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Abstract

We propose an algorithm for the blind separation of single-channel audio signals. It is based on a parametric model
that describes the spectral properties of the sounds of musical instruments independently of pitch. We develop a
novel sparse pursuit algorithm that can match the discrete frequency spectra from the recorded signal with the
continuous spectra delivered by the model. We first use this algorithm to convert an STFT spectrogram from the
recording into a novel form of log-frequency spectrogram whose resolution exceeds that of the mel spectrogram. We
then make use of the pitch-invariant properties of that representation in order to identify the sounds of the
instruments via the same sparse pursuit method. As the model parameters which characterize the musical instruments
are not known beforehand, we train a dictionary that contains them, using a modified version of Adam. Applying the
algorithm on various audio samples, we find that it is capable of producing high-quality separation results when the
model assumptions are satisfied and the instruments are clearly distinguishable, but combinations of instruments with
similar spectral characteristics pose a conceptual difficulty. While a key feature of the model is that it explicitly models
inharmonicity, its presence can also still impede performance of the sparse pursuit algorithm. In general, due to its
pitch-invariance, our method is especially suitable for dealing with spectra from acoustic instruments, requiring only a
minimal number of hyperparameters to be preset. Additionally, we demonstrate that the dictionary that is constructed
for one recording can be applied to a different recording with similar instruments without additional training.

Keywords: Blind source separation, Unsupervised learning, Dictionary learning, Pitch-invariance, Pattern matching,
Sparsity, Stochastic optimization, Adam, Orthogonal matching pursuit

1 Introduction
1.1 Problem definition and approach
Source separation concerns the recovery of signals
X1, . . . ,Xc from a mixture X = X1 + . . . + Xc. We speak
of blind separation when no specific prior information to
characterize the sources of the signals is provided, espe-
cially not in the form of labeled training data. However, we
do make structural assumptions about the signals; in our
case, we assume that they follow the typical characterics
of tones from wind and string instruments.
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In order to exploit this structure, it is helpful to regard a
time-frequency representation (spectrogram), which sub-
divides the problem into smaller time frames and high-
lights the frequency characteristics of the signal. One
simple spectrogram is obtained via the modulus of the
short-time Fourier transform (STFT) (cf. [1]). However, in
the STFT spectrogram, different pitch of the instrument
tones manifests in linear scaling of the distances between
the peaks on the frequency axis, which makes it computa-
tionally hard to identify the tones in the spectrum.
Thus, we apply a novel sparse pursuit algorithm that

represents the time frames of the STFT spectrogram via
a limited number of peaks, under the assumption that
they originate from sinusoidal signals in the recording.
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We then place these identified peaks in a new spectro-
gram that has a logarithmic frequency axis and is therefore
pitch-invariant (cf. Section 3). On this, we apply a dic-
tionary learning algorithm, where the dictionary contains
the learned relative amplitudes of the harmonics for each
instrument. In an alternating loop, we identify the sounds
of the instruments by now applying the sparse pursuit
algorithm on time frames of the log-frequency spectro-
gram using the current value of the dictionary and then
update the dictionary based on that identification. Both
the problem of finding the peaks in the STFT spectro-
gram and the problem of finding the patterns representing
the instrument sounds are generally underdetermined (cf.
Section 1.3), so sparsity plays a crucial role in their regu-
larization.
After training has finished, we apply the sparse pur-

suit algorithm on the entire log-frequency spectrogram
in order to obtain the separated spectrograms, and
after masking with the original mixture spectrogram, we
employ the algorithm by Griffin and Lim [2] in order to
convert them back into time-domain signals, using the
phase of the original spectrogram as the initial value. The
overall procedure is displayed in Fig. 1.
The novelty of our approach lies in the combination of

pitch-invariant representations with a sparse pursuit algo-
rithm during training: Provided that the characteristics of
the sounds of the instruments are sufficiently stable, the
relative amplitudes of the harmonics saved in the dictio-
nary represent the sounds of the instruments at any arbi-
trary pitch, without making assumptions about their tun-
ing or range. At the same time, the use of a log-frequency
axis enables us to match the spectrogram with the mod-
eled patterns of these sounds in an efficient manner, and
due to a non-linear optimization step, the parameters are
locally optimal on a continuous scale. As the outcome of
the training is sometimes sensitive with respect to the ini-
tial dictionary, we typically use themethod in an ensemble
setting. Apart from the sparsity condition, there is no

need to hand-tune any hyperparameters for a specific
recording.
The sparse pursuit algorithm that we propose is

designed to match a generic sampled spectrum with
shifted non-negative continuous patterns. While it was
developed with audio frequency spectra in mind, it may
be used in other signal processing applications as well.

1.2 Related work
During the past years, audio source separation has
become a very wide field, now incorporating a number
of fundamentally different applications and approaches. A
thorough overview can be found in books on the subject
that have recently appeared [3–5].
The first instance of learning the harmonic structure

of musical instruments via non-negative matrix factoriza-
tion (NMF) [6] on spectrograms was by Smaragdis and
Brown [7] for the purpose of polyphonic music transcrip-
tion. This approach was then applied to audio source sep-
aration byWang and Plumbley [8]. The algorithm learns a
dictionary where each atom represents one instrument at
a specific pitch. By estimating the tones of the instruments
at specific points in time, it is thereby possible to recon-
struct the contributions of the individual instruments. An
overview of single-channel NMF-based methods can be
found in [9].
In many cases, a single musical instrument can gener-

ate different sounds which are perceptually similar and
only vary in the pitch of the tones. Using the constant-
Q transform (CQT) [10] as a log-frequency spectrogram,
Fitzgerald et al. [11] use non-negative tensor factorization
to generate a dictionary containing the frequency spectra
of different instruments, which can be shifted on a fixed
grid of semitones in order to apply them to different notes.
This approach was later refined by Jaiswal et al. [12–14].
The advantage of this representation is that it can be

applied to a large variety of musical instruments, as long
as pitch-invariance is fulfilled. The drawback is that it

Fig. 1 Data flow diagram for the proposed separation method. The sparse pursuit algorithm is used both for converting the STFT spectrogram into a
log-frequency spectrogram and for identifying the instrument sounds in the log-frequency spectrogram
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requires the instruments to be tuned precisely to a known
equal-temperament scale, which makes it impractical for
real-world recordings with acoustic instruments.
Alternatively, the source separation problem on spec-

trograms can be formulated in probabilistic terms, which
is done in the method of probabilistic latent compo-
nent analysis (PLCA) [15, 16]. Here, the entire spectro-
gram is regarded as a probability distribution, which is
then decomposed via expectationmaximization (EM) into
marginal distributions that depend on latent variables. In
its original form, both the model and the numerics are
identical to NMF, but it can be argued that the proba-
bilistic notation is more powerful and especially beneficial
when incorporating priors.
The latent variables can be chosen so that separation via

PLCA is also pitch-invariant [17, 18], and it is also possible
to model the harmonics explicitly [19–21]. Those algo-
rithms operate in the discrete domain, so they effectively
perform non-negative tensor factorization. In this formu-
lation, the approach was pioneered by [22] for application
in multiple pitch estimation (MPE).
Duan et al. [23] also follow a probabilistic approach, but

with a more explicit model of the spectral structure of the
harmonics of the instruments. They first use a peak detec-
tion algorithm in order to find the potential frequencies
for the harmonics. Using a greedy maximum-likelihood
model, the fundamental frequencies are estimated, and
the harmonic patterns are clustered in order to assign
them to certain instruments. This approach is interest-
ing because it allows the representation of tones without a
predetermined tuning.
In our algorithm, we apply a more advanced tone model

that during optimization incorporates inharmonicity (cf.
[24]) and also deviations in the width of the peaks, which
may occur in case of volume changes. While we also
preselect peaks, we only do so in order to generate a pitch-
invariant log-frequency spectrogram that is suitable for
wideband signals.
For narrowband signals, the CQT could be used instead.

Alternatively, one could employ the mel spectrogram (cf.
[3]) or the method proposed in [25], which combines
favorable properties from both time-frequency represen-
tations. However, the resolution of any spectrogram that
was computed via classical means is ultimately limited by
the Heisenberg uncertainty principle (cf. [1, 26]).
The pitch-invariance property of the representation is

important since it allows us to locate the sounds of the
instruments via cross-correlation, making the determina-
tion of the fundamental frequencies much easier. How-
ever, rather than explaining the peaks in the spectrogram
via a parametric model of the harmonic structure of the
instruments via clustering, we use stochastic optimization
to train a dictionary containing the relative amplitudes of
the harmonics in order to reproduce their sounds.

In our model, we aim to be parsimonious in the number
of parameters and, following the spirit of blind sepa-
ration, also in the assumptions on the data. Therefore,
we regard each time frame of the spectrogram inde-
pendently. However, models that take the time axis into
account do exist. Smaragdis [27] introduced NMFD (non-
negative matrix factor deconvolution), which is NMF
with convolution in time (again, a form of tensor factor-
ization), and Schmidt and Mørup [28] combined time-
and pitch-invariant approaches to NMF2D (non-negative
matrix factor two-dimensional deconvolution). Virtanen
[29] added a temporal sparsity criterion, and later, in [30],
a temporal continuity objective. Blumensath and Davies
[31] operate completely in the time domain, without any
time-frequency representation.
The musical score that matches the piece in the record-

ing is also a valuable piece of information, as it resolves
ambiguities about the fundamental frequencies. Hen-
nequin et al. [32] first proposed a pitch-invariant model
that can accommodate local variation from predeter-
mined tuning via gradient descent, but the authors faced
the problem that this approach did not work on a global
scale. Therefore, in [33], they use the score to give the
algorithm hints about the approximate frequencies and
thereby reduce the optimization problem to a local one.
One of the main challenges in score-informed separation
is the alignment of the score with the audio recording. For
this, a combined approach has recently been proposed by
Munoz-Montoro et al. [34].
Due to the growing interest in deep learning among the

machine learning community, it is also applied to audio
source separation in a supervised manner. However, this
approach requires labeled training data. Huang et al. [35]
proposed a deep recurrent neural network architecture
and achieved respectable results. In the SiSEC (Signal Sep-
aration Evaluation Campaign) 2018 [36], different state-
of-the-art algorithms were compared, and the reference
implementation Open-Unmix [37] was determined as the
overall winner. The network operates on magnitude spec-
trograms and combines different kinds of layers, including
long short-term-memory (LSTM) units. Its performance
was recently surpassed by Défossez et al. [38], whose net-
work is based on LSTMs and convolutions, but operates
directly in the time (i.e., waveform) domain.
Due to their good performance, supervised deep learn-

ing methods currently dominate the focus of many
researchers. Theymake only verymild explicit prior struc-
tural assumptions on the data and instead rely on training
to sort out the separation process. Thus, whenever appro-
priate training data is available, they make a very powerful
and versatile tool.
Naturally, using more prior information in a machine

learning problem typically improves the quality of the
results. Conversely, purely blind approaches can only
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work under very controlled conditions, and they have
therefore received relatively little attention in recent years.
We aim to show that progress on this problem is neverthe-
less still possible, and that even blind separation can profit
from the modern machine learning techniques that have
been developed.
Our sparse pursuit algorithm is a greedy approximation

to �0 sparsity, based on concepts from orthogonal match-
ing pursuit (OMP) [39] and subspace pursuit [40] while
making use of the pitch-invariance of the time-frequency
representation. However, a similar problem has been for-
mulated in an �1 setting as convolutional sparse coding
for image processing [41]. While it is relatively fast, the
drawback of this method is that it is still limited to dis-
crete convolutions. In continuous basis pursuit [42], this
problem is approached by either Taylor or polar inter-
polation. Beurling LASSO [43, 44] first solves the sparse
representation problem in the dual space, but finding
the corresponding primal solution generally remains a
challenge. Whereas the general advantage of �1-based for-
mulations lies in their convexity, greedy methods allow
for a more flexible optimization step while keeping the
dimensionality low.

1.3 The musical role of sparsity
The representation of the time frames of a spectrogram
of a music recording with a pitch-invariant dictionary is
in general not unique. If we consider wind and string
instruments, their sound is dominated by a linear com-
bination of sinusoids, which show up as horizontal lines
in the spectrogram. Thus, there exists a trivial solution
that assumes a single sinusoidal instrument which plays a
large number of simultaneous tones.While this solution is
valid, it is undesirable, as no separation is performed at all.
A similarly trivial solution is to construct different

instruments for each time frame of the spectrogram. This,
however, leaves us with the problem of matching the con-
structed instruments with the actual instruments. This
process would need to be done either manually or via an
appropriate clustering algorithm, such as the one used in
[23]. Also, instruments which play harmonically related
notes may be mistaken for a single instrument, and this
case would need special consideration.
In order to attain meaningful solutions, we thus decide

to limit both the total number of instruments and the
number of tones that are assumed to be played at the same
time. The former is controlled by the layout of the dictio-
nary, while the latter is a sparsity condition that requires
the use of appropriate algorithms.
The constraints imposed by these numbers are sup-

posed to encourage solutions that will appear meaningful
to a human listener. Good results can be achieved if both
numbers are known and sufficiently low, but blind separa-
tion meets its conceptual limits in case of very polyphonic

works such as orchestral symphonies. One particularly
difficult instrument would be the pipe organ, where the
combination of organs stops blurs the borders of what
should be considered a single instrument (cf. [24, 45]).

1.4 Structure of this paper
In Section 2, we propose a novel general-purpose sparse
pursuit algorithm that matches a sampled spectrum
with non-negative continuous patterns. The algorithm
is a modified version of orthogonal matching pursuit
(OMP) [39] with a non-linear optimization step for
refinement.
In Section 3, we use this algorithm in order to con-

vert an STFT magnitude spectrogram into a wideband
pitch-invariant log-frequency spectrogram. In Section 4,
we explain how we use the same algorithm (with slightly
different parameter choices) and a dictionary represen-
tation of the harmonics in order to identify patterns of
peaks related to the sounds of musical instruments in time
frames of the spectrogram. Due to the non-linear opti-
mization, we can identify the fundamental frequency, the
width of the Gaussian, and the inharmonicity individually
for each tone on a continuous scale.
In Section 5, we expound the learning algorithm: For the

dictionary update, we employ a modified version of Adam
[46], which is a popular stochastic gradient descent algo-
rithm that was initially developed for the training of deep
neural networks. Our modifications adapt this algorithm
to dictionary learning, preserving the relative scaling of
certain components of the gradient and periodically reset-
ting parts of the dictionary as needed. In Section 6, we
explain how we use the trained dictionary in order to per-
form the separation and obtain the audio signals for the
separated instruments.
In Section 7, we apply our algorithm onmixtures that we

recorded using acoustic instruments as well as on samples
from the literature. We evaluate the performance of the
overall algorithm via standard measures and discuss the
results. We also provide spectrograms of the separation
result.
A pseudo-code implementation of the algorithm as well

as an additional elaboration about the choice of the time-
frequency representation can be found in the appendix.

2 Sparse pursuit algorithm for shifted continuous
patterns

For both the transformation of the spectrogram and the
identification of instruments inside the spectrogram, we
need an algorithm to approximate a non-negative discrete
mixture spectrum Y [ s]≥ 0, s ∈ Z, via shifted versions of
continuous patterns yη,θ (s) ≥ 0, s ∈ R. The exact meaning
of the variables depends on the specific application, but in
general, η ∈ {0, . . . ,Npat − 1} is a discrete index, and θ ∈
R
Npar is a set of continuous, real-valued parameters. The
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fixed values Npat,Npar ∈ N specify the number of patterns
and the number of parameters in θ .
Mathematically speaking, we aim to identify amplitudes

aj > 0, shifts μj, indices ηj, and parameter sets θj such
that:

Y [ s]≈
∑

j
ajyηj ,θj(s − μj), (1)

for s ∈ Z.
For a preliminary intuition, yηj ,θj can be understood as

the spectrum of the instrument with the number ηj, and θj
can contain additional parameters that influence the exact
shape of the pattern, like the width of the peaks and the
inharmonicity.
In order to formalize the approximation, we define a loss

function to be minimized. The first natural choice for such
a loss function is the �2 distance, but it is not ideal for use
in magnitude frequency spectra, as it focuses very much
on the high-volume parts of the spectrum, and the same
applies to other �p (quasi-)distances for p > 0.
This problem is often approached by use of the β-

divergence (cf. [9, 47]), which puts a high penalty on
“unexplained” peaks in the spectrum. However, it is asym-
metric, and while it is natural in NMF-based methods, it
is difficult to integrate in the algorithm that we propose.
Instead, we remain with �2, but we lift low-volume parts

of the spectrum via a concave power function:

L
(
Y , (aj), (μj), (ηj), (θj)

)

=
∑

s

⎛

⎝(Y [ s]+δ)q −
⎛

⎝δ +
∑

j
ajyηj ,θj(s − μj)

⎞

⎠
q⎞

⎠
2

,

(2)

with q ∈ (0, 1], where δ > 0 is a small number merely used
to ensure differentiability.
Furthermore, we impose the sparsity condition that

every value of ηj may only occur at most Nspr ∈ N times
in the linear combination.
Minimizing L is a highly non-convex and partly combi-

natorial problem, so we cannot hope to reach the perfect
solution. Instead, we follow a greedy approach, using ideas
from orthogonal matching pursuit (OMP) [39] and sub-
space pursuit [40].
We start with an empty index set J and then run the

following steps in a loop:

1. Compute the (discrete) cross-correlation between
the residual

r[ s]= Y [ s]q −
⎛

⎝
∑

j
ajyηj ,θj(s − μj)

⎞

⎠
q

(3)

(i.e., the lifted difference between the raw spectrum
and the current reconstruction) and the sampled

patterns. Assume a default parameter set θnil, and
with

ρ[μ, η]=
∑

i

r[ i]
(
yη,θnil [ i − μ]

)q
∥∥yη,θnil [ ·]q

∥∥
2

, (4)

preselect the Npre ∈ N combinations
(μ, η) ∈ Z × {0, . . . ,Npat − 1} with the greatest
ρ[μ, η], equip them with indices, and add those to
the index set J . For each preselected pair (μj, ηj),
initialize aj = (ρ[μj, ηj] /‖yηj ,θnil [ ·]q‖2)1/q. Skip the
combinations for which aj is non-positive. If none
are left, terminate.

2. Do non-linear optimization on aj, μj, and θj, j ∈ J ,
in order to minimize L, where aj ≥ 0 and θj ∈ �θ

with �θ ⊆ R
Npar .

3. For each η = 0, . . . ,Npat − 1, find the indices j ∈ J
where ηj = η, and remove all but those with the Nspr
highest amplitudes aj such that, in the end, each
pattern η is represented at most Nspr times in the
index set J .
Re-run the non-linear optimization procedure on the
now smaller index set J .

4. If the loss L has decreased by less than the factor of
1 − λ compared to the previous iteration, with
λ ∈ (0, 1], restore all the values from the previous
iteration and return them as the result.
Otherwise, if the count of iterations has reached
Nitr ∈ N, return the current parameters. If this is not
the case, do another iteration.

The hyperparametersNpat andNspr determine the num-
ber of given patterns and the maximum number of times
that any pattern can be selected for the representation of a
spectrum. Both are assumed to be known from the appli-
cation. For the q exponent, we usually pick q = 1/2, as this
is the lowest one to keep L convex in aj, which is benefi-
cial to the optimization procedure. In some cases, better
results can be achieved by choosing the value of q even
lower, but this also increases the chance of divergence.
Further, the hyperparameters λ and Nitr are safeguards

to limit the runtime of the algorithm, such that the loop
is not run indefinitely with marginal improvement in
the non-linear optimization step. They also mitigate the
problem of overfitting. The value of λ should be cho-
sen slightly below 1; in practice, we find that λ = 0.9
yields good results. We limit the number of iterations to
Nitr = 2NsprNpat, which is twice the overall sparsity level.
The loop typically terminates due to insufficient decrease
in L, not by exceeding Nitr.
The value for θnil should be determined so that the

point-wise difference yηj ,θj − yηj ,θnil is as close to 0 as pos-
sible over a reasonable range of θj. This is because the
cross-correlation in (4) is always computed using yηj ,θnil
while the value of the loss function (2) depends on yηj ,θj .
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Thus, if the difference is too large, a suboptimal ηj may
be selected. This especially becomes a problem when
inharmonicity is considered.
As continuous functions are highly correlated with

slightly shifted versions of themselves, we typically choose
Npre = 1 in order to avoid the preselection of the same
pattern multiple times for one feature in the spectrum.
The choice of the non-linear optimization algorithm is

not critical, as long as it supports box bounds.We decided
to employ the L-BFGS-B algorithm [48–50], which is fast
even for high-dimensional problems.
Figure 2 provides an illustrative example of the sparse

pursuit algorithm. The input is displayed in Fig. 2a: It
consists of a discrete spectrum Y and two continuous
patterns y0,θ , y1,θ . For simplicity, we assume that these
patterns are perfectly constant, so they do not depend
on any additional parameters (therefore, θ ∈ R

0), and
we set the exponent to q = 1 (cf. (2),(3),(4)). The algo-
rithm selects η0 = 0 and η1 = 1 one after another
and finds appropriate amplitudes a0, a1 > 0 and shifts
μ0,μ1 ∈ R such that the superposition of these patterns
matches the discrete spectrum Y within numerical pre-
cision (L(Y , a0, a1,μ0,μ1, η0, η1) = 0), as is displayed in
Fig. 2b.
The patterns used for this example are purely synthetic,

but similar patterns will in appear both in the computation
of the pitch-invariant spectrogram and in the separation
of the instrument sounds, and they could also originate
from other physical phenomena.

3 Computation of the pitch-invariant
spectrogram

A spectrogram is a function defined on the time-
frequency plane that is supposed to indicate to what
extent a certain frequency is present in the recording at a
given point in time.
The “canonical” time-frequency representation is the

spectrogram obtained from the modulus of the STFT (cf.
[1]), which is defined via:

VwX(t, f ) =
∫ ∞

−∞
X(τ )w(τ − t) e−i2π f τ dτ . (5)

One particularly popular window with very favorable
properties is the Gaussian:

w(t) = 1
√
2πζ 2

exp
(−t2/(2ζ 2)

)
, ζ > 0. (6)

For a sinusoidal signal X(t) = a exp(i2πνt) with ampli-
tude a ≥ 0, this results in a horizontal line in the
spectrogram:

VwX(t, f ) = aFw(f − ν) e−i2π(f−ν)t , (7)

and

Fw(f − ν) = exp(−(f − ν)2/(2σ 2)) (8)

with standard deviation σ = 1/(2πζ), where F is the
unitary Fourier transform. In practice, we use an FFT-
computed sampled version Z[ f , t]= |VwX(t/T , f /F)|,
where T , F > 0 are time and frequency units. While X
has a sampling frequency of fs = 48 kHz, we want the
time resolution of Z to be lower by a factor of 256; thus,
1/T = 256/fs = 5.3ms. Further, we set ζ = 1024/fs and
cut w at ±6ζ , yielding 1/F = fs/(12 · 1024) = 3.90625 Hz.
Note that contrary to the definition of the spectrogram

in [1], we do not square the magnitude of the STFT, as we
require positive homogeneity: If the signal X is multiplied
by a positive factor, then we need Z[ f , t] to be multiplied
by the same factor.
The problem is that the STFT spectrogram is not pitch-

invariant: We would like a representation where varying
the pitch of the tone of an instrument shifts the pattern,
but, for instance, changing the pitch of a tone by an octave
scales it by a factor of 2 on a linear frequency axis, which
is a different distance depending on the original pitch of
the tone.1
In order to achieve pitch-invariance, one needs a rep-

resentation with a logarithmic frequency axis. However,
a naive transform of the modulus of the STFT would not
only influence the position of the horizontal lines, but also
their width. In order to overcome this problem, there exist
two classical approaches:

• The mel spectrogram (cf. [3]) performs a logarithmic
transform on the frequency axis of the STFT
spectrogram and then applies smoothing along that
axis in order to keep the widths consistent. The
frequency range that can be represented by this
approach is limited by the Heisenberg uncertainty
principle, which states that one cannot have
arbitrarily good time and frequency resolution at the
same time.

• The constant-Q transform [10] is a discrete wavelet
transform and can thus be understood as an STFT
with differently dilated windows for each frequency.
While it keeps the width of the horizontal lines
constant on a logarithmic frequency axis, the time
resolution will vary for different frequencies. This is
problematic, as it results in simultaneously starting
sinusoids first appearing in different time frames of
the spectrogram.

As was shown by [51], the constant-Q transform can
be turned into a mel spectrogram by applying additional
smoothing along the time axis, but it is not possible to
overcome the limitations of the Heisenberg uncertainty
principle by classical means.

1When we speak of pitch, we refer to the ability of one musical instrument to
generate tones whose harmonics have the same relative amplitudes but
different locations on the frequency axis, whether that be linear of logarithmic.
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Fig. 2 Example of the pursuit algorithm applied on a spectrum which is a sampled superposition of two shifted patterns. The algorithm finds
appropriate shifts and amplitudes such that the linear combination of the shifted patterns reconstructs the spectrum

For narrowband signals, this is not a problem; the above
methods can and have been used in order to provide a
time-frequency representation for audio source separa-
tion. However, as we experimentally show in the appendix,
the time-frequency resolution of the mel spectrogram is
too low for the data that we consider, leading to signif-
icantly inferior quality of the separation. Instead, as we
already have the algorithm from Section 2 at hand, we can
use it as an another way to transform the linear-frequency
STFT spectrogram into a pitch-invariant log-frequency
spectrogram. Since this method gives us sharp frequency
values, we are no longer constrained by the Heisenberg
uncertainty principle. On wideband signals, this “super-
resolution” gives us an advantage in the subsequent sepa-
ration procedure.
We set Y = Z[ ·, t] and assume a single Gaussian pattern

y0,θ (s) = exp
(−s2/(2F2σ 2)

)
, θ = (σ ), (9)

with Npat = 1 and θnil = (1/(2πζ)).
Since the number of Gaussian peaks in a spectrum can

be high, we set Nspr = 1000 to make sure they can all be
represented. This makes the algorithm rather slow, so we
choose q = 1 in order to bring L closer to a quadratic
objective; as we aim to represent the spectrum with very
low overall error, there is no need to lift certain features of
the spectrum.
To reduce the number of iterations, we also set Npre =

1000. However, this comes with the aforementioned prob-
lem that the algorithm would select a lot of neighboring
shifts. Thus, instead of computing the cross-correlation,

we simply select the 1000 largest local maxima of the
residual that satisfy r[ i]≥ r[ i + k] for |k| ≤ 3 and assume
their heights as initial values for the amplitudes.
To allow for high-detail representation, we set λ = 1.

The maximum number of iterations is Nitr = 20, but the
algorithm often terminates before that.
After having identified the Gaussian peaks in the sam-

pled STFT magnitude spectrogram Z[ f , t], we resynthe-
size them in another magnitude spectrogram U[α, t],
applying a logarithmic frequency transform α(f ) =
α0 log2(f /f0) to the mean frequencies μj, j ∈ J . With
f0 = 20 Hz/fs ·12·1024 = 5.12 and α0 = 1024/10 = 102.4,
we can, assuming a sampling frequency of fs = 48 kHz
and α = {0, . . . , 1023}, represent 10 octaves from 20 Hz to
20.48 kHz.
The algorithm can also be used withoutmodification for

compact disc (CD) recordings with a sampling frequency
of fs = 44.1 kHz. In this case, the represented audio fre-
quency range consists of the 10 octaves from 18.375 Hz to
18.816 kHz.
For Fig. 3, we performed different transforms on an

excerpt of a commercial recording of a piece for violin
and piano. The mel spectrogram in Fig. 3a had to be
cut off at 530 Hz in order to maintain a constant time-
log-frequency resolution. The constant-Q transform in
Fig. 3b can represent lower frequencies, but its time-log-
frequency resolution varies with frequency: Clearly, the
tones with lower frequencies have a wider time spread
in the representation than those with higher frequencies,
giving an inconsistent image in the individual time frames.
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Fig. 3 Log-frequency spectrograms of the beginning of the 1st mvt.
of the sonata no. 1 for violin and piano by Johannes Brahms (op. 100).
The grayscale axis is logarithmic and normalized to a dynamic range
of 100 dB for each plot. Performance by Itzhak Perlman and Vladimir
Ashkenazy. Remastered CD recording by EMI Classics, 1999

Our proposed sparsity-based transform in Fig. 3c does
not have this problem: It aligns the tones properly along
the time axis like themel spectrogram, but it can represent
much lower frequencies.
As our proposed representation is specifically designed

for sinusoids, it largely fails to represent other sounds; in
this case, however, this is even beneficial, as it removes
portions of the spectrogram that do not correspond to
the tones that we aim to represent (creating the white
regions in Fig. 3c). From this perspective, we can say that
it denoises the spectrogram.2
However, it should be kept in mind that the uncertainty

principle cannot be “tricked” arbitrarily; if two sinusoids
have very low and very similar frequencies, their repre-
sentations in the STFT spectrogram will overlap greatly,
and our algorithm may fail to tell them apart. On the
other hand, if a peak is slightly perturbed, it may also
occur that the algorithm will identify one single sinusoid
as two.
Some parts of the noise do get mistaken for sinusoids

and are thus carried over to the log-frequency spectro-
gram. In the low frequencies, this creates the illusion of
sparsity in the log-frequency spectrogram, causing hori-
zontal lines that do not belong to the music to appear in
Fig. 3c. Their vertical positions correspond to the trans-
formed frequencies of the pixels in the linear-frequency
spectrogram. However, we do not consider these artifacts
as a problem from the algorithm, as the noise was already
present in the STFT spectrogram. Our algorithm merely
creates the white space between the lines.

4 Model representation of the spectrogram
In the previous section, we have described how to obtain a
discrete log-frequency spectrogramU[α, t], α, t ∈ Z from
an audio signal that contains the superposed sound of the
musical instruments. Now, the goal is to representU[α, t]
via a parametric model of the sounds of the individual
instruments, while the parameter values that characterize
the instruments are not known beforehand.
A simple model for the tone production of many musi-

cal instruments (particularly string and wind instruments)
is the wave equation, which has sinusoidal solutions (the
harmonics) at frequencies fh = hf ◦

1, h = 1, . . . ,Nhar,
where f ◦

1 > 0 is the fundamental frequency and Nhar ∈ N

is the number of harmonics to be considered. However,
many string instruments (especially the piano in its high
notes) have non-negligible stiffness in their strings, lead-
ing to a fourth-order equation which has solutions fh =
(1 + bh2)1/2hf ◦

1, h = 1, . . . ,Nhar, with the inharmonicity
parameter b ≥ 0 (cf. [24]).

2To our separation algorithm, anything non-sinusoidal is noise. This does not
imply, however, that these parts of the signal are undesirable for a human
listener.
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Neglecting any negative frequencies, we model our
time-domain signal for the jth tone as a linear combina-
tion of complex exponentials:

xj(t) =
Nhar∑

h=1
aj,h · ei2π(fj,ht+ϕj,h), (10)

with amplitudes aj,h ≥ 0 and phase values ϕj,h ∈[ 0, 2π).
This could locally be interpreted as an extension of the
McAulay-Quatieri model [52].
We assume that the images of these sinusoids superpose

linearly in the spectrograms. In reality, this is not the case
in the presence of non-constructive interference (beats),
but if we accept the error introduced by this common sim-
plification, we can set ϕj,h = 0, apply (7) and (8), and
approximate Z[ f , t] via:

z[ f , t] :=
∑

j,h
aj,h,t · exp

(
−

(
f − fj,h,t

)2

2F2σ 2
j,t

)
, (11)

where aj,h,t is the amplitude of the hth harmonic of the jth
tone in the tth time frame, and fj,h,t is the respective fre-
quency. For the log-frequency spectrogram U[α, t], this
transforms to the following approximation:

u[α, t] :=
∑

j,h
aj,h,t · exp

(
−

(
α − αj,h,t

)2

2F2σ 2
j,t

)
, (12)

with αj,h,t = α(fj,h,t) = α((1 + bj,th2)1/2h) + α(f ◦
j,1,t).

We further make the simplifying assumption that the
sound of a musical instrument is constant over the dura-
tion of a tone and that the relation of the amplitudes of the
harmonics is constant with respect to pitch and volume.
We thus save the relative amplitudes of the instruments in
a dictionary, which is a matrix D ∈[ 0, 1]Nhar×Npat . Intro-
ducing an overall amplitude aj,t for each tone, we can
express aj,h,t = D[ h, ηj,t] aj,t , where ηj,t is the instru-
ment by which the tone is played. For practical acoustic
instruments, this assumption is never fully satisfied, so
the deviation between the modeled amplitudes and the
true amplitudes introduces a certain error. However, we
will later apply a spectral masking step (Section 6.1) that
restores the amplitudes of each harmonic directly from
the recording in order to mitigate this error in the final
output.
Our pursuit algorithm can now be applied to (12) by

setting the patterns as:

yηj,t ,θj,t (α) =
∑

h
D[ h, ηj,t] · exp

(
−

(
α − α((1 + bj,th2)1/2h)

)2

2F2σ 2
j,t

)
,

(13)

with θj,t = (σj,t , bj,t) and μj,t = α(f ◦
j,1,t), according to the

notation from (1) with time dependency added. The initial
value is θnil = (1/(2πζ), 0).

As the patterns now depend on the dictionary, this
dependency is carried over to the loss function (2), which
we thus denote as LD.

5 Dictionary learning
5.1 Scheme
In order to train the dictionary, we pursue a stochastic
alternating-optimization approach. First the dictionary is
initialized; for each η = 0, . . . ,Npat − 1, we generate a
uniformly distributed random vector d ∈[ 0, 1)Nhar and an
exponent e that is Pareto-distributed with a scale param-
eter of 1/2 (to make sure that e ≥ 1, guaranteeing a
minimum decay rate), and we set D[ h, η]= d[ h] /he.
Given an initial dictionary, a random time frame U[ ·, t]

of the log-frequency spectrogram of the recording is
chosen, and the sparse pursuit algorithm is applied on
it. Afterwards, the gradient ∇DLD of the dictionary-
dependent loss function is computed with the parameters
from the sparse pursuit algorithm, and this is used to
update the dictionary in order to reduce the loss. The pro-
cess is repeated Ntrn ∈ N times, which is the number of
training iterations as specified by the user.
We set the number of patterns to be generated from the

dictionary to twice the expected number of instruments in
the recording (Npat = 2Nins, Nins ∈ N), allowing for some
redundancy during the training.

5.2 Dictionary update
Classically, dictionary learning is performed via tech-
niques like NMF [6, 53], K-SVD [54], or tensor factor-
ization (cf. [5]). However, the first two methods do not
account for the pitch-invariant structure of our data. Ten-
sor factorization does, but only for a fixed number of
frequency shifts. Moreover, all of these methods become
slow when the amount of data is large.
While the use of stochastic gradient descent for dic-

tionary learning has been common for many years (cf.,
e.g., [55]), new methods have been arising very recently
due to their applications in deep learning. One of the
most popular methods for this purpose is Adam [46].
Its underlying idea is to treat the gradient as a random
variable and, for each component, compute unbiased esti-
mates v̂1, v̂2 for the first and second moments, and choose
the step size proportional to v̂1/

√
v̂2. If the derivative

of the ith component is constant, then v̂1[ i] /
√
v̂2[ i] =

±1, in which case a large step size can be used. If the
derivative oscillates a lot, however, then v̂1[ i] /

√
v̂2[ i] will

also be small and thereby dampen the oscillation in that
direction.
The standard formulation of Adam is completely inde-

pendent of the scale of the derivatives. This makes it easy
to control the absolute step size of the components, but
it destroys the Landweber regularization property of gra-
dient descent, which automatically decreases the step size
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for components whose partial derivative is small, taking
into account the scaling of different harmonics.
Our first modification to Adam is that while we still esti-

mate the first moments for each dictionary entry (i.e., for
each instrument and for each harmonic), we only compute
one second moment estimate for each instrument, which
is the arithmetic mean over the all the estimates for the
harmonics. With this, we restore the regularization prop-
erty and prevent excessive change of the components that
have small values.
Furthermore, we require all entries in the dictionary

to be non-negative, since negative harmonic amplitudes
would violate our model assumptions. For consistency, we
also require that no entries be larger than 1, so we end
up with the box constraint that D[ h, η]∈[ 0, 1] for h =
1, . . . ,Nhar, η = 0, . . . ,Npat−1. To enforce this, we project
each component to [ 0, 1] after the end of a step.
Finally, we have to tackle the problem that due to the

stochastic nature of the optimization procedure, dictio-
nary entries for a particular supposed instrument may
diverge to a point where they will not be used by the iden-
tification algorithm anymore and thus not contribute to
the separation. For this purpose, we track the sum of the
amplitudes associated with a specific instrument in the
past. In regular intervals, we sort the instruments in
the dictionary by the ratio of the amplitude sum versus
the number of iterations since its initialization (minus a
small head start that benefits new instrument entries);
then, we prune the dictionary by reinitializing the entries
for those supposed instruments where the ratio is low-
est, leaving the Nins instruments with the highest ratios
intact.
Concerning the parameters for moment estimation and

parameter update in Adam, the default values (cf. the
description of the pseudo-code in the appendix) have
turned out to be a good choice for the majority of appli-
cations. In our case, a step-size of κ = 10−3 means that
if the gradient is constant, the dominant component will
go from 0 to 1 in the dictionary within less than 1000
iterations, which is fast enough if Ntrn ≥ 10000. While
lowering κ is a common way to improve training accuracy,
this did not appear to have any effect in our applications.

6 Separation and resynthesis
After the dictionary has been trained by alternating
between identification and dictionary update, we rep-
resent the entire recording by running the identifica-
tion/pursuit algorithm on each time frame U[ ·, t] for
t = 0, . . . , n − 1 (where n is the number of time
frames in the spectrogram) with those Nins instruments
in the dictionary that were left intact after the latest
pruning. This time, however, we need a linear-frequency
spectrogram, since this is much easier to convert back
into a time-domain signal, so we apply the reverse

transformation f (α) = f0 2α/α0 on the means of the
Gaussians and reconstruct the spectrogram for the ηth
instrument via:

zη[ f , t] :=
∑

j,h
ηj,t=η

aj,h,t · exp
(

−
(
f − fj,h,t

)2

2F2σ 2
j,t

)
, (14)

which is the model from (11) limited to one instrument.
For the generation of the time-domain signal, we use

the classical algorithm by Griffin and Lim [2], which itera-
tively approximates the signal whose corresponding STFT
magnitude spectrogram is (in the �2 sense) closest to the
given one. As initial value, we give the phase of the STFT
of the original signal.
While more sophisticated phase retrieval methods have

been developed recently (e.g., [56]), the algorithm by Grif-
fin and Lim is well-established, robust, and simple.

6.1 Spectral masking
As an optional post-processing step, we can mask the
spectrograms from the dictionary representation with the
spectrogram from the original recording. This method
was proposed in [12, 13]:

z̃η[ f , t] := zη[ f , t]
z[ f , t]

· Z[ f , t] . (15)

In practice, a tiny value is added to the denominator in
order to avoid division by zero.
With this procedure, we make sure that the output spec-

trograms do not have any artifacts at frequencies that are
not present in the original recording. Another benefit is
mentioned in [12]: In cases where the sound of an instru-
ment is not perfectly invariant with respect to pitch and
volume, the masking can correct this.
A potential drawback with masking is that destructive

interference in the original spectrogram may alter the
spectrograms of the isolated instruments.
From a statistical perspective, spectral masking can also

be regarded as a (trivial)Wiener filter (cf. [3]). In this case,
one would regard the squaredmagnitude spectrograms in
the fraction in (15) and treat them as power spectra that
give priors for the frequency distribution of the signals.
However, we consider this perspective problematic, as the
masks are in fact generated from the data itself, which is
already subject to interference, and squaring the spectra
could exacerbate the error.

7 Experimental results and discussion
We generate the log-frequency spectrogram as specified
in Section 3. For the dictionary, we use Nhar = 25
harmonics.
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Table 1 Performance measures for the best-case run of the separation of recorder and violin

Method Mask Instrument SDR SIR SAR

Ours No Recorder 12.9 32.5* 12.9

Violin 7.1 24.1* 7.2

Yes Recorder 15.1* 32.4 15.2*

Violin 11.9* 23.8 12.2*

[23] — Recorder 10.6 21.4 11.0

Violin 5.8 18.4 6.1

Best numbers are marked

7.1 Performance measures
Vincent et al. [57] define the signal-to-distortion ratio
(SDR), the signal-to-interference ratio (SIR), and the
signal-to-artifacts ratio (SAR). These �2-based measures
have become the de facto standard for the performance
evaluation of blind audio source separation3.
The SDR is an “overall” performance measure that

incorporates all kinds of errors in the reconstructed sig-
nal; it yields a value of −∞ if the original signal and the
reconstructed signal are uncorrelated. The SIR is simi-
lar, but it ignores any artifacts that are uncorrelated with
the original signals. The SAR only measures the artifacts
and ignores interference; it is constant with respect to
permutations of the original signals. Those measures are
independent of the scale of the reconstruction, but they
are very sensitive to phasemismatch, as the projection of a
sinusoid on its 90◦-shifted copy will be zero, even though
the signals are otherwise identical. In order to find the
right mapping between the synthesized and the original
signals, the synthesized signals are permuted such that the
mean SIR over all instruments is maximized.
Another method for the performance evaluation of

audio source separation is given by the PEASS [59, 60],
which define the overall perceptual score (OPS), the
target-related perceptual score (TPS), the interference-
related perceptual score (IPS), and the artifacts-related
perceptual score (APS), which are computed using psy-
choacoustically motived measures and were trained via
empirical listening experiments. The OPS and IPS corre-
spond conceptually to the SDR and SIR, but the artifacts as
measured via the SAR are subdivided into the TPS, which
accounts for the misrepresentation of the original signal
itself, and the APS, which only comprises the remaining
error that does not originate from misrepresentation or
interference. The values of the scores range from 0 (worst)
to 100 (best).

3In the meantime, version 3.0 of the BSS Eval software package has become
available, which employs a slightly different definition that includes time
shifts. However, for comparability with [12–14, 23], we are using the original
measures as implemented in version 2.1 [58].

7.2 Separation of recorder and violin sounds
In order to generate a realistic separation scenario, we
chose the 8th piece from the 12 Basset Horn Duos
by Wolfgang A. Mozart (K. 487) in an arrangement by
Alberto GomezGomez for two recorders4. The upper part
was played on a soprano recorder, and the lower part was
played on a violin. These instruments are easily distin-
guishable, as the recorder has an almost sinusoidal sound,
while the sound of the violin is sawtooth-like, with strong
harmonics [24].
The instrument tracks were recorded separately in an

apartment room (RT60 ≈ 0.4 s) with an audio recorder at
a distance of approximately 1 m to the instrument, while
a metronome/“play-along” track was provided via head-
phones. Evenness of the tone was favored over musical
expression. We combined the tracks by adding the two
digital signals with no post-processing other than adjust-
ment of volume and overall timing and let the algorithm
run withNtrn = 100000 training iterations5, withNins = 2
and Nspr = 1.
This procedure was performed with random seeds

0, . . . , 9. For comparison, we further applied the algo-
rithm developed in [23] on our data. We found that their
method is sensitive with respect to hyperparameters, and
we searched for those values that optimize separation
performance for this piece, but we could only achieve
marginal improvement over the defaults provided in the
code. For application of this algorithm, we downsampled
the audio data to 22050 Hz, as this is the sampling fre-
quency that the algorithm was designed to operate on.
The best-case results for both algorithms are presented
in Table 1, and the distribution over all 10 runs of our
algorithm is displayed in Fig. 4.
Our criterion for the best run in our algorithm was

the mean SDR over both instruments. This was achieved
by a random seed of 7 for this sample. When the algo-
rithm is used in a real-world scenario in which the original
tracks are not available, the performance measures are
4https://imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,
_Wolfgang_Amadeus)
5We already achieve similarly good performance with Ntrn = 10000
iterations, but more iterations make the result more consistent with respect to
initial values.

https://imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,_Wolfgang_Amadeus)
https://imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,_Wolfgang_Amadeus)
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Fig. 4 Distribution of the performance measures of the separation of
violin and piano over 10 runs, without and with spectral masking

unknown to the user. In this case, the user can select
the “best-sounding” result from all 10 candidates, perhaps
guided by the value of the loss function as a proxy mea-
sure. The notion of ensemble learning does not apply to
the algorithm in [23], as it is a clustering method and
does not have an initial dictionary. Instead, we there con-
sider the result that we achieve with the hand-optimized
parameters as best-case.
With our algorithm, the recorder is universally better

represented than the violin, and spectral masking leads
to considerable improvements in SDR and SAR especially
for the violin. This complies with the explanation in [12]
that spectral masking helps represent instruments with
more diverse spectra, such as the violin, which has 4
different strings and a sound that is very sensitive to
technique. When we compare the outcomes in pairs with-
out and with spectral masking over the random seeds
0, . . . , 9 respectively, the improvement in SDR achieved by
spectral masking is statistically significant at pRecorder =
pViolin = 9.8 × 10−4 in a one-sided Wilcoxon signed-rank

Table 2 PEASS scores for the best-case run of the separation of
recorder and violin

Method Mask Inst. OPS TPS IPS APS

Ours No Rec. 34* 31 70* 38*

Vln. 34* 27 71* 37*

Yes Rec. 25 64 39 38

Vln. 13 100* 33 52

[23] — Rec. 28 84* 26 35

Vln. 32 19 71 30

Best numbers are marked

test [61]6, as for each dictionary, spectral masking leads to
a consistent improvement of the separation result.
The algorithm from [23] reacts in a similar way, yielding

better performance for the recorder than for the vio-
lin. However, the working principle is different: Rather
than trying to represent both instruments, it clusters
the peaks from the spectrum in order to make out a
“dominant” instrument, while the second “instrument”
is just the collection of residual peaks. In our exam-
ple, the violin was identified as the dominant instru-
ment, but nonetheless the representation of the recorder
is better. However, our algorithm provides superior per-
formance for both instruments, even without spectral
masking.
For phase reconstruction, we used merely one iteration

(i.e., only one magnitude adjustment and one projection)
of the Griffin-Lim algorithm in order to preserve the
phase of the original spectrogram as much as possible.
The aural impression of the results with different ran-

dom seeds is largely very similar. While some artifacts and
interference are audible, the generated audio data provides
a good aural representation of the actually played tracks.
The only tone7 that is misidentified over a long period
of time is a recorder tone that interferes with the even-
numbered harmonics of the violin tone that is played at
the same time and is one octave lower. In this case, the
third harmonic of the violin tone is erroneously identified
as the recorder tone.
The PEASS scores for the same runs and parameters are

given in Table 2. Surprisingly, the results without spectral
masking are now mostly preferred. Our only explanation
is that as discussed in Section 6.1, spectral masking can
cause interference in overlapping tones, as can be seen in
the drop in both SIR and IPS.While the SDR still increases
overall with spectral masking, this interferencemight have
a large negative impact on the OPS. However, we did not

6 Briefly speaking, the Wilcoxon signed-rank test has the null hypothesis that
the differences in the pairs are symmetrically distributed around 0. For this,
the sum of the signed ranks of the differences is computed. In the one-sided
test, the acceptance region for this sum is asymmetric.
7which occurs 4 times in total, due to repetitions of the passage
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find this discrepancy in most of the other samples, so it
does not appear to be a general pattern.
Spectrograms of the original recording and the synthe-

sized representations (with the random seed of 7 that
maximizes the SDR) are displayed in Fig. 5. The orig-
inal spectrogram contains broad-spectrum components
(“noise”) that do not fit the dictionarymodel and thus can-
not be represented, so they are not found in the output
spectrograms. The choice of Nhar = 25 must be regarded
as a compromise: Although the sound of the violin could
be represented more accurately with an even higher num-
bers of harmonics, this would increase both the computa-
tion time of the algorithm and also the number of variables
to be trained. The incorrectly identified recorder tone cor-
responds to the rightmost set of horizontal lines in Fig. 5b.
It is not audible when the synthesized audio files aremixed
back together.
Since spectral masking is only applied on the linear-

frequency spectrograms, its effects cannot be seen in
Fig. 5.

7.3 Separation of clarinet and piano sounds
We recorded the same piece on clarinet and piano using
the same set-up as for recorder and violin, except that the
instruments were played in a rehearsal hall (RT60 ≈ 1.4 s).
The algorithm was also run under the same conditions.
The distribution of the results over random seeds 0, . . . , 9
is displayed in Fig. 6. The best-case results of our algo-
rithmwith a random seed value of 6 as well as those for the
algorithm from [23] (with again, the data downsampled to
22050 Hz) are presented in Table 3.
The separation quality with our algorithm is much

worse than the for recorder and violin, and representation
of the piano is especially problematic. We have several
explanations for this:

1. Piano tones exhibit non-negligible inharmonicity,
which makes it harder to identify them in the
spectrum. Even though our model incorporates this
inharmonicity, cross-correlation does not.

2. Compared to the rather steady tone of recorder,
violin, and clarinet, the piano tone has a very
characteristic onset (attack ), which exhibits different
spectral characteristics than the rest of the tone.

This raises the question whether our algorithm can rep-
resent piano tones at all. In order to test this, we ran it on
the original piano track. The result was very stable, with a
maximum SDR of 8.7 dB for a random seed of 9 – without
spectral masking, as this would not make sense for a single
instrument. In Fig. 7, we show a time frame from the spec-
trogram within the first tone of the piano (t = 100). The
fundamental frequency was identified by the algorithm as
f ◦
1 = 441.8 Hz and the inharmonicity as b = 5.3 × 10−4.

Fig. 5 Log-frequency spectrograms for beginning of the recorded
piece and the synthesized tracks. The grayscale axis is logarithmic and
normalized to a dynamic range of 100 dB for each plot
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Fig. 6 Distribution of the performance measures of the separation of
clarinet and piano over 10 runs, with spectral masking

In Fig. 7a, the original spectrum is displayed with the
predicted frequencies of the harmonics when inharmonic-
ity is neglected, and the deviation upward from the 5th
harmonic becomes clearly recognizable. In Fig. 7b, the
computed inharmonicity is incorporated, and so the pre-
dicted frequencies of the harmonics match those from the
original spectrum almost perfectly. Figure 7c represents
the reconstructed spectrogram time frame as returned by
the separation algorithm with all the other parameters
considered, but without spectral masking.
Thus, our algorithm does not have any issue represent-

ing the piano tones; the difficulty in this case is to identify
them in the presence of the clarinet tones.
The algorithm from [23] performs comparatively well.

This is, again, due to the different approach: Rather
than trying to represent both instruments, this algorithm
only finds the clarinet tones as the dominant cluster
and assigns the remaining parts of the spectrum to the
piano. Thus, even though their model cannot represent

Table 3 Performance measures for the best-case run of the
separation of clarinet and piano, with spectral masking

Method Instrument SDR SIR SAR

Ours Clarinet 4.1 24.3* 4.1

Piano 2.1 9.3 3.5

[23] Clarinet 6.7* 21.3 6.9*

Piano 5.5* 16.4* 5.9*

Best numbers are marked

Fig. 7Model representation of a piano tone (a’) with the parameters
identified by the separation algorithm when run on the pure piano
track

the piano, as it does not include inharmonicity at all, it can
still separate it under the assumption that the clarinet is
modeled correctly. However, for this recording, it is essen-
tial to hand-tune the hyperparameters: Those that were
used for the separation of recorder and violin still work
reasonably well for clarinet and piano, but with the default
values, the algorithm fails.
In terms of the PEASS (Table 4), the results of both

algorithms achieve very similar overall scores. While our
reconstruction of the piano sound is inferior in terms
of TPS, the interference and artifacts are evaluated as
perceptually less severe.

Table 4 PEASS scores for the best-case run of the separation of
clarinet and piano, with spectral masking. Best numbers are
marked

Method Instrument OPS TPS IPS APS

Ours Clarinet 39* 56* 68* 46*

Piano 25 37 59* 31*

[23] Clarinet 39 46 62 41

Piano 26* 87* 30 22

Best numbers are marked
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7.4 Generalization experiment
Usually, we train our dictionary on the same audio record-
ing that we aim to separate. In this experiment, however,
our goal is to ascertain whether a dictionary that was
trained on one recording can be used for the separation of
another recording without additional training.
Under the recording conditions specified in Section 7.2,

we recorded the traditional tune “Frère Jacques” with B�

tin whistle and viola in the key of E� major as well as with
C tin whistle and violin in the key of F major. The vio-
lin and viola were offset by two bars compared to the tin
whistles in order to create a musically realistic canon. The
lowest frequency of the B� tin whistle was measured as
463 Hz, and the lowest frequency of the C tin whistle was
measured as 534 Hz. Thus, they do not fit in the same
equal-temperament tuning, and the intervals on these
instruments are not very consistent, either. Their tun-
ing was mimicked by ear when recording the viola/violin
tracks.
First, the separation was performed with random seeds

0, . . . , 9 on the recording with B� tin whistle and viola.
Then the dictionaries obtained from this separation were
used on the recording with C tin whistle and violin with-
out any further training. The experiment was repeated
vice versa with the recordings permuted.
For the viola and B� whistle combination, the dictionary

from the run with seed 8 was optimal, but that from a seed
of 0 was best when applying on the violin and C whistle
recording. Vice versa, when training on the violin and C
whistle recording, the seed of 0 was also ideal for separa-
tion of that recording, but the dictionary from a random
seed of 2 was better when applying on the B� whistle and
viola recording. All the best-case number are presented in
Table 5.
Overall, the performance figures are similar to those

from recorder and violin, as could be expected because

Table 5 Performance measures for the best-case run of the
separation of B�/C tin whistle and viola/violin, with spectral
masking. Results indicated as “Orig.” were generated from the
dictionary that was trained on that recording, while “Gen.” means
that the dictionary was trained on the other recording

Mode Instrument SDR SIR SAR

Orig. Tin whistle B� 15.0 29.3 15.1

Viola 10.5 26.9 10.6

Tin whistle C 17.1* 27.0 17.6*

Violin 12.1* 36.4* 12.1*

Gen. Tin whistle B� 15.9* 30.0* 16.1*

Viola 11.2* 28.4* 11.3*

Tin whistle C 16.7 27.3* 17.1

Violin 11.6 34.5 11.6

Best numbers are marked

those are similar instruments. To our surprise, the perfor-
mance in the generalization even sometimes exceeds that
from direct training and separation.
For a better analysis, we gathered the data from seeds

0, . . . , 29 and displayed the distribution in Fig. 8. This
reveals a paradox: Maximum SDR performance for each
instrument is achieved on a dictionary that was trained on
the recording with C tin whistle and violin. At the same
time, when comparing the performance of each instru-
ment over all random seeds pairwise between the record-
ings that the dictionaries were trained on, the Wilcoxon
signed rank sums for each instrument indicate a better
performance when training on the recording with B� tin
whistle and viola. Thus, while the former recording yields
a better-performing best-case dictionary with a sufficient
number of runs, the training is also more likely to fail than
with the latter recording.
We conclude that as intended, the model does not over-

fit to the specific recording, but it instead provides a
dictionary that can be applied to a different recording
even if slightly different instruments are used and the
key is changed (confirming pitch-invariance). For a prac-
tical scenario, this means that if a dictionary for a specific
combination of instruments is already available, it can be
applied to other similar recordings, which saves computa-
tion time.8 In fact, re-using a well-trained dictionary can
lead to superior separation results than training on the
recording itself.

7.5 Comparison on other data
To our knowledge, there exists no standard benchmark
database with the kind of samples that our algorithm is
designed for. While the BASS-dB set [62] was created
with blind source separation in mind, it contains instru-
ments which violate the structural assumptions that we
make about the sounds, and the polyphony levels are not
sufficiently controlled. A similar issue occurs with the
databases that are used for supervised learning, such as in
the SiSEC 2018 [36].
For score-informed separation, the Bach10 [63] and

URMP [64] databases are popular, which contain record-
ings of melodic acoustic instruments. In terms of
polyphony and similarity of the instruments in these sam-
ples, one cannot expect to obtain reasonable performance
from blind separation on most of the samples. How-
ever, a subset of the two-instrument recordings in URMP
appeared to be usable, so we are incorporating it in our
evaluation.
8 For the sample with B� tin whistle and viola which has a duration of 24 s, the
computation of the log-frequency spectrogram lasted 137min. Training took
212min for each of the 10 dictionaries (with Ntrn = 100000 iterations), while
separation and resynthesis with a given dictionary were performed within
7min. All computations were conducted on an Intel i5-4460 microprocessor
using 2 cores for multiprocessing. Note that there is still significant potential
for saving computation time by reducing redundancy in the sampling of the
STFT and decreasing the number of training iterations.
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Fig. 8 Separation of tin whistle (B�/C) and viola/violin with spectral
masking over 30 runs. Results labeled as “gen.” were obtained by
applying the dictionaries trained on the other instrument
combination

Also, we were able to obtain the data used by Jaiswal
et al. [12–14]. As it does not contain any samples with
acoustic instruments, it is not ideal for evaluation of our
method, but being able to perform the separation provides
a proof of concept.
Further, we used the publicly available data from Duan

et al. [23], which does contain a sample with acoustic
instruments.

7.5.1 URMP
The URMP dataset [64] contains a total number of 44
audio samples arranged from classical music that were
recorded using acoustic musical instruments. In many of
these samples, the instruments are very similar, so we
selected suitable samples based on the following criteria:

• No instrument should be duplicated.
• No two bowed string instruments should appear in

one recording.
• No two brass instruments should appear in one

recording.
• If two woodwinds appear together, one should be a

reed instrument and the other one should not.

The samples with three or more instruments quickly
turned out to be too difficult for our blind separation algo-
rithm. From the total number of 11 duets, this therefore
left us with 4 samples:

1. Dance of the Sugar Plum Fairy by P. Tchaikovsky
with flute and clarinet,

2. Jesus bleibet meine Freude by J. S. Bach with trumpet
and violin,

3. March from Occasional Oratorio by G. F. Handel
with trumpet and saxophone,

4. Ave Maria by F. Schubert with oboe and cello.

Considering the combination of trumpet and saxo-
phone, we were doubtful whether a separation would
be possible. Even though the sound production principle
is very different, their sound appears somewhat similar,
which is supported by the roles of these instruments in
jazz ensembles. We decided to include the sample anyway
in order to see how the algorithm reacts.
Again, we are taking the best-case number from 10 runs

with Ntrn = 100000 training iterations, and for compar-
ison, we are using the algorithm from [23] with hand-
optimized hyperparameters on the data (as downsampled
to 22050 Hz). The results with the classical measures are
shown in Table 6.
The piece for flute and clarinet was challenging for

both algorithms (perhaps because both instruments
are woodwinds). The algorithm from [23] isolated the
clarinet as the dominant instrument but only achieved
inferior performance on it, whereas the residual has good
resemblence with the flute track. On the piece with
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Table 6 Performance measures for the best-case runs over a
selection of samples from the URMP [64] dataset

Method Instrument SDR SIR SAR

Ours Flute 2.4 9.5 3.9*

Clarinet 6.2* 25.3* 6.3*

Trumpet 5.3* 16.6* 5.7*

Violin 7.7* 25.1* 7.8*

Trumpet -2.4 1.1 2.7*

Saxophone 0.1 22.5* 0.2

Oboe 6.3* 17.0* 6.8*

Cello 4.2* 17.1* 4.5

[23] Flute 3.4* 19.6* 3.6

Clarinet 2.1 5.9 5.4

Trumpet — — —

Violin — — —

Trumpet 1.2* 9.4* 2.3

Saxophone 6.9* 17.2 7.4*

Oboe -0.8 13.1 -0.4

Cello 3.4 6.4 7.3*

Best numbers are marked

trumpet and violin, our algorithm performed quite well,
but the algorithm from [23] got stuck in an apparently
endless loop, so we could not get a comparison result.
With the piece for trumpet and saxophone, which we
had already considered problematic beforehand, our algo-
rithm failed to give an acceptable result in terms of SDR
and SIR (in contrast to the PEASS evaluation, as we
will discuss later). The compared algorithm gives bet-
ter figures when separating the trumpet as the dominant
instrument, but the result cannot be considered good,
either; however, the residual signal gives a decent separa-
tion of the saxophone track. By contrast, in the piece with
oboe and cello, the algorithm from [23] separated the cello
as the dominant instrument comparatively well, whereas it
failed on the oboe. For both instruments, the results from
our algorithm are better.
As before, it turned out that adjustment of the hyper-

parameters for every sample was crucial in application of
the algorithm from [23], as the clustering depends on the
amount of variation in the sound of the dominant instru-
ment as well as on the similarity of the sounds of both
instruments.
The corresponding PEASS scores are given in Table 7.

The main difference is that our separation of the trum-
pet in the third piece that received very bad SDR/SIR/SAR
values was given very good perceptual scores, mostly
exceeding those of the compared method. Listening to
the separated trumpet tracks ourselves, we find that while

Table 7 PEASS scores for the best-case runs over a selection of
samples from the URMP [64] dataset

Method Instrument OPS TPS IPS APS

Ours Flute 28 46 66* 29

Clarinet 36* 58* 71 39*

Trumpet 30* 67* 47* 36*

Violin 31* 33* 69* 36*

Trumpet 47* 69* 63 54*

Saxophone 24 23 70* 15

Oboe 18* 7 60* 7

Cello 30* 42* 58 42*

[23] Flute 35* 75* 38 46*

Clarinet 27 28 76* 25

Trumpet — — — —

Violin — — — —

Trumpet 42 52 64* 46

Saxophone 26* 72* 22 59*

Oboe 15 54* 28 19*

Cello 20 16 67* 22

Best numbers are marked

ours certainly has issues, large parts are muchmore usable
than the SDR suggests, and we can understand why one
would perceive the errors as less disruptive than in the
track that was isolated by the algorithm from [23].
We believe that one key challenge with this dataset is

that the instruments were played with the mindset of a
musical performance, and thus there is more variation in
playing technique than with our own samples.

7.5.2 Jaiswal et al.
We ran our algorithm on the data that was used in
[12–14], which consists of computer-synthesized samples
with two instruments, each playing one tone at a time.
Due to the large number of samples, and since we are only
interested in best-case numbers, we set Ntrn = 10000 and
selected the best result (in terms of mean SDR) out of 10
runs (with random seeds 0, . . . , 9) for each sample. No fur-
ther adjustments to our algorithm were conducted. The
performance measures are displayed in Fig. 9 and Table 8.
It can be seen that for certain samples, our algorithm

performs very well, while for others, it fails to produce
acceptable results. When comparing the means, our algo-
rithm is inferior to [12–14].9
Our explanation for this is that our algorithm assumes

much looser constraints on the data that it gets, as it

9We could not compare the performance on the individual samples, as those
numbers are not available to us.
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Fig. 9 Performance of our algorithm applied on the audio samples
from [12–14] (best-case run out of 10 for each sample). The means
over the samples with our algorithm are compared to the mean
values given in [14]

accepts arbitrary tones in the audible range. By con-
trast, in [12–14], the expected fundamental frequencies
for the instruments are hardcoded in the algorithm due
to prior knowledge. In [12], 7 values are allowed per sam-
ple, while in [13], this number was invidually adjusted to
4–9 values for each sample in order to achieve maximum
performance figures; in [14], those were 5–12 values. Fur-
ther, the algorithms can exploit the fact that the tone
ranges for the respective instruments in the samples were
chosen to have little or no overlap. In the case of no
overlap, such distinctive information would even make
it possible to separate instruments with identical fre-
quency spectra, but this would violate our notion of blind
separation.
As can be seen in Table 8, the individual adjustments

that were conducted in [13] had a much greater effect
on the performance than the algorithmic improvements
in [14].

Table 8 Comparison of our algorithm to [12–14] on the data
used therein (means over all instruments and all samples in the
best cases)

Method SDR SIR SAR

[12] 8.9 23.7 9.7

[13] 10.9 25.4 11.5

[14] 11.1* 32.1* 11.5*

Ours 7.5 23.1 8.4

Best numbers are marked

Applying the algorithms in [12–14] to our data would
not be meaningful, as those algorithms require, due
to their data representation, perfectly consistent equal
temperament tuning, which wind instruments and string
instruments without frets do not satisfy.
We conclude that the out-of-the-box performance of

our algorithm is on average inferior to the figures in
[12–14] on the samples used therein, but this is compen-
sated by its vastly greater flexibility, which enables it to
operate on real-world acoustic signals and eliminates the
need for prior specification of the tuning or range of the
instruments.

7.5.3 Duan et al.
From the data used in [23], we selected the samples that
we deemed suitable for our algorithm, skipping the ones
that contain human voice components, as those cannot be
represented by our model.
The three samples that we therefore consider are com-

posed as follows:

1. Acoustic oboe and acoustic euphonium,
2. Synthesized piccolo and synthesized organ,
3. Synthesized piccolo, synthesized organ, and

synthesized oboe.

The original samples are sampled at fs = 22050 Hz.
We upsampled them to fs = 44100 Hz in order to apply
them to our algorithm. We again ran the algorithm with
Ntrn = 10000 iterations and picked the best-case runs
from random seeds 0, . . . , 9, respectively. The results are
displayed in Table 9.

Table 9 Performance measures for the best-case runs of different
instrument combinations, with spectral masking. Instruments
labeled as “s.” are synthetic, those labeled as “a.” are acoustic

Method Instrument SDR SIR SAR

[23] Oboe (a.) 8.7 25.8 8.8

Euphonium (a.) 4.6 14.5 5.3

Piccolo (s.) 14.2* 27.9* 14.4*

Organ (s.) 11.8* 25.1* 12.1*

Piccolo (s.) 6.5* 20.0 6.7*

Organ (s.) 6.6* 17.3 7.1*

Oboe (s.) 9.0* 21.9* 9.2*

Ours Oboe (a.) 18.6* 33.6* 18.8*

Euphonium (a.) 14.7* 31.5* 14.7*

Piccolo (s.) 11.2 25.9 11.3

Organ (s.) 10.1 20.7 10.5

Piccolo (s.) 4.2 24.8* 4.3

Organ (s.) 6.0 20.0* 6.3

Oboe (s.) 5.3 12.4 6.4

Best numbers are marked
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The main goal of our algorithm was to provide good
performance for acoustic instruments, and in fact, on the
combination of two acoustic instruments, it exceeds the
original performance of the compared method by roughly
10 dB in SDR. For the synthetic instruments, the per-
formance achieved by the algorithm in [23] is mostly
superior, while our algorithm still attains acceptable
performance for piccolo and organ, and we demonstrate
that it can at least in principle also be applied to combina-
tions of more than two instruments.
The corresponding PEASS scores for the separated

tracks are given in Table 10. Here, in the example with
two acoustic instruments, the separation of the oboe
track by the algorithm in [23] receives a higher OPS and
IPS, suggesting that the overall quality of our separation
is perceptually worse and this is at least partly caused
by interference. However, according to our own listen-
ing opinion, the result from our algorithm matches the
original signal very well and contains no audible inter-
ference while the result from the compared algorithm
contains very obvious interference and also other rep-
resentation errors, so we cannot explain the outcome
of this evaluation. On the other hand, with the syn-
thetic instruments, it is now often our algorithm that is
preferred.

8 Conclusion and future work
We developed a novel algorithm to represent discrete
mixture spectra as sparse shifted linear combinations

Table 10 PEASS scores for the best-case runs of different
instrument combinations, with spectral masking. Instruments
labeled as “s.” are synthetic, those labeled as “a.” are acoustic

Method Instrument OPS TPS IPS APS

[23] Oboe (a.) 24* 33 82* 9

Euphonium (a.) 24 66 43* 5

Piccolo (s.) 48* 74 59 54

Organ (s.) 41 86 73 87

Piccolo (s.) 22 67* 35 35*

Organ (s.) 28 63* 60* 58

Oboe (s.) 44* 70* 58 57

Ours Oboe (a.) 19 99* 44 66*

Euphonium (a.) 34* 70* 38 60*

Piccolo (s.) 24 83* 69* 77*

Organ (s.) 79* 93* 86* 87

Piccolo (s.) 27* 29 56* 32

Organ (s.) 38* 53 50 52

Oboe (s.) 20 61 68* 80*

Best numbers are marked. The APS in the fourth row for each method was a perfect
tie

of analytically given non-negative continuous patterns.
We applied this algorithm to spectrograms of audio
recordings, first to convert an STFT magnitude
spectrogram into a log-frequency spectrogram, then to
identify patterns of peaks related to the sounds of musical
instruments in the context of a dictionary learning algo-
rithm based on Adam, a method that originates from the
field of deep learning.
This led us to an algorithm to perform blind source

separation on polyphonic music recordings of wind
and string instruments, making only minimal structural
assumptions about the data. In its model, the spectral
properties of the musical instruments are fixed and pitch-
invariant. Thus, instruments that satisfy this assumption
can be represented irrespectively of their tuning. The only
parameters that have to be known a-priori are the number
of instruments and an upper bound for the sparsity level.
When applied to recordings of appropriate acoustic

instruments, the performance of our algorithm surpasses
that of comparable literature. Further, we show that once
a dictionary has been trained on a certain combina-
tion of instruments, it can be applied to combinations
of “related” instruments, even if those have a different
tuning.
We note, however, that blind source separation always

needs favorable data: Representing other kinds of instru-
ments would require a different model, and instruments
with a pronounced attack sound are also problematic. The
sound of the instruments must be sufficiently pitch- and
volume-invariant with only little overall variation in the
harmonic structure, and the sparsity level must be rather
strict.
While the pitch-invariant spectrogram substantially

facilitates the identification of the instrument sounds,
it has a lower resolution in the high frequencies, and
therefore some information from the STFT spectrogram
is lost. Also, any phase information is lost completely.
Despite an inharmonicity parameter being included in
our model, instruments with strong inharmonicity are
problematic to identify.
Overall, while our algorithm appears to work well in

certain settings, the framework that was created in order
to bring the computational complexity under control is
not very flexible. Instead of the hand-crafted pursuit algo-
rithm, one may also consider the application of a neural
network for identification, while still doing blind separa-
tion via a parametric model.
In our application, the frequency shift of the spectrum

is caused by a change in pitch. Another common source
for frequency shifts in various areas (such as communica-
tion technology or astronomy) is the Doppler effect. We
believe that this could open new applications for our pur-
suit algorithm and potentially also the dictionary learning
algorithm. Specifically, the pursuit algorithm could be
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used as an alternative to continuous basis pursuit [42],
which is advertised as a method for radar and geological
seismic data and has been used for the analysis of neural
spike trains [65].

Appendix
We provide pseudo-code with a description of the imple-
mentation details as well as some additional figures with
commentary.

Pseudo-code
We will now present the mentioned algorithms in more
detail via pseudo-code. First, Algorithm 1 describes the
sparse pursuit/identification algorithm. It takes as argu-
ments the dictionary, the sample vector, a selector func-
tion, the sparsity levels, and the sum of the previous
amplitudes for each pattern (which will become important
for dictionary pruning). In the non-linear optimization
step, it calls the L-BFGS-B minimizer to minimize the loss
LD with respect to the given parameters.

Algorithm 1 Sparse identification algorithm
function PURSUIT(D,Y , select,Npre,Nspr,A)

J ← ∅
r ← Yq

loop Nitr times
aj ← 0, θj ← θnil
for j ∈ {1, . . . ,Nspr + Npre} \ J

Jnew ← sort({1, . . . ,Nspr + Npre} \ J )[ 1, . . . ,Npre]
aJnew ,μJnew , ηJnew

← select(r, y0, . . . , yNpat−1,Jnew,Npre)
J ← J ∪ Jnew
aJ ,μJ , θJ ← bfgs(LD,Y , aJ ,μJ , ηJ , θJ )

aJ ≥ 0, θJ ∈ �θ

for η = 0, . . . ,Npat − 1 do
Jη ←

(
arg sortj∈{1,...,Nspr+Npre}, ηj=η aj

)

[ 1, . . . ,Nspr]
J ← ⋃

η∈{0,...,Npat−1} Jη

aJ ,μJ , θJ ← bfgs(LD,Y , aJ ,μJ , ηJ , θJ )

aJ ≥ 0, θJ ∈ �θ

r ← Yq −
(∑

j∈J ajyηj ,θj (· − μj)
)q

θ ← ‖r‖2
if ‖r‖2 ≥ λθ then
restore values from previous iteration
break

for η = 0, . . . ,Npat − 1 do
A[ η]← A[ η]+ ∑

ηj=η aj
return J , aJ ,μJ , ηJ , θJ ,A

The sel_xcorr function in Algorithm 2 is used in the
separation. It selects up to Npre patterns based on cross-
correlation, and it computes their discrete amplitudes
and shifts. In the implementation, this is accelerated via

the FFT convolution theorem. The sel_peaks function in
Algorithm 3 ignores the patterns, and it simply returns the
Npre largest local maximawith dominanceNdom (typically,
Ndom = 3).
The dictionary learning algorithm (Algorithm 4) is

largely identical to the original formulation of Adam (with
values β1 = 0.9, β2 = 0.999, ε = 10−8, and a step-size of
κ = 10−3), except that v2 is averaged over all the harmon-
ics for one instrument. It counts the number of training
iterations τ [ η] for each instrument η individually. The
dictionary is initialized by the function in Algorithm 5,
which creates a new dictionary column with random val-
ues. The function in Algorithm 6 removes seldom-used
instruments in the dictionary by comparing their average
amplitude but with a head start which is half the length of
the pruning interval: τ0 = Nprn/2.
The logspect function in Algorithm 7 takes an STFT

magnitude spectrogram and applies the sparse pursuit
algorithm in order to convert it into a log-frequency spec-
trogram with a height of m = 1024. Finally, the separate
function in Algorithm 8 performs the overall separation
procedure. It prunes the dictionary every Nprn = 500
steps.

Algorithm 2 Selector function based on cross-correlation
function SEL_XCORR(r, y0, . . . , yNpat−1 ,J ,Npre)

ρ[μ, η]← ∑m−1
i=0 r[ i]

(
yη,θnil [ i − μ]

)q
/‖yη,θnil [ ·]q‖2

for μ = 0, . . . ,m − 1 and η = 0, . . . ,Npat − 1
(μJ , ηJ ) ← arg sort(μ,η)(−ρ[μ, η] )[ : Npre]
aJ ← (ρ[μJ , ηJ ] /‖yηJ ,θnil [ ·]q‖2)1/q
J ← {j ∈ J : aj > 0}
return aJ ,μJ , ηJ

Algorithm 3 Selector function based on peaks
function SEL_PEAKS(r, _,J ,Npre)

μJ ← arg sortμ
{aμ : r[μ]≥ r[μ + k] , |k| ≤ Ndom}[ : Npre]

J ← {j ∈ J : r[ j]> 0}
return rJ ,μJ , 0

Benefits over the Mel spectrogram
In Fig. 3, we compared our log-spectrogram that was
computed via the sparse pursuit method to the mel spec-
trogram and the constant-Q transform. We concluded in
Section 3 that as the CQTuses windows of different length
for different frequencies, it is not a good choice for our
dictionary representation.
The mel spectrogram does not have this particular

problem, but the Heisenberg uncertainty principle con-
strains the time-log-frequency resolution according to the
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Algorithm 4 Dictionary learning function
function ADAM(D, τ , v1, v2, g)
for η = 0, . . . ,Npat − 1 do

τ [ η]← τ [ η]+1
v1[ ·, η]← β1 · v1[ ·, η]+(1 − β1) · g[ ·, η]
v2[ η]← β2 · v2[ η]+(1 − β2) · mean(g[ ·, η]2 )

v̂1[ ·, η]← v1[ ·, η] /(1 − β
τ [η]
1 )

v̂2[ η]← v2[ η] /(1 − β
τ [η]
2 )

D[ ·, η]← D[ ·, η]−κ · v̂1[ ·, η] /(
√
v̂2[ η]+ε)

D[ ·, η]← max (0,min (1,D[ ·, η] ))
return D, τ , v1, v2

Algorithm 5 Dictionary initialization function
function INIT()
e ← Par(1, 0.5)
for h = 1, . . . ,Nhar do

d[ h]← U [ 0, 1)
d[ h]← d[ h] /he

return d[ ·]

Algorithm 6 Dictionary pruning function
function PRUNE(A,D, τ )

I ←
(
arg sortη∈{0,...,Npat−1} A[ η] /(τ [ η]−τ0)

)

[ 0, . . . ,Nins]
τ [I�]= 0, v1[ ·,I�]= 0, v2[I�]= 0, A[I�]= 0
for η ∈ I� do
D[ ·, η]← INIT()

return I , τ , v1, v2,A,D

Algorithm 7 Log-spectrogram generation function
function LOGSPECT(Z,Npre,Nspr)

for t = 0, . . . , n − 1 do
Jt , aJt ,t ,μJt ,t , ηJt ,t , θJt ,t , _

← PURSUIT([ 1] ,Z[ ·, t] , sel_peaks, 1,Nspr, _)
U[α, t]← ∑

j,h aj,h,t exp(−(α − α(μJt ,t))
2/(2F2σ 2

j,t))
for α = 0, . . . ,m − 1, t = 0, . . . , n − 1

return U

lowest frequency to be represented. In Fig. 3a, we cut
the spectrogram at 530 Hz (which corresponds to 577 Hz
when compensating for the different sampling frequency),
but for our sample with recorder and violin, this is not
sufficient, as it contains notes as low as c’. Thus, we
chose the lowest frequency as 200 Hz, sacrificing some
resolution.
We computed the mel spectrogram on this sample and

ran the separation algorithm 10 times withNtrn = 100000
training iterations in order to obtain a fair comparison.

Algorithm 8 Dictionary learning and separation function
function SEPARATE(U ,Npre,Nspr)
for η = 0, . . . ,Npat − 1 do
D[ ·, η]← INIT()
τ [ η]← 0, v1[ ·, η]← 0, v2[ η]← 0, A[ η]← 0

loop a multiple of Nprn times
t ← random({0, . . . , n − 1})
J , aJ ,μJ , ηJ , θJ ,A

← PURSUIT(D,U[ ·, t] , sel_xcorr, 1,Nspr,A)
g ← ∇DLD(Y , aJ ,μJ , ηJ , θJ )

D, τ , v1, v2 ← ADAM(D, τ , v1, v2, g)
ifmin(τ ) mod Nprn = 0 then

I , τ , v1, v2,A,D ← PRUNE(A,D, τ )
for t = 0, . . . , n − 1 do

Jt , aJt ,t ,μJt ,t , ηJt ,t , θJt ,t , _
← PURSUIT(D[ ·,I] ,U[ ·, t] , sel_xcorr, 1,Nspr, _)

return {Jt , aJt ,t ,μJt ,t , ηJt ,t , θJt ,t
: t = 0, . . . , n − 1}

The performance figures are given in Table 11 and Fig. 10,
and the results from the best-case run with a random
seed of 7 are displayed in Fig. 11. It can be seen that
the performance does not reach what we achieved with a
spectrogram generated via the sparse pursuit method (cf.
Fig. 5 and Table 1).
Using again a one-sided Wilcoxon signed-rank test, we

find that without spectral masking, the SDR when using
the mel spectrogram is worse at pRecorder = 9.8 × 10−4

and pViolin = 2.0 × 10−3. With spectral masking applied,
we achieve pRecorder = pViolin = 9.8 × 10−4, as for each
random seed 0, . . . , 9, the results from our representation
are consistently better.
We thus conclude that our use of the sparse pursuit

algorithm for generating a log-frequency spectrogram
provides a notable benefit for the subsequent processing.

Log-frequency spectrograms of the instrument tracks
For additional comparison, we computed the log-
frequency spectrograms of the original (Fig. 12) and the
computed (Fig. 13) instrument tracks.
It should be noted that these spectrograms are not used

anywhere in the computation or evaluation process, and

Table 11 Performance measures for the best-case run of the
separation of recorder and violin using the mel spectrogram

Mask Instrument SDR SIR SAR

No Recorder 10.6 31.9* 10.6

Violin 5.8 22.5* 5.9

Yes Recorder 13.4* 31.5 13.5*

Violin 9.3* 21.0 9.6*

Best numbers are marked
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Fig. 10 Distribution of the performance measures of the separation
of violin and piano over 10 runs using the mel spectrogram, without
and with spectral masking

due to artifacts from the sparse pursuit algorithm, they
are not an accurate representation of the time-domain
signal.
Nevertheless, two effects can be seen when comparing

Fig. 13 to Fig. 5:

1. Due to spectral masking, the harmonics now have
different intensities.

2. The Griffin-Lim phase reconstruction algorithm
smoothes some of the artifacts that were introduced
by the sparse pursuit algorithm. This is because not
every two-dimensional image is actually a valid
spectrogram that corresponds to an audio signal;
instead, the Griffin-Lim algorithm aims to find an
audio signal whose spectrogram is as close as
possible to the given image, and it uses the phase of
the original mixed sample as the initial value.

Fig. 11Mel spectrogram for the recorded piece and log-frequency
spectrograms for the synthesized tracks that were generated based
on the mel spectrogram
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Fig. 12 Sparsity-derived log-frequency spectrograms of the original
instrument samples

Fig. 13 Sparsity-derived log-frequency spectrograms of the
separated audio tracks and its mixture
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