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Abstract

In real applications, environmental effects such as additive noise and room reverberation lead to a mismatch
between training and testing signals that substantially reduces the performance of far-field speaker identification. As
a solution to this mismatch problem, in this paper, a new binaural speaker identification system is proposed which
employs the well-known equalization-cancelation technique in its structure. The equalization-cancelation algorithm
is employed to enhance the input test speech and alleviate the detrimental effects of noise and reverberation in
the speaker identification system. The performance of the proposed speaker identification system is compared with
unprocessed identification systems and a traditional binaural speaker identification system from the literature. The
proposed system is evaluated in both anechoic and reverberant conditions using different types of noise at various
azimuthal positions. Simulation results show the superiority of the proposed method in all experimental conditions.
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1 Introduction
Speaker identification (SI) systems aim to extract the
embedded speaker information from the speech signal.
A typical SI system involves three main stages of fea-
ture extraction, speaker modeling, and scoring [1-4].
As the first stage, feature extraction tries to transform the
incoming speech signal into a convenient representation
for later speaker identification stages. Three widely used
features in the SI system are the Mel-frequency cepstral
coefficients (MFCCs) [5], Gammatone frequency cepstral
coefficients (GFCCs) [6], and perceptual linear predictive
(PLP) coefficients [7]. The goal of the speaker modeling
stage is to train the models that describe feature distribu-
tions of individual speakers. For this purpose, in early
studies, Gaussian mixture models (GMMs) were used for
speaker modeling in the SI systems. In those systems, the
GMM parameters are trained by the expectation-
maximization (EM) algorithm [8]. In later works, for effi-
cient training of speaker-related GMM parameters, the
combination of GMMs with a universal background model
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(UBM), known as the GMM-UBM model, was considered
[9]. Finally, in the scoring stage of the SI system, identifica-
tion scores are obtained by calculating the likelihoods of
observing feature frames given the speaker model.

While speaker models are constructed using clean
speech signals, in real applications, the speaker recogni-
tion (SR) is performed by unmatched test signals.
Mismatches can be imposed by different causes, includ-
ing channel and interspeaker variabilities, additive noise,
and reverberation. The robust SI systems have the task
of improving the recognition performance in unmatched
conditions. For this purpose, many robust systems have
been introduced to deal with the effect of different mis-
matches [10, 11]. Ways of tackling with the mismatches
generated by the channel distortion have been frequently
studied. In this regard, the state-of-the-art SR systems
incorporate joint factor analysis (JFA) [12] and i-vector
[13-15], as one of its important variants, in their imple-
mentations. In recent years, deep neural network (DNN)
is also used in the structure of i-vector-based systems
[16, 17]. The initial attempts with DNNs for SR have
been made in the context of i-vector speaker modeling
in terms of computing the phonetic posteriors [18, 19].
To solve the channel mismatch problem, in later studies,
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a new feature, called the DNN bottleneck feature, was
extracted as a substitution for traditional features such
as MFCCs [20-23]. To improve the performance of
DNN in speaker recognition, data augmentation embed-
ding is used. In this regard, DNN, which is trained to
discriminate between speakers, converts variable-length
speech to fixed-dimensional embedding called x-vectors
[24, 25]. In the model, called generative x-vector, the
complementary information of i-vector and x-vector is
included [26].

The aim of the aforementioned methods has been the
reduction of mismatches created by the telephony
systems. However, little attention has been paid to the
mismatch effects imposed by employing the SI systems
in the far-field conditions. In the far-field conditions, the
sensor position is far away from the target speaker. In
this condition, the additive noises and room reverber-
ation are the main sources of the mismatches. Compen-
sation methods have been introduced to deal with the
effect of this kind of mismatch [10]. Regarding the stage
at which they are applied, these methods can be divided
into three distinct categories, namely, the methods oper-
ating on feature extraction, speaker modeling, or scoring
stages, respectively. In the methods of the first category,
the noise is removed from the speaker characteristic in-
formation directly. Cepstral mean normalization (CMN)
[27], relative spectra (RASTA) processing [28], employ-
ing multi-taper windows [29, 30], and warping methods
[31] are examples of the methods in this group. In the
second category of compensation methods, such as
parallel model combination [32], the aim is to make the
SI system more robust by altering the learned speaker
models and employing distortion characteristics. The
third category aims at achieving the robustness of the SI
system by changing the classifier score at the utterance
or frame level. However, all the above-mentioned
methods have the drawbacks that they require hard as-
sumptions such as stationarity about the characteristic
of the environmental effects and the description of noise
explicitly, which leads to poor performance in the far-
field speaker identification.

Human listeners perform speaker identification ro-
bustly without concerning any assumptions about the
distortion characteristics [33]. This has inspired many
researchers to introduce robust SI methods based on
models of the human auditory system to deal with the
mismatch problem. The ability of the human auditory
system to separate voices in an environment with mul-
tiple sources is referred to as the auditory scene analysis
(ASA) [34]. Computational auditory scene analysis
(CASA) employs methods inspired by the ASA ability to
separate speech in multi-source environments [35]. The
techniques of CASA have motivated some researchers in
the area of robust speaker identification [36—40]. The

(2020) 2020:20 Page 2 of 15

auditory system also exploits signals from the right and
left ears which gives the ability to perform spatial separ-
ation of target speaker signal and interfering sounds
[41]. Here, ASA uses the information about the spatial
location of sound sources, principally encoded by the
interaural time difference (ITD) and the interaural level
difference (ILD) cues [34]. As one of the aspects of
CASA, the binaural cues can be used to estimate ideal
masks to segregate target speech from background noise
[42-48]. As one of the binaural speech segregation
methods, the mask is estimated by employing a deep
neural network (DNN) classification method [47, 48].
The training process of DNNs is based on features ex-
tracted from predefined mixture signals and defining the
ideal masks as the target. A limitation of such supervised
learning methods is that the efficiency of segregation is
highly dependent on the quality of training and the
amount of training data from various sources. In the
speaker identification framework, the work of May et al.
[39] suggests the utilization of the binaural scene ana-
lysis to deal explicitly with the mismatch problem. In
this system, the binaural system is used to simultan-
eously localize, detect, and identify a predefined number
of speakers in the presence of reverberation and interfer-
ing noise sources placed at different spatial locations. An
important drawback of these separation and identifica-
tion systems is that they are based on supervised learn-
ing strategy and, therefore, depend on prior knowledge
of source characteristics, which is a strong limitation to
be used for practical applications.

The spatial separation between target speaker and
maskers often causes large improvements in speech intel-
ligibility in those environments. The amount of intelligibil-
ity gain achieved by the binaural hearing is called binaural
masking level difference (BMLD). The equalization-
cancelation (EC) model is considered as one of the im-
portant and simple computational models of the binaural
auditory system. The EC model has been originally devel-
oped by Durlach [49] and further improved by Culling
and Summerfield [50] to predict BMLD. The original EC
model is based on the idea that the auditory system trans-
forms the signals arriving at the two ears so that the
masker components are “equalized” (the E process) in
both ears, and then the signal in one ear is “canceled” (i.e.,
subtracted) from that in the other ear (the C process).
Culling et al. used the EC model to interpret intelligibility
performance in two experiments in a simulated anechoic
environment involving multiple speech-shaped noise
(SSN) maskers [51]. Beutelmann and Brand applied an ex-
tended EC model to predict performance in speech intelli-
gibility tasks in several environments, ranging from
anechoic space to a cafeteria hall [52]. The EC idea was
further developed by incorporating short-time strategies
to predict cases involving nonstationary interferers [53].



Geravanchizadeh and Ghalamiosgouei EURASIP Journal on Audio, Speech, and Music Processing

An extended version of the EC model was also described
and applied to speech intelligibility tasks in the presence of
multiple maskers in [54]. Furthermore, Wan et al. devel-
oped a short-time version of the extended EC in speech
intelligibility experiments in the presence of different
maskers, including multiple speech maskers [55]. In an-
other study and inspired by the EC theory, a two-stage bin-
aural speech enhancement with the Wiener filter approach
was introduced [56]. Later, an EC-based approach was in-
troduced in the field of speech separation that shows per-
formance superiority to the classical localization-based
binaural speech separation systems [57].

The EC model was examined in many binaural pro-
cessing fields because of its conceptual simplicity and its
ability to describe the binaural phenomena. However, so
far, it has not been considered as a solution to the mis-
match problem in far-field speaker identification sys-
tems. In this paper, a new speaker identification system
based on the short-time extended EC model is proposed
to deal with the mismatch problem imposed by environ-
mental effects in the far-field speaker identification. The
backbone of the proposed SI system is the well-known
GMM-UBM in which the EC process is applied to the
auditory representations of both ears at the testing phase
to remove the environmental effects, including noise and
reverberation. Then, the output of the EC modeling is
given as input to the decision module. The performance
of the proposed system is compared with identification
systems based on MFCC and GFCC features extracted
from unprocessed signals and the traditional binaural
speaker identification system of May et al. [39] in differ-
ent simulated acoustic scenarios.

The structure of the paper is as follows: Section 1 gives
a background on the monaural SI system, the auditory
feature extraction, and the traditional binaural SI system.
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Section 2 outlines the main contribution of the paper.
Here, the proposed speaker identification is presented
along with a detailed explanation of the EC binaural
model. In Section 3, speaker identification experiments
are conducted to analyze the benefit of using the new
binaural model in the SI system. Section 4 summarizes
the main findings and concludes the paper.

2 Background

2.1 Monaural speaker identification system

In speaker identification, human speech from an individual
is used to identify who that individual is. There are two dis-
tinct processing stages. In the first stage, called training (or
enrollment), the speech from each known speaker is taken
to build (i.e., train) the model for that speaker. In the sec-
ond stage, called testing, comparison of an unknown source
of speech against each of the trained individual speaker
models is carried out. In closed-set form identification, the
unknown individual belongs to a pre-existing pool or data-
base of speakers (speaker models) and the problem then
becomes that of choosing which speaker from the pool the
unknown speech is derived from.

As mentioned earlier, in this paper, the SI system based
on GMM-UBM is used. Figure 1 shows the core structure
of a typical SI system based on GMM-UBM. As illustrated,
the block of feature extraction generates features that are
used in the training of UBM, in adapting GMMs, and in the
testing phase. In the training phase, a universal background
model (UBM) is generated by utilizing a large collection of
speech utterances and the expectation-maximization (EM)
algorithm. The EM algorithm iteratively refines the model
parameters by maximizing the likelihood of the resulting
UBMs [58]. The speaker-dependent GMM models are
obtained by adapting the trained UBM parameters to the
speaker-dependent speech material.

Training
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Speakers | Uni ) :
Utterances ! niversa
" EFeatutxje —> Al EMh > Background :
! xtraction gorithm Model :
H i
1 1
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Fig. 1 The block diagram of a typical speaker identification system [10]
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After building speaker models in an offline manner, in
the testing phase, log-likelihoods of test features given by
the GMM models and UBM are calculated. The difference
between the likelihoods of GMMs and UBM produces
values of scores. Finally, the speaker is identified by search-
ing the argument that has the maximum value of the score.

2.2 Auditory features

The auditory perception of the sound frequency con-
tents for speech signals could be described by nonlinear
scales such as Mel and equivalent rectangular bandwidth
(ERB) which lead to two feature extraction approaches
of MFCC [5] and GFCC [6].

The Mel filterbank is composed of triangular filters
where their center frequencies and bandwidths are
calculated in the Mel scale. To extract the MFCC
features, first, the input signal is decomposed into a
time-frequency representation using the Mel filterbank.
Then, the representations are compressed by logarithmic
function and fed into the discrete cosine transform
(DCT) to decorrelate the final MFCC coefficients.

The Gammatone filterbank inspired by psychoacoustical
and physiological experiments is one of the standard
models of cochlear filtering, which uses ERB-rate scaling to
describe center frequencies and bandwidths of the filters. A
bank of 32 filters is used with center frequencies ranging
from 50 to 4000 Hz or 8000 Hz, depending on the sampling
frequency of speech data. In this work, as in [39], a Gam-
matone filterbank with 32 filters in the range of (50, 8000)
Hz was used for the sampling frequency of 16000 Hz.

The impulse response of the Gammatone filterbank is
given below [6]:

2. (t) = at" " exp(-2nbERBy (f,) t) x cos(2nf,t+ ¢),
(1)

where a is the amplitude, # and b are the parameters
defining the envelope of the Gamma distribution, f; is an
asymptotic frequency, ERBy(f;) is ERB, and ¢ is the ini-
tial phase.

Knowing that the filter output retains the original sam-
pling frequency of the input signal, the fully rectified 32-
channel filter responses are down-sampled to 100 Hz along
the time dimension. This yields a corresponding frame rate
of 10 ms, which is used in many short-timespeech feature
extraction methods. The resulting responses, called cochlea-
gram, lead to a matrix representing a time-frequency (T-F)
decomposition of the input signal [59]. A time frame of the
cochleagram representation is called a Gammatone feature
(GF). The dimension of a GF vector (here 32) is larger than
that of typical feature vectors (e.g., GFCCs) used in a SI sys-
tem. Additionally, because of the overlap among neighbor-
ing filter channels, GFs are largely correlated with each
other. To reduce GF dimensionality and decorrelate its
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components, the DCT operation [60] is applied to produce
GFCCs [6] with the dimension of 12.

To take into account the speaking rate of speakers in
the SI system, the first and second derivatives of MFCC
and GFCC features are computed and used along with the
original feature values in the task of speaker identification.

2.3 Traditional binaural speaker identification system

The structure of the traditional binaural SI system intro-
duced by May et al. [39] is illustrated in Fig. 2. This system
comprises three important processing stages. In the first
stage, the test speech signal is localized using binaural cues,
and azimuths related to active sources are determined. In
the second stage, called speech detection, the natures of ac-
tive sources (i.e., speech or non-speech) are identified. The
result of the first and second processing stages is a binary
mask that is used in the final missing data (MD) SI system.

3 Proposed method

In this paper, a new SI system based on the short-time ex-
tended equalization-cancelation method is proposed. The
EC processing aims to reduce the mismatches imposed by
environmental conditions on the test features. Figure 3
shows the proposed binaural SI system based on the EC
process. First, in the training phase, the UBM and GMMs
are computed. Then, in the testing stage, the received left
and right ear signals are decomposed by the auditory filter-
ing model. For this purpose, the Gammatone filterbank is
used. Then, the EC process operates on the Gammatone-
filtered signals of the left and right ears. The output of the
EC-based model is similar to that of the simulated auditory
nerve response and can be converted to an acoustic feature
used in the pattern matching unit.

Figure 4 depicts the details of the binaural EC-based
model employed in the proposed SI system. The re-
ceived left and right ear signals from the auditory filter-
ing, X7,(¢) and Xg,(¢), are split into time frames of 20 ms
with a 10-ms overlap, yielding X;, (¢) and X, (t), where
i and j represent the channel and frame indices, respect-
ively. Assuming X/, (¢£) and Xg,(¢) as input signals to the
EC unit, the output can be computed as [61]:

(2)

where W(t) is the time window obtained at time frame j as:

a1 10j<t <10j+ K (ms),
Wi(t) = {O, otherwise,

where K =20 represents the length of the window (in
ms) for the sampling frequency of f; =16 kHz, and ¢ is

(3)
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the time index (in ms). 7o(i,j) is the value that maxi-
mizes the cross-correlation functionp; ;(7):

o j) = argmax{p, ()}, |7l <2 (4)

W
with
K
XL[ ,(t)XRh,(t - T)dT
p(7) = o X X oD
EXLL/ X, j
and ao(i, /) is:
Ex,
wli)) =gt (6)

where Ex, and Ex, are the energies of the monaural
ij ij

left and right ear signals.

It is noteworthy that in some applications of the EC algo-
rithm (e.g, [50-55]), the definitions of the parameters p;
A1) and ao(i, j) are such that the noise signal is canceled at
the output of EC. However, similar to the works in [57, 61,
62], the EC model presented here is based on the modified
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definitions of p; (7) and ay(i, /) (see Egs. (5, 6)) to produce
the target-canceled signal at the output (see Eq. (2)).

The energies of the framed left and right monaural
signals (ie., Ex,, and EXRM-) and the output of binaural
EC processing unit (i.e, Ey,,) at each T-F unit (i, j) are
used to select the final output of the EC-based model,
Xkc,,(t), in the decision module:

Xz, (t) EXL"’ <1and EXL['/ > 0.5
t EXR:./ - EY” o
Ex,, Exy, .
Xec,,(t) = Xg,,(2) ) >1and [—2) > 05,
8 EXRL_/‘ Eyuv
Y;(t) otherwise,

Referring to Eq. (7), some points are worth mentioning.
The output of the EC-based model is determined by evalu-
ating two energy ratios; the ratio of the energies of the left
and right monaural signals (i.e., E XL’,Jand E XRi./( and the ratio

of the energy of the monaural signal (i.e., EXL,,, or EXR,-_,-) and

Accuracy of S| System for White Noise

N
Accuracy of S| System for Factory Noise

100 100
80 - 80 -
s E 6ot k
> >
[&] (&)
o o
3 3
8 8 40 1]
< <
20 1
(mD
0 ! ‘ ! ‘ | ‘ | ! Sl System 0 [ [ i ! ! ! ! !

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)

—&— Unprocessed (GFCC)
—&— Unprocessed (MFCC)

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)

20;——-9-——6—6—9/6/@\@/®\;
b

0

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)

—&— May et al.
. —=¥— Proposed .
0 Accuracy of S| System for Speech-shaped Noise 100 Accuracy of S| System for Babble Noise
80 [ 80 [
< <
3\; S 60f
>
3 3
Q Q
o 40
< <

Fig. 6 The accuracy of the Sl systems obtained in anechoic and additive noise conditions with four types of noises at SNR = 0 dB

20

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)




Geravanchizadeh and Ghalamiosgouei EURASIP Journal on Audio, Speech, and Music Processing

the estimated interference (Ey,;). The following example
shows how Eq. (7) works. Suppose the case that the noise
source is located on the right side. Knowing that the target
signal comes from the frontal azimuthal position, the energy
of the right signal is greater than that of the left signal. In
this case, X7, () is considered as a candidate for the output
of the EC-based model. However, we cannot assure that the
candidate signal is an estimate of the target signal, because
X1,,(t) and Xg, () could both represent the noise signal at
the specified T-F unit as well. This is based on the fact that
generally, speech has concentrated energy compared to the
noise in the T-F representation. Therefore, as a second cri-
terion, the ratio of the energies of the left and residual noise
signals (ie., Ex,,, /Ey,;) is calculated. If this signal-to-noise
ratio (SNR) value is larger than 0.5, then the selected signal
(ie, X1, ,(t)) is taken as the output of the model. The same
argument applies to the justification for selecting Xz, (£) as
the output of the EC-based model in the decision module.

If none of the above conditions are fulfilled, Y; (%) is
selected as the final output of the model, which is an
estimate of the noise signal in that T-F unit. Selecting Y;
#(#) in the model has the effect of flooring the output of
the EC-based model to the residual signal, which has
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been proven to enhance the quality of the source separ-
ation system.

Figure 5 represents the cochleagrams of the left mon-
aural, right monaural, and binaural EC-processed signals,
and the EC-based model output. Assuming that the clean
target and the point Babble noise [63] are located, respect-
ively, at the azimuths of 0° and - 60°, the left and right ear
mixture signals are obtained by convolving the clean and
noise signals with their corresponding BRIRs and adding
them at SNR = 0dB. As it is obvious from the figure, the
output of the model is very similar to the cochleagram of
the right ear. This can be justified by the fact that, here,
the right ear, called better ear (BE), has the largest SNR as
compared to the left ear, and the binaural EC-based model
selects the ear signal that is highly correlated to the target.

To obtain the features that serve as input to the SI system,

cubic compression (ie, {/(.)) and DCT operations are ap-
plied to the GFs to obtain the resulting GFCC features.

4 Experiments

The performance of the proposed SI system is assessed in
different environmental conditions. For this purpose,
speech signals are selected from the Grid database [64].
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Fig. 7 The accuracy of the Sl systems obtained in anechoic and additive noise conditions with four types of noises at SNR = 5 dB
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The Grid database consists of 17000 clean utterances
spoken by 34 speakers (18 males, 16 females, 500 utter-
ances per speaker). To ensure that there is no overlap be-
tween the speech material used for training and testing,
the Grid database was randomly split into two sets. The
first set consisting of 8500 utterances (250 sentences per
speaker) was used to train two gender-dependent UBMs.
From the remaining utterances of the second set (250 sen-
tences per speaker), 175 sentences are used to generate
GMMs, and the rest is used for the testing stage.

To build the GMM-UBM model, at the first step, the
gender-dependent UBMs are constructed using the EM
algorithm. Then, the GMM of each speaker is generated by
adapting the parameters of the UBM with a relevance
factor of 16 [9]. Each of the UBMs is modeled by a GMM
with 128 components, and the model of each speaker is ob-
tained by a GMM of 128 components. The GMM-UBMs
are implemented by the MSR toolkit [65]. To prevent the
underestimation of speech energy due to silent parts, an
energy-based voice activity detector (VAD) is employed in
the training phase to take into account only signal segments
with relevant speech activity [38]. Here, the speech-active
segments are defined as those segments which have an en-
ergy level within 40 dB of the global maximum.
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To reduce the dependency of the SI system on the
database, the system is simulated 10 times wherein each
run of the algorithm the test and train utterances are
randomly selected. Then, the simulation results are aver-
aged among all runs of the algorithm.

In the testing phase, the experiments are conducted in
the presence of various additive noises, including White,
Factory, and Babble noises selected from the Noisex-92
database [63] and Speech-Shaped Noise (SSN) taken
from the Oldenburg University webpage [66]. The left
and right ear signals are generated by convolving clean
and noise test signals with binaural room impulse re-
sponses (BRIRs) and mixing them in an additive manner.
The BRIRs are generated by using the Roomsim simula-
tion toolkit [67] with the selection of KEMAR as an arti-
ficial head [68]. The KEMAR is placed at 1.75 m above
the ground in a simulated room of dimensions 6.6 x 8.6
x 3m>. The noisy binaural test signals are generated by
adding the noises to the left and right target signals at
the SNRs of 0, 5, and 10 dB. The SNR of the mixtures is
adjusted as the average value at the two ears. For evalu-
ation purposes, the target signal is positioned at 0°
azimuth. The noise source position is gradually changed
in steps of 10° from 0° to 90° in radial distance of 1.5m
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Fig. 8 The accuracy of the Sl systems obtained in anechoic and additive noise conditions with four types of noises at SNR = 10 dB
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around the listener. The simulated listener is within the
critical distance [69] of the target and noise sources. To
evaluate systematically the impact of reverberation, the
echoic room with Ty, = 0.29s is selected for all room
boundaries within the room simulation software [67].

4.1 Evaluation criterion

To investigate the performance of the SI system, the
recognition accuracy is employed as the performance
criterion. The recognition accuracy is defined as the
ratio of the number of test speakers detected cor-
rectly to the overall number of test utterances.

4.2 Results and discussions

The evaluation results of the proposed SI system are
reported in different environmental conditions. The
simulations are performed in anechoic and reverberant
conditions in the presence of different noise types. For
this purpose, the performance of the SI system is investi-
gated by employing 4 types of noises, consisting of
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White, Factory, SSN, and Babble. The results are ob-
tained for different azimuthal positions of noises.

The proposed binaural SI method (“Proposed”) is
compared with the traditional SI system of May et al.
(“May et al.”) and the system with unprocessed inputs
(“Unprocessed”) using features of MFCC and GFCC.
Here, “Unprocessed” means that there is no binaural
model that simulates the interaction between the left
and right ears. For this purpose, the test feature is ob-
tained by averaging auditory representations of left and
right ear signals and applying subsequently the auditory
compression and DCT operations. For better modeling
of speaker rate in the SI systems, the first and second
derivatives of MFCC and GFCC are included in the
“Proposed” and the “Unprocessed” systems.

The simulation results of different SI systems in
anechoic and reverberant conditions are illustrated
in Figs. 6, 7, 8, 9, 10, and 11. Figures 6, 7, and 8
represent the performance evaluation for the an-
echoic environments at the SNRs of 0, 5, and 10dB
for different noise types. In general, it is seen that
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Fig. 9 The accuracy of the Sl systems obtained in reverberant (Tso = 0.29's) and additive noise conditions with four types of noises at SNR = 0 dB




Geravanchizadeh and Ghalamiosgouei EURASIP Journal on Audio, Speech, and Music Processing

(2020) 2020:20 Page 11 of 15

Accuracy of Sl System for White Noise

Accuracy of S| System for Factory Noise

Accuracy (%)

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)

100 100
80 [ 80 =
£ 60 s
~ &
g g g
3 3
8 40 3
< <
q
(% ° °o—¢ o0
20 1 20
———06 © © © © © © D
0 | I ‘ I ‘ I ‘ I . 0 ‘ ‘ ‘ ‘ l l l l
0 10 20 30 40 50 60 70 80 90 ystem 0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree) B— Unprocessed (GFCC) Noise Azimuth (degree)
—&— Unprocessed (MFCC)
——O— May et al.
Accuracy of Sl System for Speech-shaped Noise %— Proposed Accuracy of S| System for Babble Noise
0 : , : . : : : . 100 ‘ . ; ‘ . . ‘ ‘

Fig. 10 The accuracy of the SI systems obtained in reverberant (T¢o = 0.29 s) and additive noise conditions with four types of noises at SNR = 5 dB

40 | D

Accuracy (%)

0

0 10 20 30 40 50 60 70 80 90
Noise Azimuth (degree)

the SI systems using binaural processing techniques
for the enhancement of the input mixture perform
better than those based on unprocessed methods.
However, as the level of noise decreases, the per-
formance of the proposed SI method degrades vs.
the system of “May et al.” This can be justified by
the fact that in contrast to “May et al.,” the
proposed EC-based SI model depends highly on the
input noise energy to perform the equalization-
cancelation procedure satisfactorily. As the value of
SNR increases, the contribution of noise at the in-
put of the EC processing unit is lowered which re-
sults in decreasing the performance of the proposed
model.

The performance comparisons of different SI ap-
proaches for the noisy (SNR = 0, 5, 10 dB) and reverber-
ant conditions (Tsy = 0.29s) for various types of noises
are depicted in Figs. 9, 10, and 11. Once again, it is ob-
served that the SI systems based on unprocessed input
signals have the lowest performance as compared with
the binaurally processed SI systems (i.e., “Proposed” and

“May et al.”). Also, it is seen that the proposed SI model
outperforms the SI system of “May et al.” in terms of
recognition accuracy. The lower performance of the
“May et al.” SI system in the presence of reverberation
can be explained by the operation of the speech detec-
tion module (refer to Fig. 2). Evidently, the SI method of
“May et al.” depends on determining the active source
characteristics. Accordingly, in reverberant conditions,
the unreliable detected active sources due to the late re-
flections lead to a challenge in the speech detection
module, and consequently, this reduces the identification
performance of the system.

Figure 12 shows the averaged accuracies of the SI sys-
tems over different noise positions and noise types. The
average results also show that the binaural methods
achieve superior performance over the unprocessed SI
systems.

The results in this diagram confirm those obtained in
Figs. 6, 7, 8, 9, 10, and 11. For the anechoic noisy condi-
tions, as the SNR level increases, the performance of
“Proposed” gradually decreases in comparison with “May
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et al.” For the noisy and reverberant conditions, the pro-
posed model always attains the highest identification
accuracy.

5 Conclusions
It is known that the performance of the far-field speaker
identification is reduced in real environmental condi-
tions due to the mismatch between training and testing
features. In this paper, a new binaural speaker identifica-
tion system is proposed which employs a short-time ex-
tended EC model to tackle the mismatch problem by
removing the detrimental effects of noise and reverber-
ation from the input mixture signal. The proposed
speaker identification system uses the GMM-UBM
structure as the speaker modeling and a binaural EC-
based model as a speech separation system that pro-
cesses auditory representations of both ears to remove
noise and reverberation from the input signal.

The binaural EC-based model incorporates an EC pro-
cessing unit and a decision module. First, in the EC pro-
cessing unit, an estimate of the residual signal (ie.,

interference) is computed by canceling the target signal
from the mixture. Then, in the decision module, an esti-
mate of the target signal from the input mixture signal is
determined using the energies of the monaural left ear,
monaural right ear, and the estimated residual signals.
The advantage of the EC-based method is its simplicity
which makes it easy to employ the spatial information
for identifying the target speaker in complex auditory
scenes.

To assess the efficiency of the proposed binaural SI
system, the performance of the model is compared with
those of the unprocessed and a baseline SI system from
the literature. The experiments are conducted in an-
echoic and reverberant conditions using different types
of noises. The simulation results show that the proposed
binaural EC-based SI system outperforms its unpro-
cessed counterpart in both experimental conditions.
Moreover, in reverberant and low SNR scenarios, the
proposed system has superior performance in compari-
son with the mask-based binaural SI system of “May
et al.” used as the baseline.
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It is known that human listeners identify the target
speaker robustly in different environmental conditions.
In this paper, an auditory model was proposed to re-
move the undesired environmental effects from the in-
put mixture signal. In dealing with the mismatched
problem, it remains to explore the benefits of other bin-
aural auditory models in the proposed SI system for
more realistic situations such as cocktail party environ-
ments. Moreover, simulating the speaker identification
performance of the human is a way to introduce new
auditory-based speaker modeling that improves the
overall performance of the traditional SI systems in real
environmental conditions. Therefore, as future work, the
authors plan to design modern auditory-based speaker
identification systems and evaluate their performance by

conducting listening tests. As a common evaluation pro-
cedure of CASA systems, such listening tests are also
important in exploring the limitations of the new SI
models, and thereby, trying to achieve the human audi-
tory SI performance.
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