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Abstract

An integrated version of the minimum variance distortionless response (MVDR) beamformer for speech enhancement
using a microphone array has been recently developed, which merges the benefits of imposing constraints defined
from both a relative transfer function (RTF) vector based on a priori knowledge and an RTF vector based on a
data-dependent estimate. In this paper, the integrated MVDR beamformer is extended for use with a microphone
configuration where a microphone array, local to a speech processing device, has access to the signals from multiple
external microphones (XMs) randomly located in the acoustic environment. The integrated MVDR beamformer is
reformulated as a quadratically constrained quadratic program (QCQP) with two constraints, one of which is related to
the maximum tolerable speech distortion for the imposition of the a priori RTF vector and the other related to the
maximum tolerable speech distortion for the imposition of the data-dependent RTF vector. An analysis of how these
maximum tolerable speech distortions affect the behaviour of the QCQP is presented, followed by the discussion of a
general tuning framework. The integrated MVDR beamformer is then evaluated with audio recordings from
behind-the-ear hearing aid microphones and three XMs for a single desired speech source in a noisy environment. In
comparison to relying solely on an a priori RTF vector or a data-dependent RTF vector, the results demonstrate that
the integrated MVDR beamformer can be tuned to yield different enhanced speech signals, which may be more
suitable for improving speech intelligibility despite changes in the desired speech source position and imperfectly
estimated spatial correlation matrices.

Keywords: Speech enhancement, Beamforming, Minimum variance distortionless response (MVDR) beamformer,
External microphones

1 Introduction
Speech processing devices such as a hearing aid, a
cochlear implant, or a mobile telephone are commonly
equipped with an array of microphones to capture the
acoustic environment. The received microphone signals
are often a mixture of a desired speech signal plus some
undesired noise (any combination of interfering speak-
ers, background noises, and reverberation). As the quality
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and intelligibility of the desired speech signal is suscep-
tible to considerable degradation in the presence of such
noise, the task of suppressing this noise and extracting
the desired speech signal, known as speech enhancement,
is of critical importance and has been the subject of
extensive research [1–3].
While successful speech enhancement strategies have

been developed with microphone arrays, in some appli-
cations, due to physical space constraints, the spatial
variation between the observed microphone signals may
not be sufficient to yield an acceptable degree of speech
enhancement. Consequently, the potential of using more
ad hoc microphone configurations consisting of randomly
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placed microphones to increase the spatial sampling of
the acoustic environment has developed interest [4–12].
In this paper, a specific ad hoc microphone configura-
tion is considered, where a microphone array located on
some speech processing device, hereafter referred to as
a local microphone array (LMA), is linked with multiple
remote or external microphones (XMs) in a centralised
processing framework, i.e. all microphone signals are sent
to a fusion centre for processing. The terminology of a
local microphone array is introduced since the micro-
phone array is considered to be confined or fixed within
some area of the acoustic environment relative to the XMs
which are subject to movement.
When there is a single desired speech source, speech

enhancement can be accomplished by using the minimum
variance distortionless response (MVDR) beamformer
[13, 14]. One of the important quantities required for
computing the MVDR beamformer is a vector of acous-
tic transfer functions from the desired speech source to
all of the microphones. More commonly, however, a vec-
tor of relative transfer functions (RTFs) is used instead,
which is a normalised version of the acoustic transfer
function vector with respect to some reference micro-
phone [15]. In practice, for an LMA, this RTF vector may
be measured a priori or based on assumptions regarding
microphone characteristics, position, speaker location,
and room acoustics (e.g. no reverberation). For instance,
in assistive hearing devices, it is sometimes assumed that
the desired speech source location is known and this
knowledge can be subsequently used to define an a priori
RTF vector [16–19]. Alternatively, it may be estimated in
an online fashion from the observed microphone data [20,
21] so that it is a fully data-dependent estimate.
The situation under consideration throughout this

paper is one in which there is an available a priori RTF
vector pertaining only to the LMA that may or may not be
sufficiently accurate with respect to the true RTF vector.
In cases where the a priori RTF vector is not sufficiently
accurate, then incorporating the use of a data-dependent
RTF vector can be viewed as an opportunity for an
improved performance provided that the data-dependent
RTF vector is a better estimate of the true RTF vector.
On the other hand, when acoustic conditions are adverse
enough to significantly affect the accuracy of the data-
dependent RTF vector, then relying on the a priori RTF
vector can be viewed as a fall back or contingency strategy.
It would therefore be seemingly advantageous to use

both an a priori and a data-dependent RTF vector in
practice. Such an approach has recently been investigated
for an LMA only and resulted in an integrated version
of the MVDR beamformer [22]. As opposed to impos-
ing either the a priori RTF vector or the data-dependent
RTF vector as a hard constraint, they were both soft-
ened into an unconstrained optimisation problem. It was

demonstrated that the resulting integrated MVDR beam-
former is a convex combination of an MVDR beamformer
that uses the a priori RTF vector, an MVDR beamformer
that uses the data-dependent RTF vector, a linearly con-
strained minimum variance (LCMV) beamformer that
uses both the a priori and data-dependent RTF vector,
and an all-zero vector, each with real-valued weightings,
revealing the versatile nature of such an integrated beam-
former.
This paper therefore re-examines the integrated MVDR

beamformer for the ad hoc microphone configuration
consisting of an LMA located on some speech process-
ing device linked with multiple XMs. Specifically, the
integrated MVDR beamformer is reformulated from an
alternative perspective, namely that of a quadratically con-
strained quadratic program (QCQP). This QCQP will
consist of two constraints, one of which is related to the
maximum tolerable speech distortion for the imposition
of the a priori RTF vector and the other related to the
maximum tolerable speech distortion for the imposition
of the data-dependent RTF vector. With respect to the
procedures for obtaining the RTF vectors, it is straightfor-
ward to obtain a data-dependent RTF vector; however, the
notion of an a priori RTF vector when XMs are used with
an LMA is a bit more ambiguous. In particular, since only
partial a priori knowledge is usually available for the part
of the RTF vector pertaining to the LMA, the other part
pertaining to the XMs will have to be a data-dependent
estimate and hence a procedure based on partial a pri-
ori knowledge [9] would be necessary. As a result, an
integratedMVDR beamformer for a microphone configu-
ration with an LMA and XMs will merge an a priori RTF
vector that is based on partial a priori knowledge and a
fully data-dependent one.
With the a priori and the data-dependent RTF vector

for the LMA and XMs estimated, it will become evident
that the optimal filter from the integrated MVDR beam-
former, formulated as a QCQP, is identical to that which
was derived from [22], where the Lagrangian multipliers
associated with the QCQP are equivalent to the tuning
parameters that have been considered in [22]. The addi-
tional insight of the QCQP formulation is that these tun-
ing parameters or Lagrangian multipliers can be related
to a maximum tolerable speech distortion for the impo-
sition of the a priori or the data-dependent RTF vector.
An analysis of this relationship is provided, which facil-
itates the tuning of the integrated MVDR beamformer
from the more intuitive perspective of the maximum tol-
erable speech distortions as opposed to the combination
of filters as in [22]. A general tuning framework will then
be discussed along with the suggestion of some particular
tuning strategies.
The integrated MVDR beamformer is then evaluated

with audio recordings from behind-the-ear hearing aid
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microphones (the LMA) and three XMs for a single
desired speech source in a re-created cocktail party sce-
nario. The results demonstrate that the integrated MVDR
beamformer can be tuned to yield different enhanced
speech signals, which can find a compromise between
relying solely on an a priori RTF vector or a data-
dependent RTF vector, and hence may be more suitable
for improving speech intelligibility despite changes in the
desired speech source position and imperfectly estimated
spatial correlation matrices.
The paper is organised as follows. In Section 2, the data

model is defined. In Section 3, the MVDR beamformer as
applied to an LMA with XMs is discussed along with the
procedures for obtaining the a priori RTF vector based
on partial a priori knowledge and the data-dependent
RTF vector. Section 4 reformulates the integrated MVDR
beamformer as a QCQP and provides an analysis on the
effect of the maximum tolerable speech distortions due to
the imposition of the a priori RTF vector and the data-
dependent RTF vector. In Section 5, a general tuning
framework is presented, as well as some suggested tuning
strategies. In Section 6, the integrated MVDR approach is
analysed and evaluated with both simulated data as well
as experimental data involving the use of behind-the-ear
hearing aid microphones and three XMs. Conclusions are
then drawn in Section 7.

2 Datamodel
2.1 Unprocessed signals
A microphone configuration consisting of an LMA of Ma
microphones plusMe XMs is considered with one desired
speech source in a noisy, reverberant1 environment. In
the short-time Fourier transform (STFT) domain, the
observed vector of microphone signals at frequency bin k
and time frame l is represented as:

y(k, l) = h(k, l)sa,1(k, l)
x(k,l)

+ n(k, l) (1)

where (dropping the dependency on k and l for brevity)
y = [ yaT yeT]

T , ya = [ ya,1 ya,2 . . . ya,Ma]T is a vector of
the LMA signals, ye = [ ye,1 ye,2 . . . ye,Me]T is a vector of
the XM signals, x is the speech contribution, represented
by sa,1, the desired speech signal in the first (reference)
microphone of the LMA, filtered with h =[hTa heT ]T , ha
is the RTF vector for the LMA (where the first component
of ha is equal to 1 since the first microphone is used as the
reference), and he is the RTF vector for the XM signals.
Finally, n =[naT neT ]T represents the noise contribution.
Variables with the subscript “a” refer to the LMA and
variables with the subscript “e” refer to the XMs.

1Reverberation is not explicitly included in the signal model as
dereverberation is not addressed in this paper. This paper primarily focuses on
noise reduction, although some dereverberation will be achieved as a
fortunate by-product of beamforming.

The (Ma + Me) × (Ma + Me) spatial correlation matrix
for the speech-plus-noise, noise-only, and speech-only
signals is defined respectively as:

Ryy = E yyH (2)
Rnn = E nnH (3)
Rxx = E xxH (4)

where E{.} is the expectation operator and {.}H is the Her-
mitian transpose. With the assumption of a single desired
speech source from (1),Rxx can be represented as a rank-1
correlation matrix as follows:

Rxx = σ 2
sa,1hh

H (5)

where σ 2
sa,1 = E |sa,1|2 is the desired speech power spec-

tral density in the first microphone of the LMA. It is
further assumed that the desired speech signal is uncorre-
lated with the noise signal, and hence Ryy = Rxx + Rnn.
The speech-plus-noise, noise-only, and speech-only cor-
relation matrix can also be defined solely for the LMA
signals respectively as Ryaya = E yayaH , Rnana =
E nanaH , and Rxaxa = E xaxHa , with Rxaxa also having
the same rank-1 structure as in (5). It is assumed that all
signal correlations can be estimated as if all signals were
available in a centralised processor, i.e. a perfect commu-
nication link is assumed between the LMA and the XMs
with no bandwidth constraints as well as synchronous
sampling rates.
The estimate of the desired speech signal in the first

microphone of the LMA, z1, is then obtained through a
linear filtering of the microphone signals, such that:

z1 = wHy (6)

where w = wT
a wT

e
T is a complex-valued filter.

2.2 Pre-whitened-transformed domain
As a pre-processing stage, the unprocessed microphone
signals can be firstly transformed with the available a pri-
ori RTF vector for the LMA signals and then spatially
pre-whitened using the resulting transformed noise-only
correlation matrix, yielding a vector of pre-whitened-
transformed (PWT) microphone signals. As discussed in
[9] and subsequently reviewed in Section 3.1, these pre-
processing steps essentially compress theMa LMA signals
into one signal. This signal is then used with the pre-
processed Me XM signals to obtain an estimate for the
missing part of the RTF vector pertaining to the XMs
when there is an available a priori RTF vector for the LMA.
Therefore, PWT microphone signals will be adopted for
convenience throughout this paper.
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To define the transformation operation, anMa×(Ma−1)
blocking matrix Ca, and an Ma × 1 fixed beamformer, fa,
are firstly defined such that:

CH
a ha = 0; f Ha ha = 1 (7)

where ha is an available a priori RTF vector (which is some
pre-determined estimate or approximation of ha), and the
notation ( . ) refers to quantities based on available a priori
knowledge. Using Ca and fa, an (Ma + Me) × (Ma + Me)
transformation matrix, ϒ , can be defined as:

ϒ = ϒa 0
0 IMe

= Ca fa 0
0 IMe

(8)

where ϒa = [Ca fa] and in general Iϑ denotes the ϑ ×
ϑ identity matrix. Consequently, the transformed speech-
plus-noise signals and the transformed noise-only signals
are defined respectively as:

ϒ
Hy =

⎡

⎣

CH
a ya

fHa ya
ye

⎤

⎦ ;ϒHn =
⎡

⎣

CH
a na

fHa na
ne

⎤

⎦ (9)

This transformation domain is simply the LMA signals
that pass through a blocking matrix and a fixed beam-
former as is done in the first stage of a typical generalised
sidelobe canceller (i.e. the adaptive implementation of an
MVDR beamformer) [23], along with the unprocessed
XM signals.
A spatial pre-whitening operation can now be defined

from the transformed noise-only correlation matrix by
using the Cholesky decomposition:

E ϒ
Hn ϒ

Hn
H = LLH (10)

where L is an (Ma + Me) × (Ma + Me) lower triangular
matrix.
A transformed signal vector can then be pre-whitened

by pre-multiplying it with L−1 and will be denoted with an
underbar (.). Hence, the signal model for the unprocessed
microphone signals from (1) can be expressed in the PWT
domain as2:

y(k, l) = L−1(k, l)ϒH
(k, l)y(k, l) (11)

= h(k, l)sa,1(k, l)
x(k,l)

+ n(k, l) (12)

where y consists of the PWT LMA and XM signals, i.e.

y = yTa yTe
T
, n = L−1ϒ

Hn, the PWT RTF vector h =
L−1ϒ

Hh, and the respective correlation matrices are:

2The dependence on k and l is included here as a reminder and for
completeness in the signal model. It will be dropped again unless explicitly
required.

Ryy = E y yH = L−1ϒ
HRyyϒL−H (13)

Rnn = E nnH = L−1ϒ
HRnnϒL−H = I(Ma+Me) (14)

Rxx = E xxH = σ 2
sa,1hh

H (15)

where the expression for Rnn is a direct consequence of
(10). With the assumption of the desired speech source
and noise being uncorrelated, it also holds that Ryy =
Rxx+Rnn. In the PWT domain, the estimate of the desired
speech signal in the first microphone of the LMA, z1,
which is equivalent to (6), is then obtained through a
linear filtering of the PWTmicrophone signals, such that:

z1 = wHy (16)

where w = LHϒ
−1w is a complex-valued filter3.

3 MVDRwith an LMA and XMs
TheMVDR beamformer minimises the noise power spec-
tral density after filtering (minimum variance), with a
constraint that the desired speech signal should not be
subject to any distortion (distortionless response), which
is specified by an appropriate RTF vector for the MVDR
beamformer. For the unprocessedmicrophone signals, the
MVDR beamformer problem can be formulated as:

minimise
w

wHRnnw

s.t. wHh = 1
(17)

The solution to (17) yields the optimal filter:

wmvdr = R−1
nn h

hH R−1
nn h

(18)

with the desired speech signal estimate, z1 = wH
mvdry. In

practice, both Rnn and h are unknown and hence must be
estimated.
A data-dependent estimate can typically be obtained

for Rnn, for instance by recursive averaging, with a voice
activity detector [24] or a speech presence probability
(SPP) estimator [25]. This data-dependent estimate will be
denoted as R̂nn and in general the notation ˆ(.) will refer to
any data-dependent estimate.
In the PWTdomain, it can be seen that using R̂nn in (10)

will result in an estimate for the pre-whitening operator as
L̂ and hence from (14), R̂nn can be expressed as:

R̂nn = ϒ
−H L̂L̂Hϒ

−1 (19)

Replacing Rnn in (17) with R̂nn in (19) then results in
the MVDR beamformer problem formulated in the PWT
domain as:

3Since the sequence of operations from w to w is not exactly that of a PWT

signal vector, a slightly different notation is used for this quantity.
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minimise
w

wHw

s.t. wHh = 1
(20)

where w is redefined as w = L̂Hϒ
−1w and h is rede-

fined as h = L̂−1ϒ
Hh. The solution to (20) then yields the

optimal filter in the PWT domain:

wmvdr = h
hH h

(21)

with the desired speech signal estimate, z1 = wH
mvdry. As h

is still unknown, however, it means that h is also unknown
and an estimate for this component is still required. Using
the same R̂nn, two general approaches for the estimation
of h can be considered, either making use of an avail-
able a priori RTF vector pertaining to the LMA or making
use of only the observable microphone data, i.e. a fully
data-dependent estimate. The remainder of this section
elaborates on these procedures.

3.1 Using an a priori RTF vector
For a microphone configuration consisting of only an
LMA, it is not uncommon to use an a priori RTF vector,
ha, in place of the true RTF vector. As mentioned ear-
lier, this may be measured a priori or based on several
assumptions regarding the spatial scenario and acoustic
environment. For the inclusion of XMs into the micro-
phone configuration, however, the notion of an a priori
RTF vector is not so straightforward as no immediate
prior knowledge with respect to the XMs can be exploited
since there are no restrictions on what type of XMs can be
used or where theymust be placed in the acoustic environ-
ment. Hence, an a priori RTF vector cannot be prescribed,
as was the case for the LMA only. However, since a priori
information would typically only be available for the LMA,
an a priori RTF vector for a microphone configuration of
an LMA with XMs can be defined as follows:

h = [ hTa heT ]T (22)

which consists partially of the a priori RTF vector per-
taining to the LMA, ha, and partially of the RTF vector
pertaining to the XM, he, which is unknown and remains
to be estimated. The estimate of he will be denoted as ĥe to
emphasise that it is constrained by the a priori knowledge
set by ha but estimated from the observed microphone
data. In [9], a procedure involving the generalised eigen-
value decomposition (GEVD) was used for obtaining ĥe
which is subsequently reviewed and re-framed in the
PWT domain.

In the PWT domain, using (13)–(15), a rank-1 matrix
approximation problem can be firstly formulated to esti-
mate the entire RTF vector [9]:

minimise
σ 2
sa,1 , h

R̂yy−R̂nn −σ 2
sa,1 L̂

−1ϒ
HhhHϒL̂−H 2

F (23)

where ||.||F is the Frobenius norm, and:

R̂yy = L̂−1ϒ
H R̂yyϒL̂−H (24)

R̂nn = L̂−1ϒ
H R̂nnϒL̂−H = I(Ma+Me) (25)

where R̂yy is the data-dependent estimate of Ryy. From
(22), an a priori RTF vector in the PWT domain can be
defined as follows:

h = L̂−1ϒ
H hTa heT

T = L̂−1 0T 1 heT
T

(26)

where 0 is a vector of (Ma −1) zeros. Replacing h with the
a priori RTF vector from (22) then results in:

minimise
σ 2
sa,1 , he

R̂yy − R̂nn − σ 2
sa,1hh

H 2

F (27)

where now only an estimate is required for he, which in
turn will define the a priori RTF vector. As discussed in [9],
it can be observed that it is only the lower (Me+1)×(Me+
1) blocks of R̂yy and R̂nn that are required for estimating
he. Hence, (27) can be reduced to:

minimise
σ 2
sa,1 ,he

R̂yy − R̂nn − σ 2
sa,1J

ThhHJ
2

F (28)

where J = 0(Me+1)×(Ma−1) | I(Me+1)
T is a selection

matrix, R̂yy = JT R̂yyJ, and R̂nn = JT R̂nnJ = IMe+1. The
solution of (28) then follows from a GEVD of the matrix
pencil R̂yy, R̂nn or equivalently from the eigenvalue

decomposition (EVD) of R̂yy [26]:

R̂yy = V̂ ˆ V̂H (29)

where V̂ is a (Me + 1) × (Me + 1) unitary matrix of
eigenvectors and ˆ is a diagonal matrix with the associ-
ated eigenvalues in descending order. The estimate of he
then follows from the appropriate scaling of the principal
eigenvector, v̂p:

⎡

⎢

⎣

0
1
ĥe

⎤

⎥

⎦ = L̂Jv̂p
eTMa

L̂Jv̂p
= L̂Jv̂p

l̂Ma v̂p,1
(30)

where eMa is an (Ma + Me) selection vector consisting of
all zeros except for a one in the Math position, v̂p,1 is the
first element of v̂p, and l̂Ma is the real-valued (Ma,Ma)th
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element in L̂. Substitution of this expression into (26)
finally yields the a priori RTF vector in the PWT domain
as4:

h = 1
l̂Ma v̂p,1

0 v̂p
T (31)

Finally, replacing h in (21) with h from (31) results in
the MVDR beamformer based on a priori knowledge
pertaining to the LMA:

w
mvdr

= l̂Ma v̂∗
p,1 0 v̂p

T (32)

which will be referred to as MVDR-AP. The correspond-
ing speech estimate is then computed using (16):

z1 = l̂Ma v̂p,1 v̂Hp
ya,Ma
ye

(33)

As a consequence of incorporating the a priori informa-
tion into the rank-1 speech model, it can be seen that it is
only necessary to filter the last (Me + 1) elements of y, i.e.
ya,Ma

and ye, with the lower order, (Me + 1) filter defined

by l̂Ma v̂∗
p,1 v̂p.

3.2 Using a data-dependent RTF vector
In the PWT domain, it is (23) that needs to be solved in
order to obtain a fully data-dependent estimate of the RTF
vector pertaining to the LMA and the XMs. The solu-
tion to (23) follows from a GEVD of the matrix pencil
R̂yy, R̂nn or equivalently from the EVD of R̂yy:

R̂yy = Q̂ ˆ Q̂H (34)

where Q̂ is an (Ma + Me) × (Ma + Me) unitary matrix of
eigenvectors and ˆ is a diagonal matrix with the associ-
ated eigenvalues in descending order. The estimated RTF
vector is then given by the principal (first in this case)
eigenvector, q̂p:

ĥ = ϒ
−H L̂ q̂p

η̂q
(35)

where η̂q = eT1 ϒ
−H L̂ q̂p and e1 is an (Ma +Me) selection

vector with a one as the first element and zeros every-
where else. In the PWT domain, this data-dependent RTF
vector then becomes:

ĥ = L̂−1ϒ
H ĥ = q̂p

η̂q
(36)

Replacing h in (21) with ĥ from (36) results in the MVDR
beamformer that makes use of a data-dependent RTF
vector:
4It is acknowledged that there is a slight abuse of notation here as the estimate
for h should be denoted as ĥ. However, in favour of legibility and to stress that
the estimation is done in accordance to the a priori assumptions set by ha is
why the notation is maintained as h.

ŵ
mvdr

= η̂∗
q q̂p (37)

which will be referred to as MVDR-DD. The correspond-
ing speech estimate is then computed using (16):

ẑ1 = η̂q q̂Hp y (38)

where now all (Ma + Me) signals need to be filtered as
opposed to only (Me + 1) signals in (33) when an a priori
RTF vector is used. In general, the MVDR-DD would also
be used for microphone configurations where there is no
a priori knowledge available, such as those consisting of
external microphones only.

4 IntegratedMVDR beamformer
4.1 Quadratically constrained quadratic program
As opposed to relying on only an a priori RTF vector
or a data-dependent RTF vector, the merging or inte-
gration of both RTF vectors into a single approach can
be framed as a quadratically constrained quadratic pro-
gram (QCQP), firstly with respect to the unprocessed
microphone signals:

minimise
w

wH R̂nnw

s.t. wHh − 1
2 ≤ 2

wH ĥ − 1
2 ≤ ˆ2

(39)

where 2 and ˆ2 are maximum-tolerated squared devia-
tions from a distortionless response due to h or ĥ respec-
tively. The constraints of (39) can also be re-written in the
standard form [27] as follows:

wHhhHw − 2 hHw + 1 − 2 ≤ 0 (40)

wH ĥĥHw − 2 ĥHw + 1 − ˆ2 ≤ 0 (41)

where .} denotes the real part of its argument. As the
matrices R̂nn, hhH , and ĥĥH are all positive semidefinite,
it is then evident that the QCQP of (39) is convex [27]. In
the PWT domain, (39) is equivalently:

minimise
w

wHw

s.t. wHh − 1
2

≤ 2

wH ĥ − 1
2

≤ ˆ2

(42)

where h and ĥ are given in (31) and (36) respectively.
Whereas in (20), the hard constraint of h is replaced by
either h or ĥ, (42) can be interpreted as the relaxation
of the hard constraints imposed by h or ĥ by the speci-
fied deviations 2 and ˆ2 respectively. In the following, the
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quantities wHh − 1
2
and wH ĥ − 1

2
are referred to as

speech distortions and 2 and 2 are the respective max-
imum tolerable speech distortions. Furthermore, the first
inequality constraint in (42) will be referred to as the a
priori constraint (APC), and the second inequality con-
straint will be referred to as the data-dependent constraint
(DDC).
The QCQP of (39) is in fact a subset of the more general

QCQP considered in [28, 29] and as well as an extension to
the parametrised multi-channel Wiener filter [30]. In [28,
29], the inequality constraints considered are a set of a pri-
ori measured RTF vectors, and in [30], only one inequality
constraint is considered. The difference in (39) from both
of these approaches is that two inequality constraints are
considered, one that relies on a priori knowledge and the
other which is fully estimated from the data.
The Lagrangian of (42) is given by:

L w,α,β = wHw + α |wHh − 1|2 − 2

+ β |wH ĥ − 1|2 − ˆ2 (43)

where α and β are Lagrangian multipliers. Taking the par-
tial derivative of (43) with respect to w and setting to zero

results in what will be referred to as the integrated MVDR
beamformer, MVDR-INT:

w
int

= I(Ma+Me)+αhhH+βĥĥ
H −1

αhhH + βĥĥ
H

e1
(44)

where the actual values of α and β depend on the pre-
scribed maximum tolerable speech distortions 2 and 2.
It can also be observed that (44) is in fact identical (in the
PWT domain) to the integrated MVDR beamformer con-
sidered in [22] and hence can be written as a linear com-
bination of w

mvdr
and ŵ

mvdr
with complex weightings5

[22]:

wint = gap (α,β) wmvdr + gdd (α,β) ŵmvdr (45)

where w
mvdr

and ŵ
mvdr

are given in (32) and (37), respec-

tively, and the complex weightings are given by:

gap (α,β) = αkaa[ 1 + β(kbb − kab)]
D

(46)

gdd (α,β) = βkbb[ 1 + α(kaa − kba)]
D

(47)

5It can also be expressed as a convex combination of various beamformers as
discussed in [22].

where

D = αkaa + βkbb + αβ(kaakbb − kabkba) + 1 (48)

and

kaa = hHh; kbb = ĥ
H
ĥ; (49)

kab = hH ĥ; kba = ĥ
H
h. (50)

Using the expressions for w
mvdr

and ŵ
mvdr

from (32) and

(37) respectively, the resulting speech estimate from the
MVDR-INT is then:

zint = g∗
ap (α,β) z1 + g∗

dd (α,β) ẑ1 (51)

where z1 and ẑ1 are defined in (33) and (38) respectively.
Hence, the integrated beamformer output is simply a lin-
ear combination of the two speech estimates which relied
on either a priori information or not.
Once appropriate values are chosen for 2 and ˆ2, then a

package for specifying and solving convex programs such
as CVX [31, 32] can be used for solving (42). Alternatively,
more computationally efficient methods may be applied
such as those proposed in [28, 29], one of which is high-
lighted in Algorithm 1. Here, a gradient ascent method
[33] for solving (42) is described, which is based on solving
the dual problem:

maximise
(α,β)

D(α,β)

s.t.α ≥ 0;β ≥ 0
(52)

where D(α,β) = inf
w
int

L w
int
,α,β is the infimum of

L(w
int
,α,β) and referred to as the dual function. As the

dual function is concave [27], a gradient ascent proce-
dure can be used to update the values of α and β using

the gradients, ∂D(α,β)
∂α

= wH

int
h − 1

2
− 2 and ∂D(α,β)

∂β
=

wH

int
ĥ − 1

2
− ˆ2, i.e. the gradients of the dual function

with respect to the particular Lagrange multiplier are the
respective constraints. This then gives rise to Algorithm
1 [29], which makes use of the simplified expressions for
w
int

with the complex-valued weightings as opposed to

computing (44) directly. The Lagrangian multipliers, α

and β , are then updated via the gradient ascent procedure
with the step size γ , whose value can be controlled using a
backtracking method [34]. The algorithm continues until
the respective gradients are within some specified toler-
ance, δ.

4.2 Effect of and ˆ
As the QCQP of (42) in principle is to be solved for
every time frame and frequency bin, it can therefore
lead to quite a versatile beamformer as the parameters,
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Algorithm 1 Gradient ascent method for solving the
QCQP of (42)
1: Initialise α, β , w

int
. Set tolerance, δ. n = 0

2: while |wH

int
(n)h − 1|2 − 2 > δ OR

|wH

int
(n)ĥ − 1|2 − ˆ2 > δ do

3: gap(n) = gap (α(n − 1),β(n − 1)) from (46)
4: gdd(n) = gdd (α(n − 1),β(n − 1)) from (47)
5: w

int
(n) = gap(n)w

mvdr
+ gdd(n)ŵ

mvdr
from (45)

6: Set γ according to a backtracking method.

7: α(n)=max α(n−1)+γ wH

int
(n)h−1

2
− 2 , 0

8: β(n)=max β(n−1)+γ wH

int
(n)ĥ−1

2
− ˆ2 , 0

9: n = n + 1
10: end while

and ˆ can be set independently for each frequency in
every time frame in order to define the inequality con-
straints. So although (42) is a well-known QCQP for
which there are several methods available to find the
solution, it still remains unclear as to what would be a rea-
sonable strategy for setting or tuning and ˆ in practice.
As opposed to [22], where tuning rules were developed
for the Lagrangian multipliers, here a strategy is outlined
for tuning and ˆ, which will in turn compute the appro-
priate Lagrangian multipliers (for instance as outlined in
Algorithm 1), as this is believed to be a more insightful
procedure.
In order to develop a strategy for tuning and ˆ, it

will be useful to observe the constraints of (42) in more
detail. The derivations that follow will reveal that the
space spanned by and ˆ can be divided into four distinct
regions as illustrated in Fig. 1, where each of these regions
corresponds to a particular set of constraints being active.
Firstly, substitution of w

int
= 0 into the APC and DDC

from (42) shows that when 1 and ˆ 1, both the APC
and theDDC are inactive. This condition therefore defines
the upper-right region (region I) of Fig. 1 and indeed cor-
responds to a complete attenuation of the microphone
signals, i.e. a zero output signal.
For the case when ˆ → ∞, i.e. when the DDC is inactive,

then β → 0. If the APC is still active however, it becomes6:

6The square root has been taken on both sides of the inequality from (42) in
order to simplify the derivations that follow.

wH

int
h − 1 ≤ (53)

Furthermore, if 0 ≤ ≤ 1, then it can be deduced that:

lim
ˆ→∞
0≤ ≤1

w
int

= (1 − w
mvdr

(54)

Substitution of (54) into (53) readily makes this evident,
recalling that wH

mvdr
h = 1. It is worthwhile to also note

that by using (46), the relationship between α and for
0 ≤ ≤ 1 is then given as:

lim
ˆ→∞
0≤ ≤1

α = 1
kaa

(1 −
(55)

In regard to the DDC, as ˆ is decreased (from ˆ → ∞), it

remains inactive until wH ĥ − 1 = ˆ. By substitution of

(54) into the DDC of (42), the value of ˆ at which the DDC
becomes active, ˆo, is given by:

ˆo = wH

mvdr
ĥ(1 − − 1 (56)

In the limits of , when = 1, ˆo = 1, and when

= 0, ˆo = wH

mvdr
ĥ − 1 , where depending on ĥ,

wH

mvdr
ĥ − 1 < 1 or wH

mvdr
ĥ − 1 ≥ 1. The range of val-

ues obtained for ˆo from (56) within the domain 0 ≤ ≤ 1
define what will be referred to as the DDC bounding curve
as depicted in Fig. 1. Hence, region II in Fig. 1 is enclosed
by the DDC bounding curve, = 0 and = 1, repre-
senting the space where the APC is active and the DDC is
inactive.
A similar analysis can be followed starting from the case

when → ∞, i.e. when the APC is inactive and hence
α → 0. If the DDC is still active however, it becomes:

wH

int
ĥ − 1 ≤ ˆ (57)

When 0 ≤ ˆ ≤ 1, then the following relationships can be
deduced:

lim→∞
0≤ˆ≤1

w
int

= (1 − ˆ ŵ
mvdr

(58)

lim→∞
0≤ˆ≤1

β = 1
kbb

(1 − ˆ
ˆ (59)

Finally, for the APC, as is decreased (from initially →
∞), the value, o, at which this constraint becomes active
is given by:

o = ŵH

mvdr
h(1 − ˆ − 1 (60)



Ali et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:10 Page 9 of 20

Fig. 1 Depiction of the four regions for which the a priori constraint (APC) and the data-dependent constraint (DDC) may be active or inactive
within the space spanned by the maximum tolerable speech distortion parameters, and ˆ . The curve dividing the regions II and IV is the DDC
bounding curve defined when the equality is satisfied from (56). The curve dividing the regions III and IV is the APC bounding curve defined when
the equality is satisfied from (60)

In the limits of ˆ, when ˆ = 1, o = 1, and when

ˆ = 0, o = ŵH

mvdr
h − 1 , where depending on h,

ŵH

mvdr
h − 1 < 1 or ŵH

mvdr
h − 1 ≥ 1. The range of val-

ues obtained for o from (60) within the domain 0 ≤ ˆ ≤ 1
define what will be referred to as the APC bounding curve
as depicted in Fig. 1. Hence, region III in Fig. 1 is enclosed
by the APC bounding curve, ˆ = 0 and ˆ = 1, represent-
ing the space where the APC is inactive and the DDC is
active.
Finally, in the lower-left region, region IV, both the APC

and the DDC become active within the area enclosed by
the APC and DDC bounding curve. It should be kept
in mind that Fig. 1 is only an illustration and that the
shape of the area for which the APC and DDC are both
active can change depending on the RTF vectors, h and

ĥ. For instance, Fig. 1 shows ŵH

mvdr
h − 1 < 1 and

wH

mvdr
ĥ − 1 < 1 (points on the axes), whereas it is possi-

ble that either of these points may be greater than or equal
to one.

5 Confidencemetric and tuning
5.1 Confidence metric
One of the ingredients towards developing a tuning strat-
egy for setting appropriate values for and ˆ is that of a
confidence metric, which is indicative of the confidence
in the accuracy of the data-dependent RTF vector. In [22],
it was proposed that a principal generalised eigenvalue

resulting from the data-dependent estimation procedure
be used as such a confidence metric. In the following, it is
proposed again to use such a metric; however, due to the
formulation in the PWT domain, the principal eigenvalue,
λ̂1 from the EVD in (34) will be used. It can be shown that
λ̂1 is equivalent to the resulting posterior SNR when the
MVDR-DD is applied and therefore serves as a reasonable
metric for making a decision with respect to the accuracy
of the data-dependent RTF. For theMVDR-DD in (37), the
resulting posterior SNR is given by:

SNRDD =
ŵH

mvdr
R̂yyŵ

mvdr
ŵH

mvdr
R̂nnŵ

mvdr

(61)

where it is recalled that R̂nn = I(Ma+Me). Substitution of
(34) and (37)7 into (61) results in SNRDD = λ̂1.
As in [22], λ̂1 can then be used in a logistic function to

define the confidence metric, F(l)8:

F(l) = 1
1 + e−ρ(10 log10(λ̂1(l))−λt)

(62)

where F(l) ∈[ 0, 1], ρ controls the gradient of the transition
from 0 to 1, and λt is a threshold (in dB), beyond which
F(l) → 1. Hence, as 10 log10(λ̂1(l)) increases beyond λt,
then F(l) → 1, indicating high confidence in the accuracy
of the data-dependent RTF vector. On the other hand, as

7Recall that ŵ
mvdr

can be equivalently expressed as ŵ
mvdr

= η̂∗
q Q̂e1 .

8The time index is reintroduced here to reinforce that these quantities are to
be computed in each time frame. All frequencies are still treated equivalently.
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10 log10(λ̂1(l)) decreases below λt, then F(l) → 0, indicat-
ing low confidence in the accuracy of the data-dependent
RTF vector.

5.2 Tuning strategy
With the depiction of the space spanned by and ˆ
from Fig. 1 in mind, a general two-step procedure can be
followed to establish a particular tuning strategy:

1. Choose two points on the {ˆ, } plane: AP and DD.
The coordinates of AP , {ˆAP, AP}, will specify the
maximum tolerable speech distortions for the case
when there is no confidence in the accuracy of the
data-dependent RTF vector. The coordinates of DD,
{ˆDD, DD}, on the other hand, will specify the
maximum tolerable speech distortions for the case
when there is complete confidence in the accuracy of
the data-dependent RTF vector.

2. Define an appropriate path in order to connect AP
and DD, where the variation along this path would
be a function of the confidence metric, F(l). As F(l)
changes in each time-frequency segment, different
values of ˆ and will be chosen along this path and
subsequently used in the QCQP from (42).

Figure 2 depicts three examples of how such a gen-
eral tuning strategy can be interpreted in the {ˆ, } plane,
where a linear path has been used to connect the points,
AP and DD. Before further elaborating on Fig. 2, how-
ever, one possible tuning strategy will be briefly outlined.
In this strategy, AP and DD are chosen by making use
of the relationship between the integrated MVDR and
the so-called speech distortion weighted multi-channel
Wiener filter (SDW-MWF) [35, 36]. Although AP and
DD can in general be chosen without making use of this
relation, it is done to highlight how the speech distor-
tion parameter, μ, from the SDW-MWF is related to the
maximum tolerable speech distortion parameters of the
integratedMVDR, especially as thisμ is a well-established
trade-off parameter. For the path connecting AP and

DD, a linear path will be defined using the confidence
metric, F(l).
In the PWT domain, the cost function for the SDW-

MWF is given by:

minimise
w

μwHw + σ 2
sa,1 wHh − 1

2

(63)

which consists of two terms, the first corresponding to the
noise power spectral density after filtering and the sec-
ond corresponding to the speech distortion. The speech
distortion parameter μ ∈ (0,∞) is used to trade-off
between the amount of noise reduction and speech dis-
tortion, where larger values of μ put more emphasis on
reducing the noise and smaller values put more emphasis
on reducing the speech distortion. Two separate SDW-
MWF formulations can then be considered for h and ĥ
respectively:

minimise
w

μwHw + σ 2
sa,1 wHh − 1

2
(64)

minimise
w

μ̂wHw + σ 2
sa,1 wH ĥ − 1

2
(65)

where μ ∈ (0,∞) and μ̂ ∈ (0,∞) are the separate
speech distortion parameters for each cost function. The
solutions to (64) and (65) are then respectively given by:

wsdw = μI(Ma+Me) + σ̂ 2
sa,1h hH

−1
σ̂ 2
sa,1h hHe1 (66)

ŵsdw = μ̂I(Ma+Me) + σ̂ 2
sa,1 ĥ ĥ

H −1
σ̂ 2
sa,1 ĥ ĥ

H
e1 (67)

where σ̂ 2
sa,1 is an estimate of σ 2

sa,1 . On comparing the
w
int

in (44) to (66) and (67), it can be observed that

there is a relationship between the integrated MVDR
beamformer and the SDW-MWF. By considering the
expressions written as an MVDR beamformer followed
by a single-channel post filter [36], it can be deduced
that [22]:

Fig. 2 Depiction of three different tuning strategies (a) trading off the maximum tolerable speech distortions between the APC and DDC, (b) fixed
maximum tolerable speech distortion for the APC but variable maximum tolerable speech distortion for the DDC, and (c) fixed maximum tolerable
speech distortion for the DDC but variable maximum tolerable speech distortion for the APC
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α = σ̂ 2
sa,1
μ

when β = 0 (68)

β = σ̂ 2
sa,1
μ̂

when α = 0 (69)

Proceeding to define the coordinates of AP, (68) is
substituted into (55) to obtain a value for as:

AP = μ

μ + σ̂ 2
sa,1kaa

(70)

Hence, the range of values for μ are essentially com-
pressed into a range of values for AP such that 0 ≤ AP ≤
1. This means that AP can be chosen to be within this
range without having to specify μ. However, (70) serves to
clarify how the choice of AP is related to the cost function
of (64).
Using the value of AP in (56) then yields a range of

choices for ˆAP such that ˆAP ≤ ˆo:
ˆAP ≤ wH

mvdr
ĥ(1 − AP) − 1 (71)

If ˆAP = wH

mvdr
ĥ(1 − AP) − 1 , then AP lies on the DDC

bounding curve of Fig. 1. For all values of ˆ such that

ˆ wH

mvdr
ĥ(1 − AP) − 1 , the DDC remains inactive

and hence setting a value of ˆ within this region will always
result in the same achievable9 speech distortion defined

by wH

mvdr
ĥ(1 − AP) − 1 . Furthermore, when the DDC is

inactive, then (68) holds, so that values of and ˆ in region
II from Fig. 1 would result in the SDW-MWF from (66).
Similarly, by firstly substituting (69) in (59) and mak-

ing use of (60), the coordinates {ˆDD, DD} of DD can be
defined as:

ˆDD = μ̂

μ̂ + σ̂ 2
sa,1kbb

(72)

DD ≤ ŵH

mvdr
h(1 − ˆDD) − 1 (73)

Now if DD = ŵH

mvdr
h(1 − ˆDD) − 1 , then DD lies on

the APC bounding curve of Fig. 1. Additionally, for all

values of such that ŵH

mvdr
h(1 − ˆDD) − 1 , the

APC remains inactive and hence setting a value of
within this region will always result in the same achievable

speech distortion defined by ŵH

mvdr
h(1 − ˆDD) − 1 . Fur-

thermore, when the APC is inactive, then (69) holds, so
that values of and ˆ in region III from Fig. 1 would result
in the SDW-MWF from (67).

9Achievable here is meant to differentiate between the actual speech
distortion that is obtained and the maximum tolerable value that was specified.

The insight of Fig. 1 and additional value of the
MVDR-INT as compared to the SDW-MWF is now
apparent. Given the two SDW-MWF solutions from (66)
and (67), it is not immediately clear how to optimally
interpolate between them by using a linear combination
of the filters themselves. In Fig. 1, however, it can be
seen that an optimal interpolation between (66) and (67),
i.e. between regions II and III, can be achieved through
the specification of the maximum tolerable speech distor-
tion parameters, and ˆ along some path from region II
to region III. In essence, the MVDR-INT has introduced
region IV, which serves as a bridge for connecting regions
II and III, thereby facilitating the use of both the priori and
data-dependent RTF vectors. This then corresponds to
the second step of the general procedure for tuning, where
AP and DD are to be connected. Here, it is proposed to
use the confidence metric, F(l) to perform a linear inter-
polation between AP and DD to yield the values for and
ˆ respectively as:

ˆ = (1 − F(l)) ˆAP + F(l) ˆDD (74)
= (1 − F(l)) AP + F(l) DD (75)

which are subsequently squared to be used in the QCQP
from (42). Consequently, as the confidence in the accu-
racy of the data-dependent RTF vector increases, the
maximum tolerable speech distortions will be specified
by values tending towards {ˆDD, DD}. On the contrary,
as this confidence decreases, maximum tolerable speech
distortions will be specified by values tending towards
{ˆAP , AP}.
Returning focus to Fig. 2, the three examples of a tuning

strategy can now be understood. A particular realisation
of the APC and the DDC bounding curves has been plot-
ted and the intersecting point of both curves corresponds
to the {1, 1} coordinate (recall Fig. 1). In the tuning of
Fig. 2a, as F(l) increases, the path along the dotted line
is taken from AP to arrive at DD which gradually sets
a larger value of for the APC and a smaller value of
ˆ for the DDC. Depending on the particular realisation
of the APC and DDC bounding curves, it may be that
such a path can entirely lie within the area enclosed by
these curves or part of it may lie outside as shown in
Fig. 2a. The latter is in fact a fortunate circumstance
because the achieved speech distortion corresponding to
the inactive constraint will actually be lower than what
was prescribed by the tuning. In the case of Fig. 2a for
instance, when the linear path is above the APC bound-

ing curve, it means that ŵH

mvdr
h(1 − ˆ − 1 (recall

(60)). Since beyond ŵH

mvdr
h(1 − ˆ − 1 the APC contin-

ues to be inactive, the actual speech distortion that would
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be achieved in relation to this constraint would corre-
spond to ŵH

mvdr
h(1 − ˆ − 1 , which is by definition less

than . Hence, although there is a linear path from AP to
DD, at the point where this linear path intersects with the
APC bounding curve, the actual speech distortions that
would be achieved are those that continue along the APC
bounding curve in order to arrive at DD.
The tunings depicted in Fig. 2b and c are representative

of strategies where the maximum tolerable speech dis-
tortion is fixed for one of the constraints, and only the
maximum tolerable speech distortion for the other con-
straint is tuned. In Fig. 2b, DD is defined by setting DD =
AP, so that the maximum tolerable speech distortion for
the APC is fixed. ˆ is then tuned according to (74). This
is representative of a case where the APC is always active
and the DDC is only included if there is confidence in
the accuracy of the data-dependent RTF vector. Figure 2c
depicts an opposite strategy, where now AP is set by set-
ting ˆAP = ˆDD, so that the maximum tolerable speech
distortion for the DDC is fixed.

6 Evaluation and discussion
In order to gain further insight into the behaviour of the
integrated MVDR beamformer using the QCQP formula-
tion, a simulation was firstly considered involving only an
LMA without XMs. As will be demonstrated, observing
such a scenario facilitates the visualisation of the theoret-
ical beam patterns that would be generated under differ-
ent tuning strategies. Following this simulation, recorded
data from an acoustic scenario involving behind-the-ear
dummy10 hearing aid microphones along with XMs in a
cocktail party scenario was then analysed and evaluated.

6.1 Beam patterns for a linear microphone array
As the notion of a traditional beam pattern is not imme-
diately extended to the case of an LMA with XMs11, the
following beam patterns are generated using an LMAonly.
For visualising the beam patterns, a linear LMA con-

sisting of 4 microphones and 5-cm spacing was consid-
ered. Two anechoic RTF vectors, simulating an a pri-
ori RTF vector, ha, and a data-dependent RTF vector,
ĥa, were computed according to a far-field approxima-
tion, i.e. 1 e−j2π f τ2(θ) e−j2π f τ3(θ) e−j2π f τ4(θ) T , where f is
the frequency (Hz) which was set to 3 kHz, τm(θ) =
(m−1)0.05 cos(θ)

c is the relative time delay between the mth

microphone and the reference microphone (the micro-
phone closest to the desired speech source) of the LMA, θ
is the angle of the desired speech source, and c = 345m s−1

10This means that only the microphone signals alone, without any processing,
are captured.
11The complication arises in that some of the XMs can be in the nearfield with
respect to the desired source. A visualisation can nevertheless be created, but
will have to be considered within a plane or volume with Cartesian coordinates.

is the speed of sound. For ha, θ = 0◦ and for ĥa, θ = 60◦.
Using this definition of ha,Ca, and fa were defined accord-
ingly from (7) and ϒa from (8). With Rnana = IMa , the
pre-whitening operation from (10) was then computed
but with ϒa instead of ϒ , and hence denoted as La. In
the PWT domain, the respective RTF vectors are given
by ha = L−1

a ϒ
H
a ha and ĥa = L−1

a ϒ
H
a ĥa. The optimal

PWT domain filters, w
mvdr

, and ŵ
mvdr

were then com-

puted as in (21), but using either ha or ĥa. Finally, (74)
and (75) were used to and ˆ, after which (42) was then
solved using CVX [31, 32] to yield the integrated MVDR
beamformer for the LMA only, denoted asw

int
. The beam

patterns were computed as |wH
int
h(θ)|, where h(θ) is the

PWT domain RTF vector corresponding to an angle, θ .
Figure 3 illustrates the resulting beam patterns for two

tuning strategies for different values of F(l) (in this case
l = 1 and hence the dependence on l is omitted). The
left-hand plot of Fig. 3 corresponds to a tuning strat-
egy similar to that depicted in Fig. 2a, where there is a
trade-off between the two constraints. For this strategy,
μ = μ̂ = 0.2 and σ̂ 2

sa,1 = 1, which means that AP
and DD were fairly close to the x-axis and y-axis respec-
tively. As F increases, the beam pattern is clearly seen to
evolve from focusing on the a priori direction of 0◦ to
eventually that of the data-dependent direction of 60◦. As
a linear path is followed, at the midpoint, both and ˆ
are of a similarly larger values, which explains the nature
of the lower magnitude in the beam pattern during the
transition.
The right-hand plot of Fig. 3 corresponds to a tun-

ing strategy as depicted in Fig. 2b, i.e. when the APC
is always active. As F increases, it can be observed that
the beam in the a priori direction of 0◦ is maintained,
while more gain is attributed to the data-dependent
direction of 60◦. In this particular case, however, it is
noted that although the response at 60◦ is in accor-
dance with the maximum tolerable speech distortion pre-
scribed, there is a slight tilt of the beam towards 68◦
as compared to if only the DDC was active. Neverthe-
less, this can still be a useful tuning strategy for cases
when a high confidence is placed on the a priori RTF
vector.

6.2 Effect of and ˆ
In this section, the effect of and ˆ on the behaviour
of the integrated MVDR beamformer for the case of an
LMA and XMs is further investigated using recorded
audio data. A batch processing framework will be applied
so as to observe an average performance at a single
frequency. In the following section, the processing will
be done using a Weighted Overlap and Add (WOLA)
framework [37] and a broadband performance will be
assessed.
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Fig. 3 Beam patterns as a function of the confidence metric, F, at a frequency of 3 kHz for different tunings of the integrated MVDR-LMA-XM
beamformer as applied to a microphone configuration consisting of an LMA only. (Left) A tuning strategy similar to that depicted in Fig. 2a and
(right) a tuning strategy similar to that depicted in Fig. 2b. F = 0 corresponds to the position AP and F = 1 corresponds to the position DD from
Figs. 2. As F increases, the path from AP to DD is followed resulting in the depicted beam patterns

Audio recordings of speech and noise were made in the
laboratory room as depicted in Fig. 4, which has a rever-
beration time of approximately 1.5 s. A Neumann KU-100
dummy head was placed in a central location of the room
and equipped with two (i.e. left and right) behind-the-ear

hearing aids, each consisting of two microphones spaced
approximately 1.3 cm apart. Hence, in the following, the
LMA is considered as having a total of four microphones,
i.e. the stacked left ear and right ear microphones. The
first microphone of the left ear hearing aid was used as the

Fig. 4 Spatial scenario for the audio recordings. Separate recordings were made of speech signals from the loudspeakers positioned at 0◦ and 60◦ .
These were then mixed with a cocktail party type noise as explained in the text to create the noisy microphone signals
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reference microphone. Three omnidirectional XMs (two
AKG CK32 microphones and one AKG CK97O micro-
phone) were placed at heights of 1 m from the floor and
at varying distances from the dummy head as shown in
Fig. 4. A Genelec 8030C loudspeaker was placed at 1 m
and different azimuth angles from the dummy head to
generate a speech signal from a male speaker [38]. The
loudspeaker and the dummy head were placed at a height
of approximately 1.3 m from the floor (only angles 0◦
and 60◦ were used as shown in Fig. 4). For the noise, a
cocktail party scenario was re-created.With the same con-
figuration of the dummy head and external microphones
from Fig. 4, participants stood outside of a 1-m circum-
ference from the dummy head in a random manner (i.e.
all participants were not confined to a particular corner
in the room). Beverages in glasses as well as snacks were
served while the participants engaged in conversation. At
any given time, there were nine male participants and six
female participants present in the room. A recording of
such a scenario was made for approximately 1 h, but a
random sample was used in the following analysis.
As opposed to a free-field a priori RTF vector, a more

suitable a priori RTF vector for the behind-the-ear hear-
ing aid microphones was obtained from pre-measured
impulse responses in the scenario as depicted in Fig. 4.
The impulse responses were computed from an expo-
nential sine-sweep measurement with the loudspeaker
position at 0° (the azimuth direction directly in front of
the dummy head) and 1 m so that the a priori RTF vector
would be defined in accordance with a source located at 0°
and 1m from the dummy head. The initial section of these
impulse responses corresponding to the direct component
was extracted, with a length according to the size of the
Discrete Fourier Transform (DFT) window to be used in
the STFT domain processing. This direct component was
then smoothed with a Tukey window and converted to the
frequency domain. In each frequency bin, these smoothed
frequency domain impulse responses were then scaled
with respect to the smoothed frequency domain impulse
response of the reference microphone. This was then used
as ha(k) and was kept the same for each time frame.
A scenario was firstly considered for the desired speech

source located at 0◦ in Fig. 4, i.e. the location where the a
priori RTF vector was defined. A 4s sample of the desired
speech signal was mixed with a random sample of the
cocktail party noise at a broadband input SNR of 0 dB.
For the batch processing framework with a DFT size of
256 samples, Ryy and Rnn were estimated by time averag-
ing across the entire length of the signal in the respective
speech-plus-noise or noise-only frames. Using the SPP
[25] from the first microphone of the left ear hearing
aid, frames for which the speech was active were chosen
if the resulting SPP > 0.85. The RTF vectors, h and ĥ,
were computed according to the procedures described in

Sections 3.1 and 3.2. Using CVX [31, 32], the MVDR-INT
from (42) was then evaluated for a range of 0 < 1.5
and 0 < ˆ 1.5 at a frequency of 2 kHz.
Figure 5a and b display the resulting (base-10 log) val-

ues of the Lagrangian multipliers α and β respectively as a
function of and ˆ, along with the APC and DDC bound-
ing curves. These plots support the theoretical analysis of
the space spanned by and ˆ from Fig. 1. In Fig. 5a, it is
clearly observed that as the value of exceeds the APC
bounding curve, then α → 0 so that the APC is inactive
while the DDC remains active. Similarly, in Fig. 5b, as the
value of ˆ exceeds the DDC bounding curve, then β → 0
so that the APC remains active and the DDC is inactive.
The regions where both constraints are active, and when
neither are active can also be observed.
Figure 5c and d are plots of the corresponding change

in SNR ( SNR) from the reference microphone as well as
the speech distortion which was computed as follows:

SNR = 10 log10

⎛

⎜

⎝

|wH

int
h|2

wH
int
w
int

⎞

⎟
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− 10 log10
1

eT1 R̂nne1
(76)

SD = wH

int
h − 1

2
(77)

where the first term of the SNR is the output SNR and
the second term is the input SNR at the unprocessed ref-
erence microphone12 and in this scenario h = h. The true
value of h is unknown; hence, the results of Fig. 5c and
d are suggestive for the case when the true RTF vector
corresponds to that of the a priori assumed RTF vector.
In Fig. 5c, since w → 0 in the region where ˆ ≥ 1 and

≥ 1, it is purposefully hatched so as to indicate that in
this region an output SNR is undefined.
As expected, it can be observed that the best SNR is

achieved for the region where the DDC is inactive and the
APC is active, with a compromise within the region where
the two constraints are active. An interesting observation
here is the poor SNR in the region where → 0 and
ˆ → 0. Even though the maximum tolerable speech dis-
tortions have been specified to be quite small, in this case
h and ĥ can be parallel, which can lead to redundant con-
straints and an ill-conditioning problem as discussed in
[22]. In terms of the SD, fairly low distortions are achieved
when either of the constraints are active or when both are
active. As both → 1 and ˆ → 1, the speech distortion
increases, which is expected from (70) and (72), i.e. the
SDW-MWF parameters, μ and μ̂. As μ → ∞, → 1,
and as μ̂ → ∞, ˆ → 1, which accounts for the increasing
12The numerator of this term is 1 since the first component of the RTF vector
for the unprocessed microphone signals is 1.



Ali et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:10 Page 15 of 20

Fig. 5 Behaviour of the integrated MVDR-LMA-XM beamformer at a frequency of 2 kHz as a function of and ˆ for the case when the desired
speech source is at 0◦ , i.e. in the direction of the a priori constraint. (a) Lagrangian multiplier, log10(α). (b) Lagrangian multiplier, log10(β). (c) SNR.
(d) speech distortion (SD). The APC and DDC bounding curves analogous to those from Fig. 1 are also shown

speech distortion from Fig. 5d. Another point to highlight
in Fig. 5d is that a low speech distortion is also achieved in
the region where the APC bounding curve is a minimum,
regardless of the value of . As discussed in Section 5.2,
for a value of o (where o is the value of on the
APC bounding curve from (60)), the achievable distor-
tion would in fact correspond to o on the APC bounding
curve, which is quite low in this minimum region.
Figure 6 now displays a similar set of results, however

for the case when the desired speech source was located
at 60◦ as depicted in Fig. 4. As the a priori RTF vector was
based on a speaker located at 0◦, this scenario represented
a mismatch between the a priori RTF vector and the true
RTF vector. The same procedure as previously described
was also followed to obtain the MVDR-INT filters.
Figure 6a and b display the resulting values of the (base-

10 log) Lagrangian multipliers α and β respectively as a
function of and ˆ, along with the APC and DDC bound-
ing curves. The nature of these plots is quite similar to that
of Fig. 5a and b in terms of how α and β vary with respect
to the bounding curves. In comparison to Fig. 5a and b,
Fig. 6a and b also highlight the fact that these bounding
curves can have quite different appearances.

Figure 6c and d display the corresponding SNR and
SD respectively, however with h = ĥ in (76), and hence,
the results are suggestive for the case when the true RTF
vector corresponds to that of the data-dependent RTF
vector. Now it can be observed that the best SNR is
achieved for the region where the APC is inactive and
the DDC is active, with a compromise within the region
where the two constraints are active. For the SD, fairly low
speech distortions are achieved for small values of ˆ as
expected. For small values of and large values of ˆ, i.e.
toward the region where only the APC is active, it can be
observed that the speech distortion increases, which is a
direct result of the speech source not being in the a priori
defined direction of 0◦. Once again, it can also be seen that
the speech distortion generally increases as both → 1
and ˆ → 1.
The results of Figs. 5 and 6 provide some more insight

into the behaviour of the MVDR-INT and demonstrate
that in some scenarios a better performance can be
achieved when either only the APC or only the DDC
is active. Furthermore, it was observed that there were
transition regions where a compromise could be achieved
between these limits of performance when either only the
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Fig. 6 Behaviour of the integrated MVDR-LMA-XM beamformer at a frequency of 2 kHz as a function of and ˆ for the case when the source is at
60◦ , i.e. not in the direction of the a priori constraint. (a) Lagrangian multiplier, log10(α). (b) Lagrangian multiplier, log10(β). (c) SNR. (d) Speech
distortion (SD). The APC and DDC bounding curves analogous to those from Fig. 1 are also shown

APC or only the DDC is active. Therefore, it suggests that
tuning strategies such as those depicted in Fig. 2 would
indeed be appropriate means of obtaining an optimal filter
as opposed to relying on only an APC or DDC.

6.3 Performance of tuning strategies
The audio recordings as previously described for the sce-
nario depicted in Fig. 4 are also used to observe the
performance of the tuning strategies. A desired speech
signal was created where the desired speech source was
initially located at 0° for a duration of 5 s and then instan-
taneously moved to 60◦ for another 6 s. This was then
mixed with a random sample of the cocktail party noise
at a broadband input SNR of 2 dB. The same a priori RTF
vector pertaining to the hearing aid microphones, ha(k),
as previously described was used, i.e. ha(k), was computed
for a source located at 0° and 1 m from the dummy head.
For the STFT processing, the WOLA method, with a

DFT size of 256 samples, 50% overlap, a square-root han-
ning window, and a sampling frequency of 16 kHz were
used. By using the SPP [25] computed on XM2, frames

were classified as containing speech if the SPP > 0.8; oth-
erwise, the frames were classified as noise only. All RTF
vector estimates were performed in frames which were
classified as containing speech. All the relevant correla-
tion matrices were also estimated using a forgetting factor
corresponding to an averaging time of 300 ms. Rnn was
only estimated when the SPP < 0.8.
For the MVDR-INT, two tuning strategies were

considered—(i) the trade-off between the maximum tol-
erable speech distortions for the APC and DDC, cor-
responding to Fig. 2a, which will be referred to as
MVDR-INT-3a and (ii) where the maximum tolerable
speech distortion for the APC is constant, but the max-
imum tolerable speech distortion for the DDC varies,
corresponding to Fig. 2b, and which will be referred to
as MVDR-INT-3b. For both tunings, μ = μ̂ = 0.001,
and σ̂ 2

sa,1 was computed using the method from [39] as
implemented in [40] but with the noise estimation update
computed as in [25]. A different setting was used for the
confidence metric, F(l) in (62) for each of the tunings such
that for the MVDR-INT-3a, ρ = 1 and λt = 5 dB, and
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for MVDR-INT-3b, ρ = 1 and λt = 10 dB, i.e. a higher
thresholding was used for the MVDR-AP tuning. With all
parameters assigned, the QCQP problem from (42) was
solved using the gradient ascent procedure as described in
Algorithm 1.
The metrics used to evaluate the following experi-

ments were the speech intelligibility-weighted SNR [41]
(SI-SNR), the short-time objective intelligibility ( STOI)
[42], and the normalised speech-to-reverberation modu-
lation energy ratio for cochlear implants (SRMR-CI) [43].
The SI-SNR improvement in relation to the reference
microphone was calculated as:

SI-SNR =
i
Ii (SNRi,out − SNRi,in) (78)

where the band importance function Ii expresses the
importance of the ith one-third octave band with cen-
tre frequency, f ci for intelligibility, SNRi,in is the input
SNR (dB), and SNRi,out is the output SNR (dB) in the ith
one-third octave band. The centre frequencies, f ci , and
the values for Ii are defined in [44]. The input SNR was
computed accordingly using the unprocessed speech-only
and unprocessed noise-only components (in the discrete
time domain) at the reference microphone, and the out-
put SNR from the individually processed speech-only and
processed noise-only components (in the discrete time
domain) resulting from the particular algorithm. For the
STOI metric, the reference signal used was the unpro-
cessed desired speech source convolved with 256 samples
(i.e. same length as the DFT size) of the (pre-measured)
impulse response from the desired speech signal loca-
tion to the reference microphone. As the room was quite
reverberant, however, a true reference signal is somewhat
ambiguous to define, and hence, the non-intrusive metric,
SRMR-CI, suitable for hearing instruments, in particular
cochlear implants, was also used.
Figure 7 displays the performance of the various algo-

rithms, where all the metrics have been computed in 2-s
time frames with a 25% overlap. The relative improve-
ments of the SI-SNR and the STOI metrics in relation to
the reference microphone have been plotted. The met-
rics for XM1 and XM2 from Fig. 4 are also plotted. In
order to contextualise the values of the SRMR-CI metric,
an additional plot of the performance for the reference
signal (that which was used for the STOI metric) is dis-
played. From all the metrics, as expected, the MVDR-AP
performs better than the MVDR-DD in the first 5 s as the
speech source was at 0°, i.e. the a priori direction. How-
ever, in the latter 6 s, when the speech source was at 60°,
the MVDR-DD achieves a better performance.
With respect to the XMs, it can also be seen that the per-

formance of XM1 decreases after 5 s as the source moves
to the location of 60◦, while XM2 has more of a consis-
tent performance across the different speech locations. In

Fig. 7 Performance of the MVDR-AP, MVDR-DD, and two tunings of
the integrated MVDR beamformer, MVDR-INT-3a and MVDR-INT-3b,
along with XM1 and XM2 from Fig. 4. The vertical lines are indicative
of the time at which the source moves from 0 to 60◦

terms of the SI-SNR, the performance of all of the other
algorithms is better than either of the XMs, which demon-
strates that simply listening to the XM only would not
always immediately yield satisfactory performance.
Within the first 5 s, the MVDR-INT-3a is able to find

a compromise between the MVDR-AP and MVDR-DD in
terms of all metrics. In the final 6 s, although the STOI is
once again in between theMVDR-AP andMVDR-DD, the
performance in terms of SI-SNR and SRMR-CI is in fact
better than either of the MVDR-AP or the MVDR-DD.
This is a direct consequence of the nature of the inte-
grated MVDR-LMA-XM beamformer as different linear
combinations of the MVDR-AP and the MVDR-DD are
effectively applied to different time-frequency segments,
yielding a broadband SI-SNR that could be better than
either the MVDR-AP or MVDR-DD.
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For the MVDR-INT-3b, within the first 5 s, the perfor-
mance in terms of all the metrics is closer to that of the
MVDR-AP which is expected as the APC is kept active
at all times. In the following 6 s, the STOI metric indi-
cates that the speech intelligibility has not changed from
that of the MVDR-AP. However, an improvement can be
observed in both SI-SNR and SRMR-CImetrics as some
frequency bins would have also had the DDC active.
The corresponding confidence metrics across all time

frames and frequencies for the MVDR-INT-3a and the
MVDR-INT-3b are displayed in Fig. 8. The upper plot
corresponds to the confidence metric of MVDR-INT-3a
and reveals that much of the confidence has been placed
on the higher frequencies, presumably because there was
less noise in this region. Therefore, a smaller value of ˆ
and a larger value of would have been assigned to the
DDC and APC respectively, i.e. the MVDR-INT-3a in this
region would have tended toward the MVDR-DD. Sev-
eral regions of uncertainty are also observed where the
MVDR-INT-3a would then find a compromise between
the MVDR-AP and the MVDR-DD. In the lower plot
of Fig. 8, the confidence metric for the MVDR-INT-3b
shows a much more conservative behaviour due to the
larger threshold of λt. It is observed that there are
now many regions where there is little confidence, and
hence a larger value of ˆ and a smaller value of

Fig. 8 Confidence metrics of the evaluation performed in Fig. 7 for
(top) MVDR-INT-3a and (bottom) MVDR-INT-3b

would have been assigned to the DDC and APC, respec-
tively, i.e. the MVDR-INT-3b in these regions would have
tended toward the MVDR-AP. More confidence is now
only placed in the higher frequency region and there
are still some regions of uncertainty so that a compro-
mise can be achieved. The resulting audio signals from
this section13 may also be listened to for a subjective
evaluation at [45].

7 Conclusion
An integrated MVDR beamformer that merges the ben-
efits from using an available a priori relative transfer
function (RTF) vector and a data-dependent RTF vector
was developed for a microphone configuration consisting
of a local microphone array (LMA) and multiple external
microphones (XMs). The framework has been presented
in a pre-whitened-transformed (PWT) domain, which
consists of an initial transformation of the microphone
signals through a blocking matrix and a fixed beam-
former, followed by a pre-whitening operation, facilitating
convenient processing operations. In the PWT domain,
procedures for obtaining an a priori RTF vector and data-
dependent RTF vector have also been derived, where the
a priori RTF vector is based on an a priori RTF vector
pertaining to the LMA only.
With the two RTF vectors, an integrated MVDR beam-

former was proposed by formulating a quadratically
constrained quadratic program (QCQP), with two con-
straints, one of which is related to the maximum tol-
erable speech distortion for the imposition of the a
priori RTF vector and the other related to the maxi-
mum tolerable speech distortion for the imposition of
the data-dependent RTF vector. It was shown how the
space spanned by each of thesemaximum tolerable speech
distortions could be divided into four separate regions,
each of which corresponded to a particular set of con-
straints being active or inactive. This insight then facil-
itated the development of a general tuning framework
where the maximum tolerable speech distortions are cho-
sen in accordance with the confidence in the accuracy of
the data-dependent RTF vector. A particular set of tuning
rules was also proposed, which made use of a relationship
to the speech distortion weighted multi-channel Wiener
filter.
The potential of the integrated MVDR beamformer

was demonstrated by using audio data from an LMA of
behind-the-ear hearing aid microphones and three XMs
for a single desired speech source within a re-created
cocktail party scenario. A narrowband evaluation con-
firmed the theoretical behaviour of the integrated MVDR

13Audio samples are also uploaded for the case when the SPP was computed
on the reference microphone.
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as a function of the maximum tolerable speech distor-
tion parameters. A broadband evaluation has shown that
the integrated MVDR beamformer can be tuned to yield
different enhanced speech signals, which may be suitable
for improving speech intelligibility despite changes in the
desired speech source position and imperfectly estimated
spatial correlation matrices.

Abbreviations
APC: A priori constraint; DDC: Data-dependent constraint; EVD: Eigenvalue
decomposition; GEVD: Generalised eigenvalue decomposition; LMA: Local
microphone array; MVDR: Minimum variance distortionless response; MVDR-
DD: Fully data-dependent MVDR beamformer; MVDR-AP: MVDR beamformer
based on a priori knowledge; MVDR-INT: Integrated MVDR beamformer; MWF:
Multi-channel Wiener filter; PWT: Pre-whitened-transformed; QCQP:
Quadratically constrained quadratic program; RTF: Relative transfer function;
SNR: Signal-to-noise ratio; SI-SNR: Speech intelligibility-weighted SNR; SPP:
Speech presence probability; SRMR-CI: Speech-to-reverberation modulation
energy ratio for cochlear implants; STOI: Short-time objective intelligibility; XM:
External microphone; WOLA: Weighted Overlap and Add

Acknowledgements
This research work was carried out at the ESAT Laboratory of KU Leuven, in the
frame of IWT O&O Project nr. 150432 ‘Advances in Auditory Implants: Signal
Processing and Clinical Aspects’, KU Leuven Impulsfonds IMP/14/037, KU
Leuven C2-16-00449 ’Distributed Digital Signal Processing for Ad-hoc Wireless
Local Area Audio Networking’, and KU Leuven Internal Funds VES/16/032. The
research leading to these results has also received funding from the European
Research Council under the European Union’s Horizon 2020 research and
innovation program/ERC Consolidator Grant: SONORA (no. 773268). This
paper reflects only the authors’ views and the Union is not liable for any use
that may be made of the contained information.

Authors’ contributions
RA, TvW, and MM conceptualised and analysed the QCQP framework and
tuning strategy. RA drafted the manuscript, implemented the algorithms in
software, and conducted the experiments. All authors have interpreted the
results and reviewed the final manuscript. The authors read and approved the
final manuscript.

Availability of data andmaterials
The microphone data analysed in the current study as well as audio samples
of the processed signals are available at [45]. Further materials are also
available from the corresponding author upon request.

Competing interests
The authors declare that they have no competing interests.

Received: 9 June 2020 Accepted: 16 December 2020

References
1. M. Brandstein, D. B. Ward,Microphone Arrays: Signal Processing, Techniques

and Applications. (Springer, New York, 2001)
2. S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated

perspective on multi-microphone speech enhancement and source
separation. IEEE/ACM Trans. Audio Speech Lang. Process. 25(4), 692–730
(2017)

3. E. Vincent, T. Virtanen, S. Gannot, Audio Source Separation and Speech
Enhancement. (Wiley, Chichester, West Sussex, 2018)

4. J. Szurley, A. Bertrand, B. van Dijk, M. Moonen, Binaural noise cue
preservation in a binaural noise reduction system with a remote
microphone signal. IEEE/ACM Trans. Audio Speech Lang. Process. 24(5),
952–966 (2016)

5. N. Gößling, S. Doclo, in 2018 16th Int.Workshop on Acoustic Signal
Enhancement (IWAENC). Relative transfer function estimation exploiting
spatially separated microphones in a diffuse noise field, (Tokyo, 2018),
pp. 146–150

6. N. Gößling, S. Doclo, in Speech Communication; 13th ITGSymposium.
RTF-based binaural MVDR beamformer exploiting an external
microphone in a diffuse noise field, (Oldenburg, Germany, 2018), pp. 1–5

7. N. Cvijanovic, O. Sadiq, S. Srinivasan, Speech enhancement using a remote
wireless microphone. IEEE Trans. Consum. Electron. 59(1), 167–174 (2013)

8. D. Yee, H. Kamkar-Parsi, R. Martin, H. Puder, A noise reduction post-filter
for binaurally-linked single-microphone hearing aids utilizing a nearby
external microphone. IEEE/ACM Trans. Audio Speech Lang. Process. 26(1),
5–18 (2017)

9. R. Ali, G. Bernardi, T. van Waterschoot, M. Moonen, Methods of extending
a generalized sidelobe canceller with external microphones. IEEE/ACM
Trans. Audio Speech Lang. Process. 27(9), 1349–1364 (2019)

10. A. Bertrand, M. Moonen, Robust distributed noise reduction in hearing
aids with external acoustic sensor nodes. EURASIP J. Adv. Signal Process.
2009, 1–14 (2009)

11. A. Hassani, Distributed signal processing algorithms for multi-task
wireless acoustic sensor networks. PhD thesis, KU Leuven (2017)

12. S. Markovich-Golan, S. Gannot, I. Cohen, Distributed multiple constraints
generalized sidelobe canceler for fully connected wireless acoustic sensor
networks. IEEE Trans. Audio Speech Lang. Process. 21(2), 343–356 (2013)

13. J. Capon, High-resolution frequency-wavenumber spectrum analysis.
Proc. IEEE. 57(8), 1408–1418 (1969)

14. H. L. Van Trees, Optimum Array Processing. (Wiley, Hoboken, 2001)
15. S. Gannot, D. Burshtein, E. Weinstein, Signal enhancement using

beamforming and nonstationarity with applications to speech. IEEE Trans.
Signal Process. 49(8), 1614–1626 (2001)

16. J. E. Greenberg, P. M. Zurek, Evaluation of an adaptive beamforming
method for hearing aids. J. Acoust. Soc. Amer. 91(3), 1662–1676 (1992)

17. J. M. Kates, M. R. Weiss, A comparison of hearing-aid array-processing
techniques. J. Acoust. Soc. Amer. 99(5), 3138–3148 (1996)

18. M. Kompis, N. Dillier, Performance of an adaptive beamforming noise
reduction scheme for hearing aid applications. I. Prediction of the
signal-to-noise-ratio improvement. J. Acoust. Soc. Amer. 109(3),
1123–1133 (2001)

19. A. Spriet, L. Van Deun, K. Eftaxiadis, J. Laneau, M. Moonen, B. van Dijk, A.
van Wieringen, J. Wouters, Speech understanding in background noise
with the two-microphone adaptive beamformer BEAM in the Nucleus
Freedom cochlear implant system,. Ear Hear. 28(1), 62–72 (2007)

20. I. Cohen, Relative transfer function identification using speech signals.
IEEE Trans. Speech Audio Process. 12(5), 451–459 (2004)

21. S. Markovich-Golan, S. Gannot, in 2015 IEEE Int. Conf. Acoust., Speech and
Signal Process. (ICASSP). Performance analysis of the covariance subtraction
method for relative transfer function estimation and comparison to the
covariance whitening method, (Brisbane, 2015), pp. 544–548

22. R. Ali, T. VanWaterschoot, M. Moonen, Integration of a priori and estimated
constraints into an MVDR beamformer for speech enhancement.
IEEE/ACM Trans. Audio Speech Lang. Process. 27(12), 2288–2300 (2019)

23. L. Griffiths, C. Jim, An alternative approach to linearly constrained
adaptive beamforming. IEEE Trans. Antennas Propag. 30(1), 27–34 (1982)

24. S. Van Gerven, F. Xie, in Proc. EUROSPEECH, vol. 3, Ródos. A comparative
study of speech detection methods, (Greece, 1997), pp. 1095–1098

25. T. Gerkmann, R. C. Hendriks, in Proc. 2011 IEEEWorkshop Appls. Signal
Process. Audio Acoust. (WASPAA ’11). Noise power estimation based on the
probability of speech presence, (2011), pp. 145–148

26. I. Markovsky, Low Rank Approximation: Algorithms, Implementation,
Applications. (Springer, Heidelberg, 2012)

27. S. Boyd, L. Vandenberghe, Convex Optimization. (Cambridge University
Press, New York, 2004)

28. W. C. Liao, Z. Q. Luo, I. Merks, T. Zhang, in Proc. 2015 IEEEWorkshop Appls.
Signal Process. Audio Acoust. (WASPAA ’15). An effective low complexity
binaural beamforming algorithm for hearing aids (IEEE, New Paltz, 2015),
pp. 1–5

29. W. C. Liao, M. Hong, I. Merks, T. Zhang, Z. Q. Luo, in 2015 IEEE Int. Conf.
Acoust., Speech and Signal Process. (ICASSP). Incorporating spatial
information in binaural beamforming for noise suppression in hearing
aids, (Brisbane, QLD, 2015), pp. 5733–5737

30. M. Souden, J. Benesty, S. Affes, On optimal frequency-domain
multichannel linear filtering for noise reduction. IEEE Trans. Audio Speech
Lang. Process. 18(2), 260–276 (2010)



Ali et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:10 Page 20 of 20

31. M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming, version 2.1 (2014). http://cvxr.com/cvx. Accessed May 2020

32. M. Grant, S. Boyd, ed. by V. Blondel, S. Boyd, and H. Kimura. Recent
Advances in Learning and Control. Lecture Notes in Control and
Information Sciences (Springer, Springer-Verlag London, 2008),
pp. 95–110

33. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn. 3(1), 1–122 (2011)

34. J. Nocedal, S. J. Wright, Numerical Optimization, 2nd edn. (Springer, New
York, 2006)

35. A. Spriet, M. Moonen, J. Wouters, Spatially pre-processed speech
distortion weighted multi-channel Wiener filtering for noise reduction.
Signal Process. 84(12), 2367–2387 (2004)

36. S. Doclo, S. Gannot, M. Moonen, A. Spriet, Handbook on Array Processing
and Sensor Networks. (Wiley, Hoboken, 2010), pp. 269–302. Chap. 10:
acoustic beamforming for hearing aid applications

37. R. Crochiere, A weighted overlap-add method of short-time Fourier
analysis/synthesis. IEEE Trans. Acoust. Speech Signal Process. 28(1),
99–102 (1980)

38. C. Veaux, J. Yamagishi, K. MacDonald, CSTR VCTK corpus: English multi-
speaker corpus for CSTR voice cloning toolkit (2016). http://homepages.
inf.ed.ac.uk/jyamagis/page3/page58/page58.html. Accessed Dec 2019

39. Y. Ephraim, D. Malah, Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust.
Speech Signal Process. 33(2), 443–445 (1985)

40. M. Brookes, et al., Voicebox: speech processing toolbox for Matlab. (Imperial
College, London, 1997). http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox

41. J. E. Greenberg, P. M. Peterson, P. M. Zurek, Intelligibility-weighted
measures of speech-to-interference ratio and speech system
performance,. J. Acoust. Soc. Amer. 94(5), 3009–3010 (1993)

42. C. H. Taal, R. C. Hendriks, R. Heusdens, J. Jensen, An algorithm for
intelligibility prediction of time – frequency weighted noisy speech. IEEE
Trans. Audio Speech Lang. Process. 19(7), 2125–2136 (2011)

43. J. F. Santos, T. H. Falk, Updating the SRMR-CI metric for improved
intelligibility prediction for cochlear implant users. IEEE/ACM Trans. Audio
Speech Lang. Process. 22(12), 2197–2206 (2014)

44. American National Standards Institute, American National Standard
Methods for calculation of the speech intelligibility index. (Acoustical Society
of America, 1997). https://webstore.ansi.org/standards/asa/
ansiasas31997r2017. Accessed 6 June 1997

45. R.Ali (2020). ftp://ftp.esat.kuleuven.be/pub/SISTA/rali/Reports/public_
data_mvdrint. Accessed May 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://cvxr.com/cvx
http://homepages. inf.ed.ac.uk/jyamagis/page3/page58/page58.html
http://homepages. inf.ed.ac.uk/jyamagis/page3/page58/page58.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox
https://webstore.ansi.org/standards/asa/ansiasas31997r2017
https://webstore.ansi.org/standards/asa/ansiasas31997r2017
ftp://ftp.esat.kuleuven.be/pub/SISTA/rali/Reports/public_data_mvdrint
ftp://ftp.esat.kuleuven.be/pub/SISTA/rali/Reports/public_data_mvdrint

	Abstract
	Keywords

	Introduction
	Data model
	Unprocessed signals
	Pre-whitened-transformed domain

	MVDR with an LMA and XMs
	Using an a priori RTF vector
	Using a data-dependent RTF vector

	Integrated MVDR beamformer
	Quadratically constrained quadratic program
	Effect of "0365 and 

	Confidence metric and tuning
	Confidence metric
	Tuning strategy

	Evaluation and discussion
	Beam patterns for a linear microphone array
	Effect of "0365 and 
	Performance of tuning strategies

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

