = 1. Therefore, we have

N
∑

n=0
aN ,n = 1. (11)

In this paper, we attempt to design DMAs with arbi-
trary planar geometries, whose main beam is no longer
limited to the direction of 0◦. Let us assume that we
want to steer the beampattern to the angle θs. Using the
fact that cos (nθ) = (ejnθ + e−jnθ )/2, one can write the
frequency-invariant beampattern as [40]

B (b2N , θ − θs) =
N

∑

n=−N
b2N ,nejn(θ−θs), (12)

where b2N ,0 = aN ,0, b2N ,i = 1
2aN ,i, i = ±1, . . . ,±N . It

is more convenient to write (12) into the following vector
form:

B (b2N , θ − θs) = [ϒ (θs)b2N ]T pe(θ)

= cT2N (θs)pe(θ)

= B [c2N (θs) , θ ] , (13)

where

ϒ (θs) = diag
(

ejNθs , . . . , 1, . . . , e−jNθs
)

(14)

is a (2N + 1) × (2N + 1) diagonal matrix and

b2N = [

b2N ,−N · · · b2N ,0 · · · b2N ,N
]T ,

pe(θ) = [

e−jNθ · · · 1 · · · ejNθ
]T ,

c2N (θs) = ϒ (θs)b2N
= [

c2N ,−N (θs) · · · c2N ,0 (θs) · · · c2N ,N (θs)
]T

are vectors of length 2N+1. Clearly, themain beam of (13)
points in the direction θs and B [c2N (θs) , θ ] is symmetric
with respect to the axis θs ↔ θs + π . The values of the
coefficients of widely used beampatterns, i.e., dipole, car-
dioid, supercardioid, and supercardioid, are summarized
in Table 1 (for the interested reader, please see [37] for the
plots of those beampatterns). In this work, the beampat-
terns given in (13) are used as the target beampatterns to
design DMAs.

4 Design of differential beamformers
In the design of differential beamformers with an arbitrary
planar array geometry, the objective is to find a proper
beamforming filter, h(ω), so that the designed beam-
pattern, B [h(ω), θ ], is as close as possible to the target
frequency-invariant beampattern, B [c2N (θs) , θ ], i.e.,

B [h(ω), θ ] ≈ B [c2N (θs) , θ ] , ∀ω. (15)

In what follows, we show how to design such a beam-
former.
To make B [h(ω), θ ] close to B [c2N (θs) , θ ], we need

to approximate the exponential function that appears in
(8) in terms of ejnθ . In our previous work in [40], we
found that the optimal approximation of the exponen-
tial function that appears in beamformer’s beampattern,

Table 1 Values of the vector b2N of the first-, second-, and third-order dipole, cardioid, supercardioid, and hypercardioid

N b2N

Dipole

1 b2N = [ 1
2 0 1

2

]T

2 b2N = [ 1
4 0 1

2 0 1
4

]T

3 b2N = [ 1
8 0 3

8 0 3
8 0 1

8

]T

Cardioid

1 b2N = [ 1
4

1
2

1
4

]T

2 b2N = [ 1
8

1
4

1
4

1
4

1
8

]T

3 b2N = [ 1
16

1
8

3
16

1
4

3
16

1
8

1
16

]T

Hypercardioid

1 b2N = [ 1
3

1
3

1
3

]T

2 b2N = [ 1
5

1
5

1
5

1
5

1
5

]T

3 b2N = [ 1
7

1
7

1
7

1
7

1
7

1
7

1
7

]T

Supercardioid

1 b2N ≈ [0.293 0.414 0.293]T

2 b2N ≈ [0.1035 0.242 0.309 0.242 0.1035]T

3 b2N ≈ [0.036 0.1185 0.216 0.259 0.216 0.1185 0.036]T
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B [h(ω), θ ], from a least-squares error perspective is the
Jacobi-Anger expansion [50, 51], i.e.,

ejωrm cos(θ−ψm)/c =
∞
∑

n=−∞
jnJn (ωrm/c) ejn(θ−ψm), (16)

where Jn(x) is the nth-order Bessel function of the first
kind with J−n (x) = (−1)nJn (x). By limiting the expan-
sion to the order ±N , B [h(ω), θ ] can be approximated
by

ejωrm cos(θ−ψm)/c ≈
N

∑

n=−N
jnJn (ωrm/c) ejn(θ−ψm). (17)

Generally, the intersensor spacing should be small enough
to make the Jacobi-Anger series a good approximation
of the exponential function. More precisely, the value
of Jn (ωrm/c), |n| > N determines the accuracy of the
approximation. Figure 1 plots Jn (ωrm/c) for different val-
ues of n. As seen, as ωrm/c increases, the truncation error
of higher orders increases. When ωrm/c is large, the zeros
of Bessel functions will lead to serious performance degra-
dation [52]. With fixed array geometry and number of
microphones, the reference point should be properly cho-
sen to make the value of rm as small as possible for an
optimal approximation.
Substituting (17) into (8), we obtain

B [h(ω), θ ] =
M

∑

m=1
H∗
m (ω)

N
∑

n=−N
jnJn (ωrm/c) ejn(θ−ψm)

=
N

∑

n=−N
ejnθ jn

M
∑

m=1
Jn (ωrm/c) e−jnψmH∗

m (ω)

=
N

∑

n=−N
ejnθ jnψT

n (ω)h∗(ω), (18)

where

ψn(ω) = [

Jn (ωr1/c) e−jnψ1 · · · Jn (ωrM/c) e−jnψM
]T

(19)

is a vector of lengthM.
Comparing (13) with (18), one can see the following

relation:

jnψT
n (ω)h∗(ω) = c2N ,n (θs) , (20)

with n = ±1,±2, . . . ,±N . It follows immediately that

�(ω)h(ω) = c∗
2N (θs) , (21)

where

�(ω) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−j)−N ψH−N (ω)
...

ψH
0 (ω)
...

(−j)N ψH
N (ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

is a (2N + 1) × M matrix.
Now, it is clear that the beamforming filter, h(ω), can be

obtained by solving the linear system in (21). As a matter
of fact, ifM = 2N + 1, the solution of (21) is
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Fig. 1 The value of Jn (ωrm/c) for different values of n
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h(ω) = �−1(ω)c∗
2N (θs) . (23)

But this beamformer is generally sensitive to sensors’ self
noise and array imperfections at low frequencies.
To improve the robustness of the designed beamformer,

we now consider the case of M > 2N + 1 and derive a
beamforming filter by minimizing the norm of h(ω), i.e.,
hH(ω)h(ω), subject to the equality constraints given in
(20):

min
h(ω)

hH(ω)h(ω) s. t. �(ω)h(ω) = c∗
2N (θs) , (24)

whose solution is

h(ω) = �H(ω)
[

�(ω)�H(ω)
]−1 c∗

2N (θs) (25)

= �H(ω)
[

�(ω)�H(ω)
]−1

ϒ∗ (θs)b2N .

This optimization process is equivalent to the maximiza-
tion of the WNG if the array aperture is small and the
approximation error in the desired direction is negligible.
A special case is when the M microphones are dis-

tributed in a uniform linear way. If the first sensor is
chosen as the reference point, we have

rm = (m − 1)δ, ψm = π , m = 1, 2, . . . ,M, (26)

where δ denotes the interelement spacing. Substituting it
into the definition of ψn(ω) in (19) and using J−n (x) =
(−1)nJn (x), it can be checked that j−nψT−n(ω) =
jnψT

n (ω). Considering the fact that b2N ,−n = b2N ,n, n =
1, 2, . . . ,N , one can check that the first N constraints
(corresponding to n = −1,−2, . . . ,−N) and last N con-
straints (corresponding to n = 1, 2, . . . ,N) are the same,
so half the constraints are redundant and can be omitted.
Meanwhile, for linear DMAs, the beampattern is gener-
ally steered to 0◦ (or 180◦), where the steering matrix
ϒ (θs) is equal to the identity matrix (or multiplies by −1).
Now, (20) can be written as the following system of linear
equations (here we omit the first N constraints):

�(ω)h(ω) = bN , (27)

where

�(ω) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψH
0 (ω)

−jψH
1 (ω)

...

(−j)N ψH
N (ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28)

is now an (N + 1) × M matrix and bN is an (N + 1) × 1
vector consisting of the last N + 1 elements of b2N . In this
case, the proposed beamformer is equivalent to the linear
DMA (LDMA) presented in [26, 51].
As discussed previously, a large value of ωrm/c in the

Bessel function, Jn (ωrm/c), may lead to performance
degradation. For uniform LDMAs, an appropriate choice

of the reference point is the middle point of the array line
(assuming thatM is even), i.e.,

rm =
∣
∣
∣
∣

M + 1
2

− m
∣
∣
∣
∣
δ, ψm =

{

0, m = 1, . . . ,M/2
π , m = M/2, . . . ,M .

(29)

Clearly, if microphones are nonuniformly distributed on
a line, this beamformer degenerates to the nonuniform
LDMA design method presented in [53].
Another particular case is when theMmicrophones are

distributed as a uniform circular array, i.e.,

ψm = (m − 1)
2π
M

, rm = r, m = 1, 2, . . . ,M. (30)

The proposed beamformer degenerates to the circular
DMA (CDMA) in [40]. Generally, if the array aperture
is small, a uniform circular array has the best steering
ability; but this geometry may not be applicable in many
scenarios, especially for irregularly shaped devices. There-
fore, microphone arrays with such geometries as trian-
gular, rectangular, or arbitrary (but sensors’ positions are
known), also have tremendous application potential.

5 Analysis of steerable DMAs
In this section, we study the basic requirements for the
design of first-, second-, and third-order DMAs with arbi-
trary planar microphone array geometries.
To design a first-order LDMA, at least twomicrophones

are needed. The optimal spatial gain of the designed
LDMA occurs at endfire directions, i.e., 0◦ and 180◦. With
the proposed method, a first-order continuously steerable
DMA (CSDMA) can be designed by adding an additional
microphone to form a triangular array with three sensors.
To improve robustness, more microphones on a planar
array can be used, i.e.,M ≥ 4.
To design a second-order LDMA, at least three micro-

phones are needed (distributed as a linear array), i.e.,
M = 3. Similarly, the maximumDF is achieved only at the
angles 0◦ and 180◦.
According to (22), to design a second-order CSDMA, at

least five microphones are needed, i.e., M = 5. As dis-
cussed, at least three microphones are needed to design a
second-order LDMA, and five microphones are needed to
design a second-order CSDMA. A legitimate question one
may ask is what can be designed with four microphones,
i.e., M = 4. Before we answer this question, we first dis-
cuss a more general case of designing Nth-order DMAs
with 2N microphones. In this case, the microphone array
geometry is restricted to a uniform circular array.
As shown in Appendix A, the column rank of �H(ω) is

R
[

�H(ω)
] = 2N , (31)
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where R(A) denotes the column rank of A. This explains
the fact that to design anNth-order DMAwith 2N micro-
phones, only 2N constraints in (21) are linearly indepen-
dent.
However, as shown in (21) and (22), it usually requires at

least 2N + 1 microphones to design an Nth-order DMA.
Consider the fact that ψ ′−N = ψ ′

N (see Appendix A), we
have to release the constraints on b2N ,−N or b2N ,N , i.e.,
drop off one of the following constraints:

j−NψT−N (ω)h∗(ω) = c2N ,−N (θs) ,
jNψT

N (ω)h∗(ω) = c2N ,N (θs) . (32)

In this case, the matrix �(ω) becomes

�(ω) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−j)−N ψH−N (ω)
...

ψH
0 (ω)
...

(−j)N−1 ψH
N−1(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (33)

Now, the problem without one of the constraints in (32)
is how to ensure that the designed beampattern is equal to
the desired directivity pattern. In the special case of θs =
0, it is written

c2N ,−N (θs) = c2N ,−N (θs) = b2N ,N . (34)

This means that the two constraints in (32) are the same.
In other words, if one constraint is imposed, the other
is satisfied at the same time. Similarly, if we want the
designed beampattern to be fully steered to the direction
θs �= 0, we should have

c2N ,−N (θs) = c2N ,N (θs) . (35)

Substituting (13) into (35), we get

e−jNθsb2N ,−N = ejNθsb2N ,N . (36)

Since b2N ,−N = b2N ,N �= 0, it is easy to verify that

e−jNθs − ejNθs = 2j sin (Nθs) = 0. (37)

If we limit the steering to the range [ 0, 2π ], the solution of
(37) is

Nθs = (m − 1)π , m = 0, 1, . . . ,M − 1. (38)

UsingM = 2N , we get

θs = (m − 1)
2π
M

, m = 1, 2, . . . ,M, (39)

which means that the designed beampattern can be per-
fectly steered to M different directions, i.e., the angular
positions of theM array elements [37].
So, with four microphones uniformly distributed,

the designed second-order DMA can be perfectly
steered to four different directions, i.e., with θs ∈
{0◦, 90◦, 180◦, 270◦}. Similarly, increasing the number of
microphones while fixing the DMA order can improve the
robustness.
To design a third-order LDMA, at least four micro-

phones (distributed as a linear array) are needed, i.e.,
M = 4. A special case is to design a third-order DMA
with five microphones, i.e., M = 5. In this case, robust-
ness can be included. Another special case is to design
a third-order DMA with six microphones distributed as
an uniform circular array. In this scenario, as shown in
Appendix A, the designed third-order DMA can be per-
fectly steered to six different directions, i.e., with θs ∈
{0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.
To design a third-order CSDMA, at least seven micro-

phones are needed, i.e.,M = 7. Similarly, all microphones
should not be placed in a straight line (experiments show
that at least three microphones should be off the x-axis).
Again, one can improve the WNG by using more than
seven microphones, i.e.,M ≥ 8.
Finally, the feasibility of first-, second-, and third-order

DMAs for different number of microphones is summa-
rized in Table 2.

6 Simulations
In this section, we study the performance of the presented
method for the design of differential beamformers, where
the performance is evaluated with the three widely used

Table 2 Feasibility of the first-, second-, and third-order DMAs for different number of microphones, where “
√
” represents feasible and

blank represents infeasible

First-order Second-order Third-order

LDMA LSDMA CSDMA LDMA LSDMA CSDMA LDMA LSDMA CSDMA

M = 2
√

M = 3
√ √ √ √

M = 4
√ √ √ √ √ √

M = 5
√ √ √ √ √ √ √

M = 6
√ √ √ √ √ √ √ √

M ≥ 7
√ √ √ √ √ √ √ √ √
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performance metrics, i.e., beampattern, WNG, and the
directivity index (DI), which is the DF in decibels [25], i.e.,

DI [h(ω)] = 10 log10D [h(ω)] . (40)

6.1 First-order DMAs
We first study the performance of the presented method
for the design of first-order differential beamformers. The
desired target beampattern is the first-order supercar-
dioid, whose coefficients are given in Table 1. In the
simulations, we use three microphones and consider the
following four different array geometries (coordinate val-
ues measured in centimeters).

• Array-I: an equilateral triangle array, the coordinates
of the three microphones are (0, 1.0), (−0.87,−0.5),
and (0.87,−0.5), respectively, see Fig. 2(a.1).

• Array-II: an obtuse isosceles triangle array, the
coordinates of the three microphones are (0, 1.5),
(−0.87,−0.5), and (0.87,−0.5), respectively, see
Fig. 2(b.1).

• Array-III: an acute isosceles triangle array, the
coordinates of the three microphones are (0, 0.6),

(−0.87,−0.5), and (0.87,−0.5), respectively, see
Fig. 2(c.1).

• Array-IV: a scalene triangle array with top
microphone being off the central axis, the coordinates
of the three microphones are (0, 1.04), (−0.87,−0.5),
and (0.87,−0.5), respectively, see Fig. 2(d.1).

Figure 2 plots the four different geometries and the cor-
responding beampatterns, and broadband beampatterns
versus frequency designed with the presented algorithm,
where the desired look direction is 0◦. As seen, the pre-
sented method successfully formed the first-order super-
cardioid for all the four geometries and the designed
beampatterns are almost frequency invariant. Figure 3
plots the DIs and the WNGs of the designed differential
beamformers with the aforementioned four array geome-
tries. It is clearly seen that the DI does not change much
with frequency for all the four geometries, indicating that
the designed beampatterns are frequency invariant.
Figure 4 plots the DIs and the WNGs for different

look directions, θs, at f = 1000 Hz. It is clearly seen
that the DIs stay constant (approximately 5 dB) but the
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Fig. 2 Array geometries and the corresponding beampatterns of a first-order differential beamformer: a array geometry, b beampatterns at
f = 500 Hz, and c broadband beampattern versus frequency
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Fig. 3DI andWNG of the first-order differential beamformer designed with the algorithm in (25) with four different array geometries: aDI and bWNG

WNGs fluctuate with θs (except Array-I). The results con-
firm our previous conclusion that continuously steerable
DMAs can be designed by using threemicrophones if they
are not arranged in a linear manner. It is also observed
from Fig. 4 that the WNGs for the four geometries are
slightly different from each other. This result is interest-
ing from a practical perspective. With the same number
of microphones, we can form the same beampattern with
the same DI while optimizing the geometry to improve
the WNG.

6.2 Second-order DMAs
We then study the performance of the presented method
for the design of second-order DMAs, where the desired
target beampattern is the second-order supercardioid, and
its coefficients are chosen according to Table 1. In the
simulations, we use fivemicrophones and consider the fol-
lowing four different array geometries (coordinate values
measured in centimeters).

• Array-I : a regular pentagon array (also can be
considered as a uniform circular microphone array),
the coordinates of the five microphones are (1.0, 0),
(0.31, 0.95), (−0.81, 0.59), (−0.81,−0.59), and
(0.31,−0.95), respectively, see Fig. 5(a.1).

• Array-II: a pentagon array where the radii of the
microphones are the same but angles are nonuniform,
the coordinates of the five microphones are (1.0, 0),
(0.47, 0.88), (−0.38, 0.93), (−0.96,−0.28), and
(0.31,−0.95), respectively, see Fig. 5(b.1).

• Array-III: a pentagon array where the angles of
microphones are uniform, but the radius are

nonuniform, the coordinates of the five microphones
are (1.0, 0), (0.19, 0.57), (−0.81, 0.59),
(−0.97,−0.71), and (0.31,−0.95), respectively, see
Fig. 5(c.1).

• Array-IV: the coordinates of the microphones is
randomly distributed, the coordinates of the five
microphones are (0.5, 0), (0.92, 0.77), (1.0, 0),
(−0.84, 1.0), and (0.31,−0.95), respectively, see
Fig. 5(d.1).

Figure 5 plots the array geometries, the correspond-
ing beampatterns, and broadband beampatterns versus
frequency. It is clearly seen that the presented method
successfully formed the second-order supercardioid for
all the four geometries and the designed beampatterns
are almost frequency invariant. Figure 6 plots the DIs
and the WNGs as a function of frequency, where the
DIs, again, stay constant but the WNGs increase with
frequency. It is also seen that both the DIs and WNGs
for the four geometries are different. This can be eas-
ily explained, and the DI is defined as the ratio between
the magnitude-squared beampattern in the look direction
and the averaged magnitude-squared beampattern over
the entire space. But the beampattern is defined only in
the sensor plane. As a result, the DIs are different even
though beampatterns are the same. In our study, we focus
on the 2-dimensional space with the assumption that the
sound sources and the sensors are in the same plane. The
designed beamformer will achieve good performance if
the steering angles are within or near the sensor plane,
but it becomes less and less effective as the beamformer is
steered away from this plane. This problem has been fully
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Fig. 4 DI and WNG of the first-order differential beamformer with four different array geometries for different look directions. a DI and bWNG

studied with circular differential beamformers [54], and
the conclusion also applies to other kinds of planar arrays.
Figure 7 plots the DIs and WNGs as a function of θs

at f = 1000 Hz. It is seen that, for some geometries,
the DI and WNG change with θs, which indicates that
geometries play an important role on the steering capabil-
ity of the beamformer. However, it should be noted that
the beamformer is continuously steerable regardless of
geometry.

6.3 Third-order DMAs
We then study the performance of the presented method
for the design of a third-order supercardioid with M = 7
and consider the following four different array geometries
(coordinate values measured in centimeters).

• Array-I : a regular heptagon microphone array (also
can be considered as a uniform circular microphone
array), the coordinates of the seven microphones are
(1.5, 0), (0.94, 1.17), (−0.34, 1.46), (−1.35, 0.66),
(−1.35,−0.66), (−0.34,−1.46), and (0.94, −1.17),
respectively, see Fig. 8(a.1).

• Array-II: a heptagon microphone array where the
angle positions of microphones are nonuniform, but
the radii are the same, and the coordinates of the
seven microphones are (1.5, 0), (1.40, 0.54),
(0.68, 1.34), (−1.35, 0.66), (−0.61,−1.37), (0.18,
−1.49), and (1.29,−0.77), respectively, see Fig. 8(b.1).

• Array-III: a heptagon microphone array where the
radii of the microphones are nonuniform, but the
angle positions are the same, and the coordinates of
the seven microphones are (1.2, 0), (0.94, 1.17),
(−0.27, 1.17), (−1.35, 0.66), (−1.08,−0.53), (−0.34,
−1.46), and (0.76,−0.93), respectively, see Fig. 8(c.1).

• Array-IV: the coordinates of the microphones are
randomly distributed, and the coordinates of the
seven microphones are (0.5, 0), (0.5, 0.87),
(−0.96, 1.15), (−1.48, 0.26), (−0.77,−0.64),
(0.05,−0.30), and (1.29, −0.77), respectively, see
Fig. 8(d.1).

Figure 8 plots the four different geometries and the cor-
responding beampatterns and broadband beampatterns
versus frequency. Figure 9 plots the DIs and the WNGs as
a function of frequency, f. Similarly, with all the four array
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Fig. 5 Array geometries and the corresponding beampatterns of a second-order differential beamformer: a array geometry, b beampatterns at
f = 500 Hz, and c broadband beampattern versus frequency

Fig. 6 DI and WNG of the second-order differential beamformer designed with four different array geometries: a DI and bWNG
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Fig. 7 DI and WNG of the second-order differential beamformer designed with four different array geometries for different look directions: a DI and
bWNG

Fig. 8 Array geometries and the corresponding beampatterns of a third-order differential beamformer: a array geometry, b beampatterns at
f = 500 Hz, and c broadband beampattern versus frequency
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Fig. 9 DI and WNG of the third-order differential beamformer designed with four different array geometries: a DI and bWNG

geometries, the presentedmethod successfully formed the
third-order supercardioid and the designed beampatterns
are almost frequency invariant. The designed third-order
DMA is continuously steerable, with a constant DI; but
the DIs and WNGs are different for the four geometries.

6.4 Robust DMAs
As seen, the DI and the WNG fluctuate with the steering
direction. This can be improved by increasing the number
of microphones and designing the beamformer with the
minimum-norm solution. To demonstrate this, we show
an example for the design of robust DMAs with M = 25,
where the coordinates of the microphones are random
numbers generated with the uniform distribution by con-
fining 1 ≤ rm ≤ 2 cm and −π < ψm ≤ π . Figure 10
plots the DIs and the WNGs as a function of the steering
direction, θs and f, of the designed second- and third-order
supercardioid, respectively. Now, it is clearly seen both the
DIs and the WNGs are almost constant. Clearly, the per-
formance can be further improved if more microphones
are used.
Note that there may exist some errors when implement-

ing the beamformer with limited precision in practice.
This effect can be modeled by WNG, which evaluates

the performance of a beamformer with respect to the
presence of array imperfection as well as other uncertain-
ties. So, one can deal with such errors by improving the
WNG.

6.5 Experiments in real environment
In this subsection, we present an example of using the
proposedDMAbeamformer in a real office room environ-
ment. The size of the office room is approximately 3×4×3
m, where the reverberation time, T60, which is computed
from a measured room impulse response, is approxi-
mately 600 ms. A loudspeaker is placed 1 m away from
the array with an elevation angle of 30◦, which plays back
a prerecorded speech signal to simulate a sound source
of interest. Note that this source position is arbitrarily
selected. The acoustic scenario for the experiments also
consists of air conditioning noise, environmental noise
from outside of the windows, and some babble noise from
another working area, which is over 6 m away. The overall
signal-to-noise-ratio (SNR), which is evaluated from the
reference microphone, is approximately 4.5 dB. We first
built a concentric circular microphone array, which con-
sists of 7 sensors, a photo of which is shown in Fig. 11.
We then choose 4 microphones from the array to form an
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Fig. 10 DI and WNG of the robust differential beamformer for different look directions: a DI and bWNG

Fig. 11 A photo of the designed microphone arrays and the used irregularity microphone array with 4 microphones (marked with a circle)
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irregular geometry array, where the 4 used microphones
are marked with a circle. We choose the center of the four
microphones as the reference point, the coordinates (mea-
sured in centimeters) of the four microphones are (1.9, 0),
(0, 3.29), (−1.9, 0), and (0, 3.29), respectively. The DMA
is expected to be mounted in the head of a robot (how-
ever, due to logistic issues, in this experiment, the DMA
is mounted on a tripod). The desired source is in a ran-
domly selected direction (a loudspeaker about 1 m away
and with elevation angle of 30◦ to play back a speech signal
of interest).
The microphone outputs are first passed through a

preamplifier and then fed to a 24-bit analog-to-digital

converter with a sampling rate of 8 kHz. Then, the
digitized signals are then processed with a TI floating-
point processor. The beamformers are implemented in the
STFT domain with a frame size of 32 ms (256 points) and
an overlapping factor of 75% (a Kaiser window is applied
to each frame). The beamforming filters are computed
according to (25) with the target beampattern as the 1st-
order cardioid. Figure 12 plots the time-domain observed
signal and its spectrogram and the output of the devel-
oped DMA beamformer and its spectrogram. It is seen
that the output of the DMA enhanced the desired signal
and suppressed reverberation and noise, which indicates
the effectiveness of the developed beamformer.

Fig. 12 Performance in a conference room: a signal observed at the 1st sensor and its spectrogram and b output of the 1st-order DMA beamformer
and its spectrogram
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Fig. 13 Beampatterns designed with the conventional method in [51] and the proposed method: a the target beampattern (second-order
supercardioid), b conventional method, and c proposed method

6.6 Comparison
As discussed previously, with a fixed array geometry
and number of microphones, we can improve the DMA
performance by choosing an appropriate reference point,
i.e., making the value of rm as small as possible.

We present two examples for the design of supercar-
dioids using the conventional method in [51], i.e., (26),
and the proposed method, i.e., (29), respectively, in
Fig. 13, where we use a uniform linear microphone array
consisting of four closely spaced microphones with the

Fig. 14 DI and WNG of the proposed differential beamformer, the conventional null-constrained differential beamformer in [37], and the DS
beamformer: a DI and bWNG



Huang et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2020) 2020:15 Page 17 of 18

interelement spacing being 1 cm. As seen, the beam-
pattern of the linear DMA designed by the proposed
method matches better the target beampattern than the
beampattern designed with the conventional method.
It is clearly seen that the proposed method achieves
better performance as compared to the conventional
method [51].
The proposed method is also compared to the conven-

tional null-constrained differential beamformer in [37],
where we use Array-I as shown in Fig. 2(a,1), and the
desired beampattern is the first-order supercardioid with
θs = 130◦. The results are plotted in Fig. 14. For reference,
the performance of the delay-and-sum (DS) beamformer
is also plotted. As seen, while the DS beamformer has a
large WNG, its directivity is very small. In comparison,
the differential beamformers havemuch higher DIs, which
are almost frequency-invariant. It is also seen that the pro-
posed method achieves higher DIs than the conventional
null-constrained differential beamformer.

7 Conclusions
Towards robotic applications, where microphone arrays
face restrictions in size and geometry, we presented in this
paper an approach to the design of differential beamform-
ers with arbitrary planar array geometries. By approxi-
mating the beampattern with the Jacobi-Anger expansion,
we developed an algorithm that can form beampatterns
close to a pre-specified target frequency-invariant beam-
pattern. This method is rather general and it can be used
to design differential beamformers with linear, circular,
concentric circular DMAs, and arrays where sensors are
placed in any specified positions. Based on the proposed
method, some basic requirements for the design of first-,
second-, and third-order LDMAs, LSDMAs, and CSD-
MAs were discussed. This study also summarized the fun-
damental requirements, i.e., the number of microphones
and array geometries, for the design of different kinds and
orders of DMAs.

Appendix A
Derivation of the column rank of�H(ω)

In case 2N , microphones are uniformly distributed on a
circular array, and the vector ψn(ω) defined in (19) can be
written as

ψn(ω) = Jn (ωr/c)ψ ′
n(ω), (41)

with

ψ ′
n = [

e−jnψ1 e−jnψ2 · · · e−jnψM
]T . (42)

Since M = 2N , it is clear that the mth element of vectors
ψ ′−N and ψ ′

N are

ψ ′−N ,m = ejNψm = ej
M
2

2π
M (m−1) = cos [(m − 1)π ] ,

ψ ′
N ,m = e−jNψm = cos [(m − 1)π ] . (43)

From (43), it is clearly seen

ψ ′−N = ψ ′
N . (44)

So, we have

�(ω)�H(ω) = MJ(ω)P, (45)

where

J(ω) = diag
[

J2−N (ωr/c) , . . . , J20 (ωr/c) , . . . , J2N (ωr/c)
]

(46)

is a (2N + 1) × (2N + 1) diagonal matrix, and

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 1
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[
I2N i1
iT1 1

]

, (47)

with I2N being the 2N × 2N identity matrix and i1 being
the first column of the I2N . It is clearly seen that rank(P) =
2N . Then,

R
[

�(ω)�H(ω)
] = 2N , (48)

where R denotes the column rank of a matrix. As a
consequence, we have

R
[

�H(ω)
] ≥ 2N . (49)

According to (44), it is also clear that

R
[

�H(ω)
] ≤ 2N . (50)

According to (49) and (50), we get (31), i.e., the column
rank of �H(ω) is 2N .
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