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Abstract

We propose a method of dynamically registering out-of-vocabulary (OOV) words by assigning the pronunciations of
these words to pre-inserted OOV tokens, editing the pronunciations of the tokens. To do this, we add OOV tokens to
an additional, partial copy of our corpus, either randomly or to part-of-speech (POS) tags in the selected utterances,
when training the language model (LM) for speech recognition. This results in an LM containing OOV tokens, to which
we can assign pronunciations. We also investigate the impact of acoustic complexity and the “natural” occurrence
frequency of OOV words on the recognition of registered OOV words. The proposed OOV word registration method is
evaluated using two modern automatic speech recognition (ASR) systems, Julius and Kaldi, using DNN-HMM acoustic
models and N-gram language models (plus an additional evaluation using RNN re-scoring with Kaldi). Our
experimental results show that when using the proposed OOV registration method, modern ASR systems can
recognize OOV words without re-training the language model, that the acoustic complexity of OOV words affects
OOV recognition, and that differences between the “natural” and the assigned occurrence frequencies of OOV words
have little impact on the final recognition results.
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1 Introduction
The language models (LMs) of automatic speech recog-
nition (ASR) systems are often trained statistically using
corpora with fixed vocabularies. Thus, when applying
ASRs (e.g., in dialog systems), we always encounter out-
of-vocabulary (OOV) words such as the names of new
movie stars or new Internet slang, such as “jsyk” (just
so you know). This can be problematic since such OOV
words are often closely related to the main topic being dis-
cussed. Accurate recognition of these OOV words would
undoubtedly result in a huge improvement in the accuracy
of ASR-based sentence understanding systems.
Subword acoustic models are often used to recog-

nize OOV words. For example, phone models have been
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used with a phone bigram to recognize arbitrary phone
sequences [1]. Morphemes have also been used as sub-
words [2, 3]. This kind of “speech typewriter” cannot
achieve comparative OOV word recognition performance
as can be achieved for in-vocabulary words, however.
Another approach to tackling theOOV problem is OOV

detection. In the 2000’s, various OOV detection methods
were proposed, most of them based on confidence mea-
sures. Various acoustic and linguistic features were fed
into, for example, a Fisher Linear Discriminant Analysis
(FLDA)-based classifier [4] to classify speech regions into
OOVs and IVs (in-vocabulary words). Decoding graph
information and semantic information were also used to
classify OOVs and IVs within a boosting classification
algorithm [5]. Word/subword hybrid systems were also
used for OOV word detection [6]. In [7], the OOV word
detection task was treated as a sequence labeling problem.
AMaxEnt classifier used additional features, based on the
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local lexical context, as well as global features from a lan-
guage model using the entire utterance. In another study,
OOVs were detected by searching a confusion network
[8]. After detection, recovery of the OOV word is gener-
ally performed [9, 10]. These approaches can be used to
recognize OOV words, but recovery often fails due to a
lack of lexical information. Thus, when we want to recog-
nize particular, known words which are unknown to both
the language model and the dictionary used in the speech
recognizer, it is better to register the words to the model
and the dictionary.
If the system can reference OOV words, it is better to

use an LM which includes these words. One possible way
to create an LM which includes OOV words is to use
training data which includes these words. Such training
data is often created by gathering text from the web or
by replacing words similar to the OOV words in the data
with the targeted OOV words. However, as LMs become
more and more complex, training them takes more and
more time. Therefore, the ability to dynamically add new
words to LMs without re-training is considered to be
a necessary feature of modern ASR systems. The most
common approach used to dynamically update LMs is to
assign probabilities to OOV words. This is achieved by
modifying the LM’s probability distribution. These meth-
ods attempt to assign the parameters of OOV words to
the existing LM along with their meanings and part-of-
speech (POS) tags. For example, in [11, 12], researchers
proposed using similar, in-vocabulary (IV) words to esti-
mate the N-gram probabilities of OOV words. Recently,
word embedding has been adopted to measure the simi-
larity between IV and OOV words [13]. Some researchers
have tackled this problem using word class N-grams [14].
In [15], a probability was assigned to OOV words based
on a word class whose probability had already been deter-
mined. These approaches have achieved a modest level
of performance, but the system must have some kind of
semantic knowledge tomeasure the similarities and deter-
mine which class the OOV words should be assigned to.
When using a class N-gram, words in each class share
a class probability, while the probability of each word
is approximated by combining the class probability and
the target word’s probability within the class; thus, word
probability estimation is degraded, resulting in the per-
formance of the speech recognition system also being
degraded. Moreover, our proposed method can be used
in speech recognition systems which do not support class
N-grams.
Alternatively, we propose a simple but powerful corpus

modification method in which we artificially add OOV
tokens during the training of the language model, creat-
ing an LM with OOV tokens chosen a priori. The system
then registers OOV words to the positions of the OOV
tokens in the LM, resulting in an LM which includes the

OOV words. For example, to train an LM, we create a
training corpus by inserting or replacing some words with
OOV tokens. After training the LM using this corpus, we
obtain an LM containing OOV tokens. To apply this LM
to speech recognition, we replace OOV tokens with words
which are not contained in the pronunciation dictionary
(i.e., OOV words). When using our method, degradation
of the estimation of in-vocabulary word probabilities is
suppressed to the minimum, because the probability of
each OOV and IV word is estimated. As part of this
study, we investigated how OOV tokens could be added
to the training data. Since ASR systems create recog-
nition hypotheses based on the output probabilities of
both their acoustic models (AMs) and their LMs, the
impact of the acoustic complexity of OOVwords on OOV
word recognition is unclear, although one might assume
that OOV words with “unique” pronunciations are eas-
ier to recognize. In this paper, we define the acoustic
complexity of a word using the number of moras in the
word. That is, the greater the number of moras, the more
complex the word is. Finally, since OOV words should
have a “natural” occurrence frequency (i.e., the frequency
of their occurrence in a virtual, universal corpus), the
impact of the difference between an OOV word’s “nat-
ural” probability and its assigned probability for OOV
word recognition also needs to be investigated. The
present study aims to supply global answers to all of these
questions by experimentally investigating recognition of
simulated OOV words using two popular modern ASR
systems.

2 Dynamic OOV registration
2.1 Method
In our proposed method, we first train a language model
using a corpus which includes OOV tokens. These OOV
tokens are inserted into the corpus artificially, and thus,
each OOV token appears as both a context word and
a target word in the LM. Then, when using the LM in
the recognition phase, the target OOV word pronuncia-
tions which the user wants the recognizer to recognize are
assigned to the OOV tokens. This is realized by editing
the pronunciations of the OOV tokens. Immediately after
training the LM, the OOV tokens do not have any asso-
ciate pronunciations. To assign a particular OOV token
to a particular target to be recognized, we edit the pro-
nunciation dictionary to link the OOV token to the pro-
nunciation of the target word. The merit of our method is
its ability to control the frequency of OOV occurrences.
The more OOV tokens we insert, the larger the probabil-
ities that can be assigned to the OOV words. In addition,
OOV words can be added to the LM without the need for
re-training.
The procedure used by the proposed method is as fol-

lows:
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1 Make a partial copy of the corpusm, to be used for
OOV token insertion. This procedure is optional,
because OOV tokens can also be inserted into
original corpus, but in our experiment, we first made
a copy of some of the sentences and insert the OOV
tokens into the copied sentences, as describe in the
next step.

2 Add OOV tokens (e.g., “OOV1,” “OOV2,” . . . ,
“OOVN ”) to the utterances in the copied corpus, in
order to generate “additional utterances.”

3 Use the corpus and the additional utterances to train
the language model. As a result of this procedure, we
obtain an LM which includes OOV tokens.

4 Edit the pronunciations of the tokens for the
particular OOV words we want to register.
Generally, a pronunciation dictionary is created for
all of the in-vocabulary words of the LM, but
pronunciations are not assigned to any of the OOV
tokens. In our method, we edit the dictionary to
assign the pronunciations we would like to recognize
to the associated tokens.

5 Perform speech recognition.

An illustration of the editing of the pronunciation dic-
tionary is shown in Fig. 1. One of the key points to be
determined when using our method is where the OOV
tokens should be inserted. Thus, we compared the effec-
tiveness of using the following two methods in step 2:

• Random insertion—one token is added to each
“additional utterance” at a random location

• POS tag-based replacement—one word is replaced in
each “additional utterance” whose POS tag is the
same as the token’s POS tag

The proposed method can dynamically register new
OOV words by editing the pronunciations of the OOV
tokens. Different types of OOV tokens for OOV words
with different properties (properties which are assumed
to be known, e.g., acoustic complexity and POS tag) can
also be prepared. For example, under the random inser-
tion condition only, the pronunciation of the OOV words
was assumed to be known, while under the POS tag-based
replacement condition, we assumed that we knew each
OOV word’s POS and pronunciation.

2.2 Impact of word properties
The impact of using each of these two types of word prop-
erties (acoustic complexity and POS tag) on the proposed
OOV registrationmethod is also investigated in the exper-
iment phase of this study. To investigate the impact of
the acoustic complexity of the OOV words, we defined
four levels of acoustic complexity, which were measured
according to the number of moras the OOV words con-
tained, which could range from 2 to 5 moras. To investi-
gate the impact of the difference between the “natural” and
assigned probabilities of the OOV words, we evaluated
four different insertion scales (i.e., the number of utter-
ances generated for each OOV token), which were either
500, 1000, 2000, or 5000 utterances. During the experi-
mental phase, we inserted four different OOV tokens at
each level of acoustic complexity to generate additional
utterances for each insertion scale condition and each reg-
istration condition (i.e., random and POS tag based), to be
used to register the words in Table 1. All of these addi-
tional utterances were then used to train the LM, along
with the basic corpus, which means that we added (500 +
1000+2000+5000)×2×4 = 68, 000 additional utterance
to our corpus. As the number of utterances in the original

Fig. 1 An example of OOV word registration
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Table 1 Selected out-of-vocabulary (OOV) words and their
frequency of occurrence

corpus was about 440,000, the additional utterances were
equal to one sixth of the original corpus.
We also set two baseline conditions in our experiment:

ONE and ALL. Under the ONE condition, the LM is
trained using the basic corpus, which includes only pro-
nunciation information and the smoothing probability of
the OOV words given by the LM toolkit. Under this con-
dition, only very rare words lacking sufficient statistical
confidence are removed and replaced with OOV tokens;
thus, only a small number of OOV tokens remain in the
corpus. In our experiment, words with an occurrence fre-
quency of 1 were removed. As a result, the probabilities
of the N-gram model corresponding to the OOV words
becomes small, but Kneser-Ney smoothing gives them
some level of probability. Under the ALL condition, which
is considered to be the ideal condition, the LM is trained
using the original corpus which includes all of the selected
OOV words.

3 Experimental setup
3.1 Data
The Corpus of Spontaneous Japanese (CSJ) [16] was
selected to be the original corpus used in our experi-
ment. It contains speech signals from speeches delivered
in Japanese at domestic conferences. The corpus includes
transcriptions of about 7 million words, along with vari-
ous annotations such as POS and phonetic labels. In our
experiment, we used the entire training set of the CSJ
as our original corpus, which has a total length of 240 h
and consists of 986 speeches. It contains about 440,000
utterances, with a vocabulary of around 70,000 words. For
recognition, CSJ evaluation Set 1 (one of three available
CSJ evaluation sets) was used, which contains 10 differ-
ent lectures with a total of 1272 utterances (about 26,000

words). The total length of the test set was approximately
2 h.
We randomly selected 16 words as our OOV words,

based on their acoustic complexity and occurrence fre-
quency in the evaluation set, all of which were nouns1.
The selected words and their occurrence frequency in the
corpora are shown in Table 12. Four words were selected
for each level of acoustic complexity, and the average
recognition/detection accuracy of these four words was
used to evaluate the performance of the proposed OOV
registration method with OOV words of that level of
acoustic complexity. Note that in each recognition trial,
we attempted to register and recognize each of the four
OOV words at each level of acoustic complexity (all 16
words), at that particular insertion scale. Because we
found it challenging to find enough words with 2 moras,
we decided to use two words with multiple pronuncia-
tions, some of which contain a different number of moras.
Both the word (“six”) and the word (“sound”)
have multiple pronunciations. can be pronounced
“roku,” “mui,” “muq,” “ro,” “riku,” or “muyu.” Except for “ro,”
all of these pronunciations have 2 moras. Likewise,
can be pronounced “oto,” “iN,” “oN,” or “ne.” Except for
“ne,” all of these pronunciations have 2 moras. The utter-
ances in the evaluation set, including OOV words, can be
divided according to their level of acoustic complexity as
follows: 58 are 2 mora words, 69 are 3 mora words, 49 are
4 mora words, and 41 are 5 mora words3.

3.2 Automatic speech recognition systems
We used the Julius [17] and Kaldi [18] ASR systems
in our experiments. The Julius toolkit provides a pre-
trained, deep neural network (DNN) hidden Markov
model (HMM) for acoustic modeling (AM), which uses
a corpus of Japanese newspaper article sentences (JNAS)
and part of the CSJ speech corpus (simulated speech) as
training data. For its language model, we used a forward
bi-gram plus backward tri-gram LM, trained using SRILM
[19] with entries (uni-gram/bi-gram/tri-gram) that appear
more than one time, as well as modified Kneser-Ney
smoothing for back-off. Since Julius is a classical decoder
which directly uses acoustic models and N-gram language
models, we can register new words only by changing the
pronunciations of the OOV tokens.

1For example, the POS tag of the word (“six”) is “noun/numeral.”
2The English translations of the selected OOV words are -six, -rate,

-vocabulary, -sound, -standard, -set, -conversation,
-rule, -research, -analysis, -straight line, -translation,

-approach, -message, -timing, and
-category.

3Some sentences contained OOV words with more than one level of acoustic
complexity (e.g., one 2 mora OOV word and one 3 mora OOV word). But
each utterance included at most only one of the four OOV words of a
particular level of acoustic complexity.
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The Kaldi toolkit provides several example training/test
pipelines for different corpora, including the CSJ corpus
which was used in our experiment. In particular, lin-
ear discriminant analysis (LDA) and maximum likelihood
linear transform (MLLT) were used to process the origi-
nal Mel-frequency cepstrum coefficient (MFCC) features.
These processed MFCC features were then used as the
input (basic features) for DNN-HMM training. A forward
tri-gram LM with similar training conditions as those
used to train the LM for the Julius ASR was also used
as one of the Kaldi LMs. In this case, we had to com-
pose Finite State Transducers (FSTs) a priori. Thus, in the
training phase, we made a lexicon file (called “L.fst” in the
Kaldi toolkit) and a grammar file (“G.fst”) first, using the
training data, which included the OOV tokens with their
tentative pronunciations. Next, we constructed anew L.fst
file using the lexicon in which particular OOV word pro-
nunciations were registered to the OOV tokens. We then
composed it with the other FSTs to create the final FST
(“HCLG. fst”). When using a WFST-based ASR system
such as Kaldi, it is not as easy to register OOV words to
the lexicon as it is with classical decoders. On the other
hand, we do not need to retrain the language model using
a huge text corpus that includes particular OOV words.
A recurrent neural network (RNN)-based LM was also
introduced as an alternative LM for Kaldi, specifically,
the N-gram plus RNN re-scoring LM proposed in [20].
The RNN LM was used to calculate the scores of the N-
best hypotheses provided by the N-gram LM. We trained
the RNN language model using a text corpus with OOV
tokens. In the testing phase, we viewed the OOV tokens
as particular OOV words; thus, we could re-score the
hypothesis including the particular OOV words using the
RNN language model. The output scores of the RNN LM
were then linearly interpolated with the scores provided
by the original N-gram LM using the follow equation:

P(hi) = λPN (hi) + (1 − λ)PR(hi), (1)

where P(hi) is the final LM score of hypothesis i, PN (hi) is
the probability calculated by the N-gram LM, PR(hi) is the
probability calculated by the RNN LM, and λ is the inter-
polation weight which was set to 0.5 in our experiment4.
Other details of the RNN LM used in this study are shown
in Table 2
As mentioned above, we added a relatively large num-

ber of additional utterances containing our OOV words
to the basic corpus, so the speech recognition word error
rates (WERs) of the Julius and Kaldi N-gram LMs used in
our experiment were both a bit higher (i.e., worse) than
the reported best WERs for these ASRs, which are 29.20%
and 17.07%, respectively. RNN LM re-scoring improved
Kaldi’s WER to 14.23%.
4We also tried setting λ to 0.25 and 0.75, but there was almost no change in
the recognition results.

Table 2 Experimental conditions for the RNN language model

Parameter Value

Number of hidden units 500

Number of classes 200

N-best for re-scoring 10

RNN vocabulary size 10,000

3.3 Evaluation method
Recognition accuracy in our experiments was measured
using utterance level false rejection rates (FRR) and false
alarm rates (FAR) when the ASRs interpreted OOV utter-
ances during the experiment. If OOVwords were success-
fully recognized, the utterance containing this OOV word
was counted as one “hit” (true positive, TP); if the ASR
system did not recognize the OOV word, it was counted
as one “miss” (false negative, FN); if the ASR system did
not recognized any OOV words in an utterance without
an OOV word, it was counted as one “correct dismissal”
(true negative, TN); and finally, if the ASR system recog-
nized any OOV words in an utterance without an OOV
word, it was counted as one “false alarm” (false positive,
FP). The false rejection rate was then calculated as follows:

FRR = FN
TP + FN

, (2)

and the false alarm rate was calculated as follows:

FAR = FP
TN + FP

. (3)

Note that since the (TP + FN) totals (which added up
to about 50 at each level of acoustic complexity) were
much smaller than the (TN + FP) totals (which added
up to about 1200 at each level), the false rejection rates
were much higher than the false alarm rates in our
experiment. Also note that although speech recognition
performance is often evaluated using word error rates
(WERs), theWERs achieved during our experiments were
heavily dependent on the frequency of OOV words in a
particular speech sample. However, the frequency of par-
ticular OOV words was not very high; thus, the effects
on the WERs were small. Just for reference, the WERs
were approximately 29%, 17%, and 14% for the Julius-
based, Kaldi-based, and Kaldi+RNN-LM-based systems,
respectively.

4 Results
Detection FRRs and FARs for the Julius-based ASR sys-
tem are shown in Tables 3 and 4, respectively, while the
detection FRRs and FARs for the Kaldi-based ASR system
using the N-gram LM are shown in Tables 5 and 6, respec-
tively. The detection FRRs and FARs for the Kaldi ASR
system using the N-gram plus RNN re-scoring LM are
shown in Tables 7 and 8, respectively. In these tables, “r”
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Table 3 False rejection rates for OOV words when using
Julius-based ASR

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – .964 .106 .143 .044

ALL – – .506 .128 .071 .022

500r Random 500 .602 .138 .089 .022

1kr Random 1000 .566 .128 .071 .022

2kr Random 2000 .422 .117 .071 .022

5kr Random 5000 .349 .096 .089 .022

500c POS 500 .590 .128 .071 .022

1kc POS 1000 .458 .096 .054 .022

2kc POS 2000 .349 .117 .054 .044

5kc POS 5000 .313 .085 .071 0

represents the random insertion condition, and “c” repre-
sents the POS-based replacement condition. For example,
under the condition “500r-2 mora,” the pronunciation of
each of the selected 2 mora OOV words was registered as
one pre-trainedOOV token, which was randomly inserted
into 500 existing utterances.
In general, FRRs were much lower (better) when using

the proposed method than under the ONE condition,
but higher (worse) than under the ALL condition5, and
the FARs when using the proposed method were higher
(worse) than under both the ONE and ALL conditions.
Under some experimental conditions, such as the 4-mora
condition using Julius, the recognition performances of
the ideal baseline (ALL) and the proposed approaches
were similar. Compared to Kaldi, Julius achieved bet-
ter OOV word detection accuracy in our experiments.
Additionally, since POS tag-based replacement provided
more information about the OOV words than random
insertion, FRRs were lower (better) when using the POS
tag-based replacement method than when using the ran-
dom insertion method, while the FARs were similar. The
N-gram plus RNN re-scoring LM achieved slightly better
recognition results than the N-gram LM. Note that the
effects of OOV words may extended forward and back-
ward in the sentences. Most of the false alarms were the
result of substitutions of in-vocabulary words (IVs) with
OOVwords, which affected the context words. According
to our results, FARs were suppressed to low values, and
thus, the effects of these false alarms were limited. As for
FRRs, most of the false rejection were the result of substi-
tutions of OOVs with IVs. When not using our method,
OOVs are always replaced with IVs, and these replace-
ments negatively affect context word recognition. Thus,
the negative effect of these false rejections on the con-
text words when using our method is no worse than when

5Baseline methods, described in Section 2.2

Table 4 False alarm rates for OOV words when using
Julius-based ASR

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – .001 .004 0 0

ALL – – .004 .002 .001 0

500r Random 500 .010 .003 0 0

1kr Random 1000 .014 .003 .001 0

2kr Random 2000 .026 .004 .001 0

5kr Random 5000 .045 .006 .002 0

500c POS 500 .015 .003 0 0

1kc POS 1000 .019 .002 .002 0

2kc POS 2000 .030 .003 .002 0

5kc POS 5000 .049 .009 .003 .001

not using our method. Our proposed method achieved
very good OOV detection performance according to the
FRRs shown in Tables 3, 5, and 7. Generally, the OOV’s
are important words (proper nouns, for example) in many
speech recognition tasks, so even though our method
involves a small degradation in overall speech recogni-
tion performance, it is clearly worth applying in order to
recognize key OOV words.
These results also show that acoustic complexity affects

the accuracy of OOV word detection. When an OOV
word has relatively low acoustic complexity, i.e., when
the audio signal contains less information, increasing the
number of additional utterances can significantly improve
detection accuracy. When the acoustic complexity of the
OOV word is sufficiently high (more than 3 mora in our
experiment), a small number of additional utterances, or
sometimes even just the smoothing probability, can result
in acceptable performance. These results suggest that we
should prepare a large number of additional utterances

Table 5 False rejection rates for OOV words when using
Kaldi-based ASR with N-gram LM

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – 1 .977 .643 .5

ALL – – .313 .174 .089 .022

500r Random 500 .783 .384 .232 .109

1kr Random 1000 .687 .314 .268 .087

2kr Random 2000 .566 .233 .268 .087

5kr Random 5000 .537 .233 .25 .087

500c POS 500 .747 .314 .25 .065

1kc POS 1000 .614 .291 .232 .022

2kc POS 2000 .506 .233 .214 .043

5kc POS 5000 .390 .233 .214 .065
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Table 6 False alarm rates for OOV words when using Kaldi-based
ASR with N-gram LM

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – 0 0 0 0

ALL – – .011 .008 0 0

500r Random 500 .005 .012 .002 0

1kr Random 1000 .019 .011 .004 .001

2kr Random 2000 .019 .008 .004 .002

5kr Random 5000 .032 .011 .003 .004

500c POS 500 .009 .008 .002 .001

1kc POS 1000 .009 .008 .002 .001

2kc POS 2000 .015 .008 .002 .001

5kc POS 5000 .038 .013 .002 .002

for OOV words with lower levels of acoustic complexity,
since LMs require more information to recognize OOV
words with simple pronunciations, while OOVwords with
sufficiently high acoustic complexity can be registered by
ASR systems using only their pronunciation information
(and back-off probabilities). As for the scale of additional
utterances required, the FRRs and FARs of OOV words
with different “natural” occurrence frequencies (2-mora
OOVs> 4-moraOOVs≥ 3-moraOOVs> 5-moraOOVs)
showed similar recognition tendencies when the inser-
tion rates were increased. Our results suggest that the
difference between an OOV word’s “natural” occurrence
frequency and its assigned frequency has little impact on
the final detection results.

5 Conclusion
In this study, we proposed several corpus modification
methods for dynamic OOV word registration which do
not require language model re-training. The proposed

Table 7 False rejection rates for OOV words when using
Kaldi-base ASR with N-gram plus RNN re-scoring LM

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – 1 .988 .696 .5

ALL – – .253 .151 .071 .022

500r Random 500 .747 .395 .214 .109

1kr Random 1000 .639 .326 .232 .152

2kr Random 2000 .602 .302 .214 .130

5kr Random 5000 .482 .267 .214 .130

500c POS 500 .687 .244 .232 .044

1kc POS 1000 .518 .256 .196 .043

2kc POS 2000 .410 .289 .214 .065

5kc POS 5000 .373 .221 .179 .022

Table 8 False alarm rates for OOV words when using Kaldi-based
ASR with N-gram plus RNN re-scoring LM

Position Freq. 2 mora 3 mora 4 mora 5 mora

ONE – – 0 0 0 0

ALL – – .011 .007 .001 0

500r Random 500 .010 .011 .001 0

1kr Random 1000 .015 .010 .001 .003

2kr Random 2000 .021 .008 .002 .003

5kr Random 5000 .029 .013 .002 .005

500c POS 500 .009 .007 .002 .001

1kc POS 1000 .013 .008 .001 0

2kc POS 2000 .019 .010 .002 .001

5kc POS 5000 .034 .015 .001 .001

methods were tested under two training conditions, ran-
dom insertion and replacement based on part-of-speech.
We also investigated the impact of acoustic complexity
on OOV word detection by manipulating the number of
moras in the OOV words, as well as the impact of the
“natural” occurrence frequencies of OOV words by using
different insertion rates. The proposed OOV word reg-
istration method was evaluated using two modern ASR
systems which both utilize DNN-HMM acoustic mod-
els and N-gram language models. We also conducted
an additional evaluation with one of the systems, using
RNN re-scoring. Our experimental results demonstrated
the effectiveness of the proposed OOV word registra-
tion method and also showed that the difference between
an OOV word’s “natural” occurrence frequency and its
assigned occurrence frequency had little impact on final
false rejection and false alarm rates.
In addition, our results revealed that the acoustic com-

plexity of the OOV words had a clear impact on the
performance of the proposed OOV word registration
method. Modern ASR systems can recognize OOV words
of high acoustic complexity with very little language infor-
mation about them. On the other hand, ASRs need a
sufficient amount of language information to success-
fully detect OOVwords of low acoustic complexity. These
results are consistent with [21], which found that the
acoustic information provided by acoustic models was
much more informative than the linguistic information
provided by the language model, even though the acoustic
models used in [21] were GMM-HMM-based.
Our proposed method was only tested using a Japanese

corpus, so it is still not clear whether it will work well with
corpora of other languages. However, statistical language
models such as N-grams and RNN models work in vari-
ous languages as well as Japanese, so we believe that this
method can also be applied to improve OOV detection
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in other languages. In future work, we will validate that
our method can be used effectively in other languages,
generally. We will also apply our proposed method to rec-
ognizing utterances which contain OOV words which are
not in the training data, such as trendy slang, by obtain-
ing examples from social networking websites, etc., and
registering them to the recognizer.
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