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Abstract

Attention-based encoder-decoder models have recently shown competitive performance for automatic speech
recognition (ASR) compared to conventional ASR systems. However, how to employ attention models for online
speech recognition still needs to be explored. Different from conventional attention models wherein the soft
alignment is obtained by a pass over the entire input sequence, attention models for online recognition must learn
online alignment to attend part of input sequence monotonically when generating output symbols. Based on the fact
that every output symbol is corresponding to a segment of input sequence, we propose a new attention mechanism
for learning online alignment by decomposing the conventional alignment into two parts: segmentation—segment
boundary detection with hard decision—and segment-directed attention—information aggregation within the
segment with soft attention. The boundary detection is conducted along the time axis from left to right, and a decision
is made for each input frame about whether it is a segment boundary or not. When a boundary is detected, the
decoder generates an output symbol by attending the inputs within the corresponding segment. With the proposed
attention mechanism, online speech recognition can be realized. The experimental results on TIMIT and WSJ dataset
show that our proposed attention mechanism achieves comparable online performance with state-of-the-art models.

Keywords: Encoder-decoder, Online recognition, Boundary detection, Attention mechanism, Reinforcement
learning, Policy gradient

1 Introduction
With the booming of deep learning, attention-based
encoder-decoder models have rapidly advanced the
research of sequence transduction problems like machine
translation, image caption, and automatic speech recog-
nition (ASR) [1–6]. For a sequence transduction prob-
lem, the alignment between input and output sequence
is essential. An effective solution for modeling the align-
ment is attention mechanism which can be learned
jointly with the encoder-decoder model [1]. Generally,
the attention-based encoder-decoder model consists of
encoder, decoder, and attention mechanism. The encoder
is a neural network such as recurrent neural network
(RNN) [7–9] or transformer [10] which encodes each
input item together with its context information into a
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hidden representation, and all the hidden representations
of the input sequence constitute a memory bank. The
decoder is a similar neural network which learns to gen-
erate output sequence given the encoder memory bank.
And the attention mechanism iteratively performs a pass
over the entire input memory to get attention weight vec-
tor which represents the soft alignment and can be used to
aggregate information from thememory bank for decoder.
Although the conventional attention-based encoder-

decoder models have proven to be effective on a wide
variety of problems, they fail in streaming processing tasks
like online speech recognition where output symbols are
produced when the input sequence has only been par-
tially observed. Therefore, the key for online recognition
is to learn online alignment. Windowing approach was
proposed in [4] where the range of the attention at cur-
rent output step was restricted to a fixed-sized window
with position decided by attention at previous output step.
And it was adopted to online recognition in [11]. An
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extra inferring algorithm was introduced in [12] to split
the input and output sequence into equally sized non-
overlapping blocks over which the sequence-to-sequence
transduction was performed. In [13], a jointly trained
CTC-based network was introduced to the attention
model to provide alignment information for triggering the
online attention module. In [14, 15], the input speech was
processed frame-by-frame to decide whether or not to
emit an output symbol for each input. These decisions
were optimized with reinforcement learning (RL), and
the entire procedure can be regarded as a hard attention
mechanism. Similar with this idea, hard monotonic atten-
tion [16] with end-to-end differentiablemethodwas intro-
duced so that the hard attention can be better trained with
expectation instead of sampling approximation in [14, 15].
However, these hard attention mechanisms access a single
memory item for each decoding step which is much worse
than exploiting the whole input memory with soft atten-
tion. Thus, monotonic chunkwise attention (MoChA) [17]
was proposed to allow the model to perform soft attention
over small chunks of the input memory preceding where
a hard monotonic attention mechanism has chosen to
attend. Benefiting from the small chunks, MoChA yields
comparable online performance with conventional soft
attention. However, MoChA uses a fixed chunk size for all
output symbols which neglects the variational durations
of output symbols.
The online attention mechanisms mentioned above

indeed work, but the segmental structure of speech is
underutilized more or less. There are work [18, 19] to
regard the segmentation of input speech sequence as a
latent random variable, and the sequence transduction is
performed with all alignment paths marginalized out via
dynamic programing. However, these models either intro-
duce conditional independence assumptions between out-
put symbols or require a fixed alignment for training.
Meanwhile, online speech recognition is not explored in
their work.
Therefore, here comes the question: How to utilize the

segmental structure of speech for online speech recogni-
tion? To this end, we propose a segment boundary detec-
tion directed attention mechanism which splits the input
speech into successive segments with detected boundaries
so that different output symbols adaptively have differ-
ent chunk sizes for aggregating information within the
segment with soft attention. The segment boundaries are
detected by a boundary detector which is trained jointly
with the encoder-decoder model. By explicitly introduc-
ing a boundary detector to utilize the segmental structure,
we can easily model the monotonic alignment between
input and output sequence and make the attention-
based encoder-decoder model applicable to online speech
recognition. In our method, segment boundary detec-
tion directs the online recognition in a strictly monotonic

manner; thus, it is required that an output symbol should
be corresponding to a segment of speech. And unpro-
nounced output symbols are not suitable for our method,
such as the often-used character in English where some
letters are not pronounced in words.More discussions can
be found in Section 4.2.2.
The rest of this paper is structured as follows: in

Section 2, we first give a brief discussion about hard
attention and segmental patterns. Then, we introduce
two models most relevant to our work for comparison:
conventional attention based encoder-decoder model and
hard alignment with RL. Afterwards, we describe our
proposed approach including training and inference pro-
cedure in Section 3. Experiments, discussion, and conclu-
sion are given in the following sections.

2 Related work
2.1 Hard attention and segmental pattern
As a kind of attention mechanisms, hard attention selects
specific inputs and discards others for decoder to inte-
grate information from input sequence. These discrete
operations often require RL style approaches to train
[2]. Meanwhile, from RL perspective, hard attention can
be formulated as an agent that interacts with an input
sequence over time and learns good policies to take dis-
crete actions about where to pay attention in the sequence.
There are previous works that use RL to learn where to
consume the input and/or when to emit an output [20] for
tasks like image classification [21], object detection [22],
object tracking [23], and speech recognition [14]. Simi-
larly, in our work, we formulate the segment boundaries
as actions which is suitable for online speech recognition.
Not only in speech, segmental patterns exist in many

types of sequences such as phrases in human languages
[24]. Therefore, it is quite natural to consider how to
incorporate the segmental structure into sequence-to-
sequence models. Many works try to model the various
valid sequence segmentations by introducing a latent vari-
able [18, 19, 25, 26]. Although following the same idea, the
segment boundaries of speech can be regarded as a latent
variable; we notice that it is equivalent to our formula-
tion of regarding the boundaries as actions when intro-
ducing some approximations (Jensen’s inequality) for the
latent variable. More details and derivations can be found
in [2, 27].

2.2 Conventional attention-based encoder-decoder
model

As mentioned in Section 1, the conventional attention-
based encoder-decoder model contains three parts:
encoder to process input sequence X = (x1, x2, . . . , xT ),
decoder to produce output sequence Y = (y1, y2, . . . , yN ),
and attention mechanism to align the sequence X and
Y. The encoder converts input sequence to a memory
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bank H = (h1, h2, . . . , hT ). And the decoder attends input
memory H and generates ith output symbol yi based on
the attended context representation ci, the decoder state
si, and the previous output yi−1. When applying encoder-
decoder model to ASR, the input X is usually a sequence
of feature vectors like filter bank features, and the out-
put Y is a sequence of phonemes, characters, or words.
The forward pass of the model is given by the following
equations:

H = Encoder(X) (1)
s̃i = RNN(si−1, yi−1) (2)
αi = Attend(s̃i,αi−1,H) (3)

ci =
T∑

k=1
αk
i hk (4)

si = RNN(s̃i, ci) (5)
yi = softmax(W [ si; ci; yi−1] ) (6)

where si is the decoder state at output step i and s̃i is
the intermediate variable. The attention weight vector is
αi ∈ R

T , known as the alignment of input memory and
output sequence. The Attend() function in Eq. (3) is often
modeled by a multiple layer perceptron (MLP) equipped
with convolutional feature shown below:

eki = MLP(s̃i, hk , [ F ∗ αi−1]k ) (7)

αk
i = eki

/ T∑

k=1
eki (8)

Note that the attention weight αi is calculated based on
the entire input memory H, which is a problem for online
speech recognition.

2.3 Hard online alignment with policy gradient
To address the online problem, Luo [14] introduced hard
online alignment to get an online sequence-to-sequence
model. The online model uses binary stochastic variables
to select the timesteps at which to produce outputs. The
recognition process can be described as follows: at each
input timestep t, a recurrent neural network with hidden
state ht decides whether or not to emit an output symbol.
The decision is represented by a stochastic binary logistic
unit bt . Let b̃t ∼ Bernoulli(bt) be a Bernoulli distribution
so that if b̃t is 1, then the model emits an output symbol.
During training, the binary decision is generated by sam-
pling from Bernoulli distribution, and during inference,
the decision is set to 1 if the binary distribution probabil-
ity bt exceeds a certain threshold. The current decoding
position in the output sequence Y can be written as p̃t =∑t

j=1 b̃j, which is incremented by 1 every time the model
chooses to emit. Then, the model’s goal is to predict the
desired output ỹi = yp̃t . At each input timestep t, the

binary decision from the previous timestep b̃t−1 and the
previous target ỹi−1 are fed into the model as input. They
used reinforcement learning to train the network on when
to emit the various outputs and supervised learning to
train the network to make the correct output predictions.
The reward of the model is defined in Eq. (15).
The main recognition process of the model is summa-

rized by the following equations:

ht = RNN(ht−1, [ xt ; b̃t−1; ỹi−1] ) (9)
bt = sigmoid(Wbht) (10)

b̃t ∼ Bernoulli(bt) (11)

p̃t =
t∑

j=1
b̃j (12)

ỹi = yp̃t (13)
dt = softmax(Woht) (14)

R = R + b̃t · logdt(ỹi) (15)

By factoring the reward R into R(b̃) and distribution p(b̃)

over the binary decision sequence b̃, the loss is:

L = Eb̃[R(b̃)] (16)

where the expectation E is based on b̃ = (b̃1, b̃2, . . . , b̃T ).
And the gradient estimate with respect to the parame-

ters is:

∇L = Eb̃[∇R(b̃) + R(b̃)∇logp(b̃)] (17)

The gradient consists of two parts: Given a value of the
binary decision b̃t , the gradient of the model can be calcu-
lated with backpropagation (BP) algorithm bymaximizing
the output likelihood (the first term in the right side of
Eq. (17)). The gradient of the binary random variable b̃t in
Eq. (11) can be calculated with policy gradient (PG) (the
second term in the right side of Eq. (17)). The wholemodel
is a stochastic computation graph that includes both
deterministic functions (output sequence Y ) and condi-
tional probability distributions (binary decision sequence
b̃). The detailed derivations can be found in [20, 28].
While the hard online alignment enables the real-time

processing of the speech stream, there exists an issue
for the model to predict output by attending only a sin-
gle input memory item. To remedy this issue, we pro-
pose a segment boundary detection directed attention
which allows the decoder to attend input memory within
detected segments. Although motivated by Luo’s work
introduced above, ourmethod incorporates the segmental
structure into the attentionmechanismwhich is more rea-
sonable for online alignment, and as a consequence, the
online performance is significantly improved compared to
Luo’s work (see Table 3).
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3 Method
3.1 Encoder-decoder model with segment boundary

detection directed attention
The diagram of the online encoder-decoder model with
our proposed attention mechanism is shown in Fig. 1.
In the diagram, both encoder and attention are differ-
ent from the conventional attention model: the encoder
is a unidirectional recurrent network; the soft attention
is performed over a segment with boundary indicator b̃t
decided by a recurrent boundary detector. These differ-
ences, suitable for online recognition, enable the decoder
to produce output symbols based on the detected seg-
ments of the input speech stream.
Given an input sequence X = (x1, x2, . . . , xT ), firstly,

the recurrent encoder converts the current input xt to
hidden state ht . Then, the recurrent boundary detec-
tor updates its hidden state Sat−1 with {ht , s̃i, b̃t−1} as
input, which represents encoder state ht , decoder inter-
mediate state s̃i (s̃i is the query of attention mech-
anism), and binary indicator b̃t−1 about whether or
not the previous input xt−1 is a segment boundary,
respectively. After the update, the detector predicts the
boundary probability bt of current input with new state
Sat and makes a decision b̃t based on probability bt
(Eqs. (18–22)).

Note that, similar with Luo’s work in Section 2.3, the
binary decision b̃t is generated by sampling during train-
ing (Eq. (22)) and by threshold decision during inference.
The formula of the boundary probability in Eq. (21) is
the same as [16], allowing the model to learn appropri-
ate offset r for the pre-sigmoid activation and make the
probability nonsensitive to the scale of the activation. We
initialize r to a negative value −2 before training to pre-
vent the sampled boundaries from occurring in the very
beginning of the input sequence.

ht = Encoder(ht−1, xt) (18)
s̃i = RNN(si−1, yi−1) (19)

Sat = RNN(Sat−1, [ ht ; s̃i; b̃t−1] ) (20)

bt = sigmoid(g
v�

‖v‖ tanh
(
WbSat

) + r) (21)

b̃t ∼ Bernoulli(bt) (22)

As shown in Fig. 1, the output production is triggered
by the input boundary detection. If the decision b̃t is 0
(shaded round node) which means current input is not
a segment boundary, the model continues to access next
input xt+1 without emitting an output symbol. Otherwise,

Fig. 1 Diagram of the online encoder-decoder model with segment boundary detection directed attention. The input and output sequence are
(x1, x2, . . . , xT ) and (y1, y2, . . . , yN), respectively. b̃t denotes the random variable of binary segment boundary decision, αi is attention weight vector,
ci is the attended context vector—weighted summation of the input hidden states, and ht , Sat , si , s̃i are the hidden states of the recurrent networks.
y0 is the StartOfSequence symbol and s0 is the initial decoder state. The encoder processes the input stream frame-by-frame, and boundary
decisions are made for each input. A shaded b̃t indicates that current input is not a segment boundary for the model and the decoder stays idle
while an unshaded b̃t mean that current input is a segment boundary and the decoder should produce an output by attending the corresponding
segment with soft attention. For instance, the decisions for the first three inputs are b̃1:3 = (0, 0, 1) which means input x3 is a detected segment
boundary. Then, the decoder predicts y1 by attending the hidden states of the segment (h1, h2, h3). After that, a new input x4 is received and this
procedure continues until the end of the input or output sequence is reached
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if the decision b̃t is 1 (unshaded round node) which means
current input is a segment boundary, the model attends
the corresponding segment with range [ zi−1 + 1, zi] and
emits an output yi:

zi = t if (b̃t = 1) (23)

eki = MLP(s̃i, hk , [ F ∗ αi−1]k ) (24)

αk
i = eki∑zi

t=zi−1+1 e
t
i

(25)

ci =
zi∑

t=zi−1+1
αt
i ht (26)

si = RNN(s̃i, ci) if (b̃t = 1) (27)
p(yi) = softmax(W [ si; ci; yi−1] ) (28)

i = 1 +
t∑

j=1
b̃j (29)

The index t means current input timestep and the index
i means current output step (both t and i start from 1).
The input timestep t always updates once new input xt is
received while the output step i updates only when b̃t is 1
(Eq. (29)).
The main difference with Luo’s work in Section 2.3

is shown in Eqs. (23–26). When a segment boundary is
detected, the segment range is also determined by previ-
ous boundary zi−1 and current boundary zi. Based on that,
the decoder performs soft attention over the ith detected
segment (hzi−1+1, hzi−1+2, . . . , hzi) and predicts the corre-
sponding output symbol yi with decoder state s̃i, encoder
context vector ci and previous output yi−1. This procedure
continues until the end of the input or output sequence is
reached.
In order to get better performance with the proposed

attention mechanism, we refine its actual implementation
based on the architecture described above. The refine-
ments are based on two considerations: (1) phones can
be better recognized if more context acoustic informa-
tion is included. Therefore, when a segment boundary
is detected, the soft attention range can be extended by
combining the corresponding segment with its restricted
left and right context. Meanwhile, this extension makes
the model more robust to the possible boundary detec-
tion errors. In our experiments, we extend the left context
by concatenating previous and current detected segment
(“Extend left” in Table 1). As for the right context, we
extend the segment with 2 following input memory items
for low latency recognition (“Extend right” in Table 1).
Specifically, for both “Extend left” and “Extend right,” the
attention range [ zi−1 + 1, zi] in Eqs. (25–26) is replaced
with [ zi−2 + 1, zi + 2]. (2) The acoustic variation of con-
secutive input frames is essential for boundary detection
[29]. Thus, both past and future frame information should

Table 1 Test PER results of segment boundary detection
directed attention model with refinements on TIMIT dataset

Extend left Extend right Decision delay PER (%)

× × 0 26.3

� × 0 25.0

� � 0 24.1

� � 1 23.5

� � 2 22.7

� � 4 22.5

be provided to the boundary detector when inspecting
each potential boundary frame. The past frame informa-
tion can be utilized by the recurrent boundary detector.
As for the future information, inspired by the unidirec-
tional long short-term memory (LSTM) [8] with target
delay [30] to access some future context, we introduce
a decision delay (“Decision delay” in Table 1) which
allows the model to look ahead some future input mem-
ory items when making a boundary decision. Specifi-
cally, for a boundary decision sequence with 2 delayed
timesteps (Null,Null, b̃1, b̃2, . . . , b̃t), the input sequence of
the boundary detector is (h1, h2, . . . , ht , ht+1, ht+2).

3.2 Training and inference procedure
The online process described above involves sampling,
which is beyond the reach of standard BP algorithm.
Therefore, as discussed in Section 2.1, we formulate the
segment boundary detection as a sequential decision-
making problem and solve it with RL algorithm. The
boundary detector is a goal-oriented agent which inter-
acts with speech and takes actions about whether or
not current input is a segment boundary. The state
of the agent contains four elements: the current input
hidden state ht , the previous action b̃t−1, the current
decoder state s̃i, and the interaction history Z1:t =
{(h1, s̃1), b̃1, . . . , (ht−1, s̃i′), b̃t−1} (a sequence of past obser-
vations and actions, i′ ≤ i). In our model, the state of
the agent is summarized in the RNN hidden state Sat
(Eq. 20). Similar with Luo’s work in Section 2.3, the reward
is defined as:

rt =
{
logp(yi), if (b̃t = 1)

0, else

}
(30)

If the action b̃t is 1, the reward is the log likelihood of
current output symbol. Otherwise, the reward is 0.
With these RL-related terms specified, the boundary

detector can be optimized by maximizing the total reward
it can expect in the long run:

L = Eb̃[R(b̃)] (31)

where b̃ = (b̃1, b̃2, . . . , b̃T ) and R is the accumulated
reward of the sequence: R = ∑T

t=1 rt . The loss here is the
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same with Eq. (16) introduced in Section 2.3; thus, the gra-
dient estimate in Eq. (17) can be reused. The gradient of
the binary random variable b̃t (second term in the right
side of the Eq. (17)) is shown below:

Eb̃[R(b̃)∇logρ(b̃)]

≈ 1
M

M∑

i=1

T∑

t=1
∇logp

(
b̃it|Sat,i

) (
Ri
t − μt

) (32)

where the expectation E is approximated with sampling
and M is the number of sampled sequences. Ri

t is the
accumulated reward of the ith sequence from time t to
T : Ri

t = ∑T
l=t ril . μt is a baseline which is introduced to

lower the variance of the gradient approximation. Similar
to works [21, 23], we select μt = Eb̃[Rt]≈ 1

M
∑M

i=1 Ri
t as

our baseline.
In order to successfully train the model, we adopt two

tricks used in [14]: (1) the sampled binary decisions in
Eq. (22) is modified by forcing b̃t to be equal to 1 whenever
T − t ≤ N − i to ensure that the model is forced to gen-
erate the entire output sequence during training. T and N
are the input and output sequence length, respectively. (2)
An entropy penalty for boundary probability bt is used to
prevent too confident binary decisions and improve the
exploration of the agent. Following [14, 31], the entropy
penalty can be incorporated by defining an augmented
reward:

raugt = rt − λ
(
b̃t log(bt) + (1 − b̃t)log(1 − bt)

)
(33)

where λ is the weight of entropy penalty. And our model
is trained with this augmented reward.
During inference, we use a modified beam-search

algorithm presented in Algorithm 1 to generate output
sequences. The key of the modified beam-search algo-
rithm is to synchronize the boundary detection timesteps
of each beam so that all beams can emit output symbols
from different start positions. The decoding procedure for
each beam is similar to the online process in Section 3.1,
with a difference that the boundary decision in Eq. (22) is
replaced with b̃t = I(bt > τ)where I is the indicator func-
tion and τ is a threshold. In the decoding procedure, both
the boundary probability assignment and the output sym-
bol production rely on the interaction histories includ-
ing past inputs, outputs, and actions. Therefore, at each
decoding step, the detected boundaries in each beam may
be different, which results in the output symbols getting
emitted at different input timesteps. A maximum allow-
able decoding delay D (Line 11 in Algorithm 1) is used
to prevent the model from consuming all encoder frames
without emitting output and make the model applicable
in online recognition. In order to get fair and compa-
rable beam scores for each beam, beams with already
detected segment boundaries should wait for other beams

and the beam pruning is conducted until every beam has
encountered a segment boundary and emitted an output
(Line 24 in Algorithm 1). The beam pruning and candidate
generation are the same with conventional beam-search
algorithm. And the latest detected boundary location zi
is stored in a beam candidate together with the output
subsequence Yi. After the new beams are determinated,
the decoding process continues with the start position of
the input boundary detection probably different for each
beam. And the decoding process is terminated either all
beams emit EndOfSequence symbol or reach the end of
the input sequence.

4 Experimental results and discussion
We validate our model on two datasets: a small one
called TIMIT [32] and a large one called WSJ [33]. Ini-
tial experiments are conducted on TIMIT to assess the
refinements described in Section 3.1 and the online per-
formance of the proposed attention mechanism. Based
on that, the behavior of the model including the seg-
ment boundary detection output and the learned online
alignment are analyzed on TIMIT to understand how
the attentionmechanismworks. Besides, experiments and
segment boundary detection output on WSJ dataset are
presented to provide more convincing results.

4.1 Experiments with small dataset: TIMIT
4.1.1 Dataset andmodel setup
The first set of experiments are conducted on TIMIT
which is a widely used speech corpus for phoneme recog-
nition task. In our experiments, we use the standard data
partition of train/valid/test set which contains 3696, 400,
and 192 utterances respectively. The input to encoder
is 40-dimensional mel scale filter bank features together
with the energy in each frame, and their first and second
temporal differences, yielding in total 123-dimensional
features per frame. And the output is 61 phone set with
an extra “EndOfSequence” token. Decoding is performed
with beam-search using the 61+1 phone set, while scoring
is conducted on the standard 39 phone set. Phone error
rate (PER) is used as the evaluation criterion.
In order to compare with recent end-to-end methods

for online recognition [14–17], we use a unidirectional
encoder consisting of 3 gated recurrent unit (GRU) [9]
layers with 512 hidden units and a single unidirectional
GRU decoder with 256 hidden units. And the hidden
state sequence of the final encoder layer is downsam-
pled by every three hidden states. This results in a 1/3
downsampling rate so that the sequence processed by
the segment boundary detector is shorter, which allows
the model to learn proper boundary decisions much eas-
ier with RL. Convolutional feature (see Eq. (3)) is used
in our models with same configuration as [3]. A sin-
gle layer GRU with 256 hidden units is adopted as the
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Algorithm 1 Beam-search algorithm for segment boundary detection directed attention model.
1: Input: H : input memory bank with length T, N : maximum decoding step, V : output vocabulary, K : beam width, D:

maximum allowable decoding delay
2: Output: F : set of completed output sequences
3: Declaration:

B: set of beam candidates, Score: scores of each beam
SeqsNew: set of decoded output subsequence and latest detected boundary location pairs (Yi, zi) at current output
step
SeqsOld: set of decoded output subsequence and latest detected boundary location pairs (Yi−1, zi−1) at previous
output step

4: Initialization: F ⇐ {∅}, Score({∅}) = 0, SeqsOld = {(y0, z0)}, Sa0 = 
0, b0 = 0, z0 = 0, i = 1, y0 = StartOfSequence
5: while i ≤ N do // Produce output symbols until the decoded output subsequence length larger than N
6: SeqsNew ⇐ {∅}, B ⇐ {∅}
7: for subsequence and detected boundary location pair (Yi−1, zi−1) in SeqsOld do
8: while zi−1 + 1 ≤ j ≤ T do // Start inspecting memory items hjs left-to-right from where we left off
9: Saj = RNN(Saj−1, [ hj; s̃i; b̃j−1] ) // Update the agent state

10: bj = sigmoid(g v�
‖v‖ tanh(WbSaj ) + r) // Compute segment boundary probability of current input

11: if bj ≥ τ or j − zi−1 ≥ D then // If bj is larger than threshold τ or delay is larger than D, we stop scanning
the memory

12: zi = j // Set current segment boundary location
13: ci = ∑zi

t=zi−1+1 αt
i ht // Segment-directed soft attention with αi computed based on Eq. (25)

14: p(yi|Yi−1; h1∼zi) = softmax(W [ si; ci; yi−1] ) // Compute output probability of symbol yi
15: for yi in vocabulary V do // Extend the beam candidate with all possible output in V
16: Yi ⇐ concate(Yi−1, yi)
17: Score((Yi, zi)) = Score((Yi−1, zi−1)) + logp(yi|Yi−1; h1∼zi)
18: Add (Yi, zi) to the set of beam candidates B
19: end for
20: break // Stop searching memory items for this beam in SeqsOld
21: end if
22: end while // Break the loop when an output is emitted or the memory sequence is over
23: end for // Finish inspecting memory items for all beams in SeqsOld
24: SeqsNew ⇐ The top-K beams (Yi, zi) from B in terms of Score
25: for (Yi, zi) in SeqsNew do // Filter out subsequences who generated EndOfSequence symbol
26: if yi = EndOfSequence then // The last symbol of the subsequence Yi is yi
27: Add Yi to F
28: Delete tuple (Yi, zi) in SeqsNew
29: K = K − 1
30: end if
31: end for
32: SeqsOld ⇐ SeqsNew
33: if SeqsNew = {∅} then
34: break
35: end if
36: end while

recurrent boundary detector because of GRU’s capabil-
ity of memorizing long historical data. The weight of the
entropy penalty λ described in Section 3.2 is set to 1 in
the beginning and linearly decays from 1 to 0.3 during
5000 to 10000 iteration steps. Then, the weight is set to
0.3 after 10000 steps. In our experiments, we use GRU
layer to replace LSTM layer since GRU has comparable

performance to LSTM [34] while GRU consumes fewer
parameters and is more efficient to be trained.
We use Adadelta optimizer [35] with ε = 1e − 8 and

ρ = 0.95, and the model is trained with dropout rate 0.3
[36, 37] for first 10 epochs. After lowest validation neg-
ative log-likelihood is achieved, we continue to train the
model with adaptive weight noise [38] and lower the ε to
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1e − 9 if we do not observe the performance improve-
ment for successive 10 epochs in validation PER. Finally,
we stop training if there is no more gain in the develop-
ment set. Beam-search is used during inference with beam
size 10, and the threshold of the boundary probability τ

is set to 0.35. Maximum allowable decoding delay D is set
to 20. The minibatch size is 5 and sample size M is 15.
The global gradient clipping is set to 10. As model perfor-
mance varies with different initial weights, we conduct 5
repeat trials for each model and report the average PER.
All the models for TIMIT experiments are implemented
based on Theano [39].

4.1.2 Model performance
We first investigate the effect of the refinements intro-
duced in Section 3.1 and further choose a proper model
architecture for following experiments. Table 1 shows the
results of models with refinements including “Extend left”,
“Extend right” and “Decision delay.” Different from other
experiments on TIMIT, all the models here are trained
without adaptive weight noise [38] for simplicity. The PER
of the model without extensions is 26.3%. By extending
the soft attention area with left and right context, a lower
PER 24.1% is obtained. And the PER is reduced as the
decision delay increases. Considering the demand of low
latency, we adopt decision delay with 2 input timesteps in
the following TIMIT experiments.
Therefore, the segment boundary detection directed

attention model with all the refinements is denoted as
“Proposed method” in Table 2, and all the models imple-
mented here are trained with adaptive weight noise. To
further verify the effectiveness of our model and exclude
the impact of extra introduced parameters (GRU bound-
ary detector), we conduct more experiments for three
baseline models equipped with the conventional offline
soft attention: encoder-decoder model with same encoder

Table 2 Test PER results of different models for online
recognition on TIMIT dataset

Model #Param (M) PER (%)

Partial condition [12] 3.1 20.8

Hard alignment with RL [14] 6.8 20.5

Gaussian prediction attention [40] 5.8 20.4

Hard monotonic attention [16] 6.4 20.4

Stacked LSTM [15] 1.0 20.0

CTC [41] 3.8 19.6

Proposed method 6.9 20.2

Soft attention* 5.9 21.0

Soft attention bigger-E* 7.5 20.8

Soft attention bigger-D* 7.0 20.6

All the models use a unidirectional encoder and * indicates offline attention model

and decoder size to our proposed model (denoted as “soft
attention”), soft attention model with one more unidi-
rectional GRU layer with 512 hidden units stacked on
the encoder (denoted as “soft attention bigger-E”), and
soft attention model with decoder replaced by 2 GRU
layers with 320 hidden units (denoted as “soft attention
bigger-D”). These baseline models do not have any down-
sampling layers. We also list the online performance of
previous end-to-end models in Table 2. And the num-
ber of parameters of previous models in the table are
estimated based on the literatures. It is shown that our
proposed model yields PER 20.2% which is comparable
with the best online encoder-decoder models. And the
model with GRU boundary detector is more effective than
the baseline models with more GRU layers in encoder or
decoder.
The learning curves of various models are shown in

Fig. 2. Although our model is trained with RL whose
approximated gradient has high variance, the training
progress on TIMIT is steady and the convergence speed
is similar with soft attention (boundary detection directed
attention vs. soft attentions). As for WSJ, it converges
slower than baseline models. We hypothesize that utter-
ances in TIMIT are shorter which makes it easier for
the model to explore various boundary trials and receive
instructive feedbacks.
We also show the development and evaluation set accu-

racies of different decoding thresholds in Fig. 3 to evaluate
how fragile the model is towards the threshold selection.
The threshold value varies from 0.25 to 0.55 on TIMIT
and 0.2 to 0.5 onWSJ with increment 0.05. As we can see,
the performance remains stable in a narrow range, like
0.35–0.45 on TIMIT and 0.25–0.35 onWSJ, which means
we should be careful about the threshold. And the max-
imum delay D reduces the decoding errors when a large
decision threshold is used. D is tuned based on the devel-
opment set and a smaller Dmay degrade the performance
because of hurting the long silence skipping ability of the
model.

4.1.3 Case study
In addition to the recognition performance, we also con-
duct a case study to analyze how the proposed attention
mechanism works by examining the segment boundary
detection output, segment-directed soft attention, and
recognition result of an example from validation set. The
boundary detection output shown in Fig. 4 is generated
with recognized hypothesis HYP as decoder input, which
is consistent with inference procedure. The speech spec-
trogram is visualized in the first row of the figure, together
with ground-truth phone segments represented by dash
lines and reference transcription denoted in each seg-
ment. From the spectrogram, we can easily find most
of the phone segment boundaries based on the acoustic
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Fig. 2 Learning curves of several attention models. Left: The valid PER for each epoch on TIMIT dataset. Right: The valid WER for each epoch on WSJ
dataset with dev93 as validation set. The “soft attention,” also denoted as baseline model, means a model equipped with conventional soft offline
attention while using the same unidirectional encoder and decoder of our proposed model. And the “soft attention bigger-E” means the baseline
model with another GRU layer stacked on the encoder. “Soft attention bigger-D” means the baseline model with another GRU layer stacked on the
decoder. Both “soft attention bigger” models have similar or more amount of parameters with our proposed model (see Table 2). The “boundary
detection directed attention” means our proposed model in this work. The sudden drops in dev93 WER represent the learning rate decay during
training procedure

variations of the consecutive frames. And this makes the
segment boundary detection possible. In order to com-
pare the detected boundaries with the spectrogram, we set
the x-ticks differently so that the length of the boundary
probabilities and decisions are the same with the spectro-
gram (the downsampling rate is 1/3 in our model). And
the recognized hypothesis is also denoted in each detected
segment. As is shown in the figure, the detected bound-
aries (red bars in the second row of Fig. 4) are roughly
precise in the front part of the utterance and become
disordered in the ending. Correspondingly, there are 7
recognition errors (1 insertion error, 2 deletion errors,
4 substitution errors) in this example, and the detailed
reference transcript and recognized hypothesis are given
below:
REF: h# w ay bcl ay q oy l w ax n y ux q ao w
ey z y ux z m ay n h#
HYP: h# w ay bcl b ay q oy l w ix n y uw q oy

z y ux z m aym h#

As we can see, many phones are correctly recognized
given the roughly precise segment boundaries. However,
deletion error may occur (w ey in REF) if a real boundary
is missed, and insertion error may occur (b in HYP) if
a boundary is falsely detected within the real segment.
These errors suggest that more precise boundary detec-
tion methods are needed.
In order to investigate how the boundary detection

affects the alignment, we visualize the segment bound-
ary detection directed attention and the conventional soft
offline attention in Fig. 5. Note that reference REF is used
as decoder input and the encoder of the baseline model
is downsampled with 1/3 rate so as to make the two
attentions comparable. And the ground-truth phone seg-
ments (dark dash line) and detected segments (red dash
line) are given in the figure with reference transcription
attached. As the online decoding goes on, the maximum
score of the segment-directed attention may occur at the
detected boundary, within the detected segment or in
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Fig. 3 Development and evaluation set accuracies with different decoding thresholds
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Fig. 4 Speech spectrogram and segment boundary detection output for utterance MRTK0_SX193 from validation set. Top: Speech spectrogram
with ground-truth phone segments represented by dash lines and reference transcription denoted in each segment. Bottom: Segment boundary
detection output generated with recognized hypothesis as decoder input. The blue line is the boundary probability of each input memory item
ranging from 0 to 1 (most of the probabilities are around 0.2 to 0.6). The green dashed line indicates the threshold to emit output symbols which is
set to 0.35 on TIMIT. And the red bars are detected boundaries based on threshold decision. The frame rate of boundary sequence is 1/3 of original
input speech because of 1/3 downsampling rate in our model. And recognized hypothesis is also denoted in each detected segment with
recognition errors marked in red
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Fig. 5 Conventional offline attention and segment boundary detection directed attention for utterance MRTK0_SX193 from validation set. Reference
transcription is used as decoder input for both models and each phone symbol is denoted to its corresponding alignment. The soft offline attention
is generated by the “soft attention bigger-D” model, which contains a downsampling layer with 1/3 downsampling rate in encoder and consumes
comparable amounts of parameters to boundary detection directed attention model (see Table 2). The dark dash lines in the first row indicate
ground-truth phone segments with 1/3 downsampling rate. The red dash lines in the second row indicate the detected segment boundaries
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the extended area (“Extend left/right”). And the segment-
directed attention is similar to the offline attention even
though some boundary detection errors are made. We
hypothesize that the model may benefit from the decoder
output history and the extended attending range, which
makes the model robust to boundary detection errors.

4.2 Experiments with large dataset: WSJ
4.2.1 Dataset andmodel setup
Limited by the corpus size, the performance of encoder-
decoder models on TIMIT is often highly affected by the
hyperparameters and regularization tricks. Considering
that, we also validate our model on WSJ dataset to make
the experimental results more convincing. In WSJ, 81 h
long SI-284 set is used for training, “dev93” set is used for
validation, and “eval92” set is used for evaluation. As we
failed to reproduce the powerful baseline model used in
[16, 17], the baseline model proposed in [16, 17] is modi-
fied by adding dense connections [42–44] between layers
of the encoder and using subword output unit, in order
to get a new baseline model in our work with compara-
ble performance. Dense connection is adopted because it
facilitates the training of deep models.
The details of our baseline encoder-decoder model are

described below. The input to deep convolutional encoder
is 80-dimensional mel scale filter bank features together
with their first and second temporal differences, which is
organized as a T × 80 × 3 tensor with 80 as frequency
dimension and static, first, and second temporal differ-
ences stacked as 3 feature maps. This input sequence is
first fed into two convolutional layers, each with 3 × 3
filters and a 2 × 2 stride with 64 feature maps per layer.
Each convolution is followed by batch normalization (BN)
[45] prior to a rectified linear unit (ReLU) activation. After
processed by the two convolutional layers with 2 × 2
stride, the input sequence has 1/4 downsampling rate and
is passed into a convolutional LSTM layer with 64 fea-
ture maps, using 1 × 3 filters. This was followed by an
additional 3 × 3 convolutional layer with 64 feature maps
and a 1 × 1 stride. These two convolutional layers are
considered as a dense block thus each layer has dense con-
nections to its posterior layers. Transition layer with 256
hidden units is introduced and there is no bottleneck layer
within the block. Then, the encoder had another dense
block consisting of three additional unidirectional GRU
layers with 256 hidden units, each followed by a dense
layer with 256-dimensional output, BN and ReLU acti-
vation. And dense connections are added to each GRU
output. Dropout is embedded after every ReLU activa-
tion. The decoder was a single unidirectional GRU layer
with 256 hidden units and takes a 64-dimensional learned
embedding as input. The attention module of the baseline
is a windowing approach with width 200 and convolu-
tional feature dimension 50, a little different from [4]. The

softmax output layer took as input the concatenation of
decoder’s state, attended context vector, and embedding
of previous output token (see Eqs. (6, 28)).
The mostly used output unit for WSJ is character while

subword units have proven to be better than characters
[46]. Another consideration is that subword may be more
relevant to phonetic unit and thus suitable for segment
boundary detection. More discussion can be found in
Sections 4.2.2 and 4.2.3. Therefore, we employ byte-pair
encoding (BPE) as output unit [47], and 1K BPE units are
used in our experiments, similar to [48]. The beam-search
decoding will go over these BPE units, and at the end of
decoding, the BPE units are merged into words in order
to obtain the best hypothesis on word level. And external
language model is not used in our experiments.
As for our proposed attention mechanism, same with

the refinements in TIMIT experiments, we extend the
attending range for each detected segment in both direc-
tions so as to make the model more robust to segment
boundary detection errors. And decision delay is not used
since the encoder contains 2 convolutional layers which
have already encoded the information of several future
frames to the hidden representations of each potential
boundary frame.
We use Adam optimizer [49] with learning rate 2.5e− 4

for segment boundary detection directed attention model
and dropout is active after 10 epochs with rate 0.5. The
learning rate is set to 2.5e−5 and 2.5e−6 respectively if no
performance improvement is observed in validation word
error rate (WER) for successive 10 epochs. The entropy
penalty weight λ is set to 1 for first 30 epochs and linearly
decays to 0.3 for next 20 epochs and then keeps 0.3 for the
remaining epochs. The minibatch size is 8 and the sam-
ple size M is 4. The global gradient clipping is set to 1.
The threshold τ of segment boundary probability is set to
0.3 and maximum allowable decoding delay D is set to 40.
As for the baseline models with conventional offline soft
attention, the learning rate is set to 5e−4, and same decay
scheme is used with factor 10. Baseline models are trained
with minibatch size 30. Both the baseline and our pro-
posedmodel are trained with label smoothing 0.1 from the
beginning [50]. Four GPU are employed with synchronous
updating to speed up the training. All the models for WSJ
experiments are implemented based on Tensorflow [51].
For each model, we conducted 5 repeat trials and report
the mean and standard deviation of WER.

4.2.2 Model performance
The experimental results are listed in Table 3. We esti-
mated the number of parameters of previous models
based on literatures and list them in the table for compar-
ison. Our offline soft attention baseline has 5.4M param-
eters and yields 15.3% WER with deviation of 0.3% while
the baseline reported in [17] is 14.6% ± 0.3%. We have
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Table 3 Test WER results of different models for online
recognition on WSJ dataset

Model #Param (M) WER (%)

Hard alignment with RL [14] 2.7 27.0

CTC [52] – 22.7

Hard monotonic attention [16] 2.9 17.4

MoChA [17] 3.0 15.0±0.6

Soft attention* [17] 2.9 14.6±0.3

Proposed method (BPE) 6.6 15.5±0.4

Soft attention (BPE)* 5.4 15.3±0.3

Soft attention bigger-E (BPE)* 6.7 15.1±0.3

Soft attention bigger-D (BPE)* 6.7 15.0±0.3

Proposed method (Char) 6.6 22.2±0.5

Soft attention bigger-D (Char)* 6.7 16.3±0.3

All the models use a unidirectional encoder and * indicates offline attention model

tried several encoder architectures and found that the
model described above yields the lowest WER. Thus, we
conducted an online recognition with our proposed atten-
tion mechanism and the modified encoder and obtained
comparable performance with state-of-the-art MoChA
model (15.5% vs. 15.0%). Although our model has 6.6M
parameters, two times larger than MoChA which has
3.0M parameters, we think it is mainly the baseline soft
attention models rather than attention mechanisms that
occupy most of the parameters. Therefore, without loss
of generality, we compared our method with our own soft
attention models and treated MoChA as a reference. Sim-
ilar to experiments on TIMIT, we also stack one more
unidirectional GRU layer to the encoder/decoder of the
baselinemodel (denoted as bigger-E/bigger-D) which con-
sumes similar amount of parameters with our proposed
model (6.7M vs. 6.6M). And the result shows the per-
formance of the proposed online attention mechanism is
close to the offline soft attention. Based on that, we can
confirm that the segment boundary detection directed
attention is effective for online speech recognition. Mean-
while, we also aware of that the proposed attention mech-
anism is not easy to be well trained with PG algorithm
since segment boundary is explicitly detected with hard
decisions. The learning curve (BPE as output unit) in
Fig. 2 shows that the segment boundary detection directed
attention converges a little slower than soft attention but
is steady onWSJ although it is trained with PG. Therefore,
improving the training efficiency of themodel is necessary
in future work.
Moreover, we ran additional experiments with charac-

ter as output unit for better comparison with BPE unit.
All configurations are the same with BPE-based models
except that the threshold τ is set to 0.5. In Table 3, the per-
formance of proposed method degrades drastically from

15.5 to 22.2% and the gap between soft attention and pro-
posed method (16.3% vs. 22.2%) is very large for character.
Comparing with MoChA where character is used as out-
put, our character-based model performs worse. These
results validate our viewpoint that character is not suit-
able for our method as explained in the introduction. In
MoChA and offline soft attention, input speech frames or
chunks are not forced to uniquely map to an output. For
example, in MoChA, multiple outputs can be emitted for
a chunk, because the new inspection of memory entries
starts from where it left off (see Algorithm 1 in [17]).
Based on that, unpronounced labels could probably be
emitted without consuming new input frames. However,
in our method, each detected segment can only emit a sin-
gle output (line 8 and 12 in Algorithm 1), which requires
each output label to correspond with a speech segment.
Therefore, unpronounced output characters would con-
fuse the segment boundary detector. And long words may
also compel the detector to trigger the output charac-
ter emission frequently, which increases the burden of
boundary detection and results in shorter segment length.
In contrast, BPE is more relevant to phonetic unit than
character and thus more suitable for segment boundary
detection directed attention. We also provide a case study
to better illustrate this in Fig. 7. We believe that a min-
imum segment length and allowing overlapping segment
detections are worth exploring in future work to handle
the higher output frame rate for character-based output.

4.2.3 Case study
In order to further analyze the behavior of the bound-
ary detector, the segment boundary detection output
(BPE) of a longer WSJ dev utterance with long silence
parts is shown in Fig. 6. Similar to TIMIT example
in Section 4.1.3, the boundary detection output shown
in Fig. 6 is generated with recognized BPE hypothesis
HYP as decoder input, which is consistent with infer-
ence procedure. And all detected boundaries of BPE
symbols are represented by dark dashed lines. Since man-
ually annotated boundaries are unavailable on WSJ, we
obtain “ground-truth” word boundaries from a HMM-
GMM model with Kaldi [53]. The speech spectrogram
is visualized in the first row of the figure, together with
HMM-GMM-generated word segments represented by
dash lines and reference transcription denoted in each
segment. Silence symbol “sil” is automatically inserted
to the original reference REF. In the second row of the
figure, we only denote recognized word sequence in each
detected word segment (red lines) for simplicity and word
boundary is considered as the detected boundary of a
word’s last piece.
As is shown in the figure, a BPE symbol is usually

emitted when new speech stream reaches. However, the
model is not robust to long silence part, for example,
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Fig. 6 Speech spectrogram and segment boundary detection output (BPE) for utterance 4k0c0303 from “dev93” set. Top: Speech spectrogram with
word segments (forced alignment generated by a HMM-GMMmodel) represented by dash lines and reference transcription denoted in each
segment. Bottom: Segment boundary detection output generated with recognized hypothesis as decoder input. The blue line is the boundary
probability of each input memory item ranging from 0 to 1 (most of the probabilities are around 0.1 to 0.4). The green dashed line indicates the
threshold to emit output symbols which is set to 0.3 on WSJ. The dark dashed lines are detected boundaries of BPE outputs based on threshold
decision. And the red lines are the detected boundaries of last piece of a word, which can be considered as word boundaries. The frame rate of
boundary sequence is 1/4 of original input speech because of 1/4 downsampling rate in our model. And recognized hypothesis is also denoted in
each detected segment with recognition errors marked in red

“fertilization” followed by long silence is falsely recognized
to “further position.” The detailed reference transcript and
recognized hypothesis as well as BPE sequence BPE_HYP
are given below:
REF: With the integrations of communications and con-

sulting units there may be a greater degree of cross fire
fertilization Mr. Millar said in a statement <
noise>
HYP:With the integrations of communications and con-

sulting units there may be a greater degree of cross fire
further positionMr.Miller said in a statements
BPE_HYP:With < spc> the < spc> in te gr ations < spc>

of < spc> comm un ic ations < spc> and < spc> con sul ting
< spc> un its < spc> there < spc> may < spc> be < spc> a <
spc> gre at er < spc> de g ree < spc> of < spc> c ro ss < spc>
fir e < spc> f ur ther < spc> posi tion < spc> Mr. < spc> M
ill er < spc> said < spc> in < spc> a < spc> st at em ents
“< spc>” symbol represents space between words and the
BPE sequence is corresponding to detected boundaries
denoted as dark dashed lines and red lines in Fig. 6.
In order to complement the discussion about the

character-based model in Section 4.2.2, we present
another example with utterance including unpronounced
characters. The BPE-based and character-based segment
boundary detection outputs are shown in Fig. 7. Note
that word “knowing” is “k n o w i n g” for character-
based model and is “kno w ing” for BPE-based model.

For character-based model, word “knowing” with unpro-
nounced “k” is falsely recognized to “no in”, while for
BPE-based model, “knowing” is correctly recognized after
merging subwords “kno w ing”. And BPE boundaries are
more compatible with acoustic variations.
Although we have not conducted experiments for much

larger dataset like LibriSpeech (960 h) [54] due to limited
computing resources and time, both recognition accura-
cies and case studies have shown the effectiveness of our
model for online speech recognition. And to progress,
experiments with larger datasets as well as other per-
formance improving techniques including decoding with
language model is necessary in future work.

5 Conclusion
In this paper, we present a new online attention mech-
anism: the segment boundary detection directed atten-
tion which divides the conventional soft attention into
two parts—segment boundary detection and segment-
directed soft-attention. By formulating the boundary
detection as a sequential decision-making problem, the
online attention mechanism can be trained with RL algo-
rithm so that online end-to-end speech recognition is
achieved. Experiments on TIMIT and WSJ dataset have
demonstrated the effectiveness of our proposed model
whose performance is comparable with the conventional
offline soft attention models and state-of-the-art online
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Fig. 7 Speech spectrogram and BPE-based/character-based segment boundary detection output for utterance 4k0c030j from “dev93” set. Top:
BPE-based segment boundary detection output. Middle: Speech spectrogram with word segments (forced alignment generated by a HMM-GMM
model) represented by dash lines and reference transcription denoted in each segment. Bottom: Character-based segment boundary detection
output. Both the detection outputs are generated with recognized hypothesis as decoder input. The blue lines are the boundary probabilities of
each input memory item. The green dashed lines indicate the threshold to emit output symbols which is set to 0.3 for BPE and 0.5 for character. The
dark dashed lines are detected boundaries of BPE/character outputs based on threshold decision. And the red lines are the detected boundaries of
last piece/character of a word, which can be considered as word boundaries. The frame rate of boundary sequence is 1/4 of original input speech
because of 1/4 downsampling rate in our model. And recognized hypotheses are also denoted in each detected segment with recognition errors
marked in red

attention models. Although some detection errors exist,
the online alignment learned by the proposed atten-
tion mechanism is roughly similar to soft offline align-
ment, which can explain the effectiveness of the mecha-
nism. Both the recognition performance and the segment
boundary detection output have provided evidence that
utilizing segmental structure of speech for online speech
recognition is reasonable as well as effective. In the future,
we will explore more boundary detection methods to
improve the training efficiency and the boundary detec-
tion accuracy so as to conduct experiments on much
larger datasets and further improve the online recognition
performance.
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