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Abstract

Two novel methods for speaker separation of multi-microphone recordings that can also detect speakers with
infrequent activity are presented. The proposed methods are based on a statistical model of the probability of activity
of the speakers across time. Each method takes a different approach for estimating the activity probabilities. The first
method is derived using a linear programming (LP) problem for maximizing the correlation function between
different time frames. It is shown that the obtained maxima correspond to frames which contain a single active
speaker. Accordingly, we propose an algorithm for successive identification of frames dominated by each speaker. The
second method aggregates the correlation values associated with each frame in a correlation vector. We show that
these correlation vectors lie in a simplex with vertices that correspond to frames dominated by one of the speakers. In
this method, we utilize convex geometry tools to sequentially detect the simplex vertices. The correlation functions
associated with single-speaker frames, which are detected by either of the two proposed methods, are used for
recovering the activity probabilities. A spatial mask is estimated based on the recovered probabilities and is utilized for
separation and enhancement by means of both spatial and spectral processing. Experimental results demonstrate the
performance of the proposed methods in various conditions on real-life recordings with different reverberation and
noise levels, outperforming a state-of-the-art separation method.

Keywords: Blind audio source separation (BASS), Relative transfer function (RTF), Correlation analysis, Linear
programming (LP), Simplex, Convex geometry, Beamforming

1 Introduction
Blind audio source separation (BASS) is a prominent task
in the field of audio processing, dealing with the analysis
of audio streams comprising several speakers. BASS aims
at extracting the individual speech signals of each of the
sources present in an audio mixture [1]. Most methods for
BASS usually assume that the speakers are concurrently
active for most of the time, and a little attention was paid
to the case of infrequent speakers.

BASS has been a topic of extensive research for the
last decades, leading to a large variety of separation algo-
rithms. The measured signals in an array of microphones
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represent convolutive mixtures of the clean source signals
with the corresponding acoustic channels [2-5]. Com-
monly, the signals are analyzed in the short time Fourier
transform (STFT) domain, in which the convolutive mix-
tures are approximated by multiplicative mixtures. Var-
ious approaches for BASS exist, such as the indepen-
dent component analysis (ICA) and independent vector
analysis (IVA) separation methods [6—10], non-negative
matrix factorization (NMF) [11-15], and, more recently,
deep neural network (DNN)-based separation methods
[16-23]. A related problem to acoustic source separa-
tion was recently investigated in the field of structural
health monitoring based on acoustic emission, dealing
with onset detection of overlapped acoustic emission
waves [24] for accurate time of arrival estimation [25].
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A vast number of BASS algorithms rely on the spar-
sity of speech signals in the STFT domain, assuming
that speech components of simultaneously active speak-
ers are non-overlapping [26]. One approach is to compute
the time or the phase differences at each time-frequency
(TF) bin, and then to jointly cluster all TF bins [27-29].
Alternatively, dual-stage methods perform a frequency-
wise clustering, followed by a permutation alignment of
the identities of the speakers across all frequency bands
[30-32]. The resulting algorithms consist of iterative
methods, such as the well-known expectation maximiza-
tion (EM) algorithm, which require a careful initialization,
are susceptible to converge to local maxima, and com-
monly impose high computational load.

Source separation can also be achieved by applying
beamformers [1], which are multichannel spatial filters
designed by certain criteria, such as the linearly con-
strained minimum variance (LCMV) beamformer [33].
These algorithms are not fully blind, as their design
requires some knowledge on the signal statistics or the
acoustic systems. In [33, 34], the beamformer parame-
ters were estimated assuming some prior knowledge on
the activity of the speakers, such as assuming the exis-
tence of known time intervals in which each of the desired
speakers is separately active [33], or, alternatively, assum-
ing a scenario in which speakers become successively
active [34]. In [35], a blind approach for learning the
beamformer parameters was proposed using variational
inference framework, which is initialized based on the
speakers’ time difference of arrivals (TDOAs).

In many conversations, an unbalanced activity of the dif-
ferent speakers is common, when several speakers may
participate frequently, while others only seldom speak.
This is often the case in interviews, police interrogations,
and counseling, just to name a few. In this type of scenar-
ios, one speaker presents short questions or comments,
while the other speaker provides long answers or descrip-
tions, which may be then followed by short expressions of
agreement or disagreement from the first speaker. Identi-
fying a speaker with low activity is extremely challenging,
since it is based on a very limited amount of data. To the
best of our knowledge, this scenario has not been consid-
ered in the literature, although it is very common and of
great importance in many applications.

In this paper, we present a source separation method
based on an LCMV beamformer followed by a postfilter
with parameters that are learned in a completely blind
manner by recovering the probability of activity of the
speakers across time. This method is flexible and can
be applied to a wide range of scenarios from conver-
sational speech with only a limited amount of overlap-
ping speech to audio mixtures of simultaneously active
speakers with possibly large overlap between them. Fur-
thermore, it can also detect speakers with low activity.
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The proposed method relies on a probabilistic model that
is built upon the speech sparsity in the STFT domain
and describes the probability of activity of the speakers
across time. Based on the assumed statistical model, it is
shown that the correlation between each two time frames
along the measured signal equals the multiplication of
the associated speaker’s probabilities. A correlation func-
tion is defined for each frame, consisting of its correlation
with all other frames. For frames dominated by one of
the speakers, the value of the correlation function equals
the probability of this speaker in each frame, and can
be used as an estimator for the activity probability. We
present two methods for detecting the set of frames dom-
inated by a single speaker. The first method relies on the
theory of linear programming (LP) that states that single-
speaker frames are the maximum points of the correlation
function associated with any other frame. Based on this
observation, we present a sequential algorithm to detect
frames dominated by each speaker. In the second method,
we aggregate the correlations in a correlation matrix. We
show that the columns of this matrix lie in a simplex. The
vertices of the simplex correspond to frames dominated
by a single speaker, and can be recovered by convex geom-
etry tools. Based on the activity probabilities estimated by
either method, we recover the spectral mask that assigns
each TF bin with the dominant speaker, and exploit it for
performing spatial multichannel separation followed by
spectral single-channel post-processing.

The contribution of the current work is twofold, both
in terms of presenting novel methodologies for source
separation which have several advantages over existing
separation methods, as well as in terms of achieving
high-quality performance in various scenarios as shown
in the experimental part. Compared to existing separa-
tion algorithms, the proposed methods do not require
any initialization processes, do not include iterative search
mechanisms, circumvent frequency-permutation prob-
lems, and do not require training data, resulting in effi-
cient high-performance methods. Compared to our pre-
viously proposed simplex-based method [36, 37], which
relies on a similar probabilistic model, here we present
new methodologies for solving the problem, yielding sim-
plified processing methods and better supporting infre-
quent speakers. In addition, one of the presented meth-
ods has lower computational complexity with respect to
[36]. It is worthwhile noting that the proposed maxi-
mum correlation method was utilized for a psychological
research on vocal emotional dynamics during psychother-
apy sessions [38]. The method was used for detecting
time intervals in which the therapist and the patient are
active, from which vocal features were then extracted and
analyzed. An example demonstrating the capabilities of
the proposed method for this task is given in the exper-
imental part. This utilization of the proposed method
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demonstrates its applicability to the extraction of speakers
with unbalanced activity patterns as in psychotherapy ses-
sions, where patients often speak for longer periods, while
therapists frequently respond with shorter utterances.

2 Methods

We start by presenting in Section 2.1 the problem for-
mulation and preliminary concepts underlying the signal
model, the statistical model of the activity probabilities,
the feature extraction process, and the analysis of the cor-
relation between the defined feature vectors. This study
serves as the basis for the derivation of two methods for
activity probability estimation, presented in Section 2.2.
These methods are then incorporated in the actual sepa-
ration scheme, presented in Section 2.3.

2.1 Problem formulation and preliminary concepts

2.1.1 Signal model

Consider J static speakers in a reverberant enclosure. The
signals emitted by the speakers are measured by an array
of M microphones and are analyzed in the short time
Fourier transform (STFT) domain. Here, f € {1,...,K} is
the frequency bin and [ € {1,...,L} is the frame index.
The signal measured by the mth microphone is given by:

M-

Y"'(Lf) =3 V(Lf) + N (L)

1

S~
Il

|
M~

j=1

~
Il

where Yj’”(l,f) = A}”(f)Sj(l,f) is the signal of the jth
speaker measured by the mth microphone, where A;” (2]
is the acoustic transfer function (ATF) relating the jth
speaker and the mth microphone and S;(/, f) is the signal
of the jth speaker, and N ([, f) is the non-directional noise
signal measured by the mth microphone. Directional
noises can be treated as additional sources, increasing J
accordingly.

Our goal is to apply separation, namely to extract the
individual source signals {le(l, f)}j from the mixture
while reducing the noise. Note that instead of estimat-
ing the original source signals, we provide an estimate
of the source signals as they are measured by the first
microphone that serves as a reference microphone.

2.1.2 Sparsity-based statistical model

Relying on the assumption of the speech sparsity in the
STFT domain (a.k.a. W-disjoint orthogonality) [26], each
TF bin is dominated by either one of the speakers or con-
sists of noise. We define the categorical spectral mask
{M(,f)}15 that assigns each TF bin with its dominating
component, either one of the J speakers, 1 < M(/,f) <]
or the noise M(l,f) = J + 1. When the power of the
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jth speaker is considerably larger compared to the power
of the other speakers and the noise, in the (/,f)th TF
bin, we have M([,f) = j, 1 < j < J. TF bins that
are not dominated by either of the speakers are consid-
ered noise, ie., M([,f) = J + 1. Accordingly, we can
restate (1):

AP L) ML) =),
N™Qf) MO =T + 1.

We assume that the index of the dominating component
M(1,f) has a categorical distribution with

Pr (M(Lf) = j) = pj() (3)

and Z]j‘:l pi() < 1 for each frame [. The activity proba-
bilities {p;(1)};, are independent of the frequency bin, and
represent the activity patterns of the speakers across time,
namely with respect to the frame index /.

We compute the following bin-wise ratio between the
measurement at the mth microphone and the measure-
ment at the reference microphone:

Ym(l»f) = { (2)

RN (7 I
R"(l.f) = YiGf)’ m=2,...,M. (4)
According to the sparsity assumption (2), we have:
” H"(f) it M(Lf) =j, 1 <j <]
R™(Lf)=1 " . 5
&N {n(l,f) iftM(Lf)=]+1 ®)
where
A (f)
H™Mf) = L—. )
! A5 (f)

is the relative transfer function (RTF) [39, 40] defined
as the ratio between the ATF of the mth microphone
and the ATF of the reference microphone, both of which
are associated with the jth speaker. Here, n(,f) =
N™(1,f)/N(l,f) is a noise term that is both frequency and
frame dependent. We obtain that the ratio in (5) equals
the RTF of one of the speakers or a noise term. We assume
that the RTFs and the noise terms are independent zero-
mean random variables. The RTFs of different speakers,
frequencies, or microphones are assumed to be indepen-
dent, and the same holds for the noise terms of different
frequencies or frames. Further discussion on the validity
of these assumptions can be found in [36]. For the sake of
simplicity, we assume a unit variance for the real and the
imaginary parts of the RTFs and the noise terms in each
TF bin. Note that the following derivation also holds for
non-unit and non-constant variance by applying a proper
normalization.

2.1.3 Feature extraction and correlation analysis

Based on the computed ratios, a feature vector r(/) of
length D = 2 - F - (M — 1) is defined for each frame as
a concatenation of the real and the imaginary parts of the
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ratios (4), in F frequency bins and in M — 1 microphones:

r(Lf) = [R*LF),RBLE, ..., RMH]"
T
O = [T AT )]

T
r() = [real {rc(l)}T ,imag {rc(l)}T] . 7)

where fi,...,fr € {1,..,K}.

Based on the presented statistical assumptions, consider
the expected bin-wise correlation between two different
frames [ # n,1 < l,n < L, given the identity of the
dominating components:

E{lxD)]k [x(m)] 1M k), M(n, k) }

z{lM(l,k)=M(n,k)#/+1 )
0 otherwise

where [r(D)]x ,k € {1,..., D} denotes the kth entry of r(/)
and M(, k) = M(l, | (k —1)/(M — 1) mod (M — 1) + 1).
Equation (8) states that the conditional correlation equals
“1” if the same speaker is active in both TF bins, and “0” if
there are different dominating speakers or that one of the
TF bins is dominated by noise. Thus, according to the law
of total expectation, we have:

]
E{lx@ [xml} = > pihpim), )

j=1

implying that the bin-wise correlation between the fea-
tures equals the multiplication of the corresponding activ-
ity probabilities. In practice, we can obtain an approxima-
tion to this expected correlation by averaging the product
of the features over a large amount of frequency bins.
To this end, the bin-wise correlations can be treated as
a sequence of uncorrelated random variables for differ-
ent values of k (different frequencies or different micro-
phones). Therefore, according to the strong law of the
large numbers, their sample mean converges almost surely
to their mean value given in (9):

1 13

St (Orm) = — ;[rm]k Lr(m)]i
a.s. ]
S E{xOlk-lxmle} = Y piDp(n), (10)

j=1

for D — oo. Note that for the same frame [ = #, the
expected value does not obey (9) and (10), but instead
E{[r(l)]i} = 1, and therefore %rT(l)r(l) 23 1. In the fol-
lowing, we show how we can exploit the relation in (10)
between the feature-wise correlations and the probability
products to estimate the activity probabilities, by exploit-
ing either linear programming theory or convex geometry
tools.
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2.2 Proposed methods

We present two methods for estimating the activity prob-
abilities {p;(])};; of the different speakers at each frame.
The estimation is based on the statistical model presented
in Section 2.1, and specifically on the correlation between
frames (10). The two methods first identify frames that
are dominated by one of the speakers, and then infer the
probabilities associated with each speaker using the cor-
relations with respect to the identified frames. The first
method is described in Section 2.2.1 and is based on
the detection of the maximum points of the correlation
functions defined for each frame. The second method is
described in Section 2.2.2 and is based on the detection of
the vertices of the simplex that consists of the correlation
vectors defined for each frame.

2.2.1 Maximum correlation method
A function of J variables q =[q1, 42, .. .,qy]” is defined for
each frame [:
]
(g g2 - a) = Y piDg (11)

j=1

where the probabilities {p;(/) }]].=1 associated with the /th
frame are the parameters defining the function. Consider
the following optimization problem:

J
maximize £;(q1,92, ..., = (Da;
q1:425--4] 1(q1, 4 ) ;P/( )gj )

Qg+ g <1l
=0, V1=<j=<]

subject to

This is a linear programming (LP) problem, where the
constraints, defining the feasible region, specify the J-D
probability simplex. The vertices of the simplex are the
standard unit vectors {ej}]]':p where ¢; =[0,...,1,...,0],
with one in the jth entry and zeros elsewhere, and there
is an additional vertex at the origin since the sum Z]j‘:l qj
can be lower than “1” but is bound to be positive. Based
on the theory of LP [41], every local maximum is a global
maximum, and the maximum is attained at either of the
simplex vertices. Note that the function value at the origin
is “0”; therefore, the maximum must be attained at one of
the other vertices of the simplex {ej}lzl.

According to (10), a set of possible values of the function
t; is given by the correlations between the /th frame and
all other frames, i.e.:

ti(n) = ti(q1(n), q2(n), . . ., qy(n))

= l%rT(l)r(n) (13)

qj(n)=pj(n)

]
=Y pihg(m

j=1

representing the function value at the point q(n) =
[q1(m), q2(n), ..., q7(m]T, with gj(n) = pj(n). Note
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that for a specific frame [, the probabilities p(/) =
[p1(D), p2(D),...,py(D]T are treated as fixed parameters
determining the structure of the function #;, while the
probabilities of the other frames q(n), 1 < n < L,n # [
are treated as points at which the function is evaluated.
Here, we utilize the equivalence between the feature-wise
correlations and the probability products implied by (10)
to obtain samples from the function ¢;, where the sample
t;(n) is given by the correlation between the features asso-
ciated with the /th and the nth frames. Note that we only
have the function value £;(n), but not the function param-
eters p(/) and the point q(/), in which the function was
evaluated.

The formulation of the LP problem (12) can be used
to detect frames dominated by a single speaker. It is
important to clarify that we do not solve the optimization
in (12), since the parameters defining the function ¢; are
unknown. Instead, we utilize the fact that the maximum
is attained at a point corresponding to a frame with a sin-
gle speaker, i.e., with probability 1 for one of the speakers,
and with probability O for the other speakers. According
to (13), the correlation between the /th frame and all other
frames provides L — 1 values of the function #;. There-
fore, we search for the maximum among the given values
of t;. The maximum value is attributed to a frame that
is exclusively dominated by a single speaker. In practice,
we define the set of L correlation functions {tl}lel» by
appending to each frame its correlation to all other frames.
Next, we count the number of times that each frame is
detected as a maximum point of the correlation functions
defined by the other frames. This way, we obtain a score
function conveying how often each frame serves as maxi-
mum point. Frames that achieve a high score are assumed
to be dominated by one of the speakers. To obtain only
a single representative frame for each speaker, we select
these frames sequentially and eliminate in each step the
frames that correspond to speakers that have already been
identified.

Examples of the function ¢; are given in Fig. 1, for two
mixtures of ] = {2, 3} speakers. Further details on the gen-
eration of the mixtures are given in Section 3. Note that
for ] = 2, the constraint g1 + g2 < 1 specifies a triangle,
and for / = 3, the constraint q; + ¢ + g3 < 1 specifies
a corner of a cube. The coloring of the points is accord-
ing to the function value at each point. It can be observed
that the maximum is attained at a vertex, which corre-
sponds to the speaker with maximum probability. Note
that the maximum is not necessarily unique, for example,
a flat function is obtained for a frame with equal speakers’
probabilities. We avoid these cases by considering only
correlation functions that their maximum value is above a
certain threshold.

Based on these observations, we propose an algo-
rithm for sequential recovery of J frames, each of them

(2021) 2021:5 Page 5 of 16

dominated by one of the J speakers. We assume that for
each speaker, there is at least one frame, with index [;,
which is entirely dominated by this speaker, i.e., p(};)) =
e;. For the simplicity of the notation, we ignore possible
permutation in the order of the identified speakers.

We define a function g which assigns to any frame index
[ a frame index g(/) with maximum correlation to frame /,
ie.

g(l) = argmax £,(n) (14)

neSi\l
where §; = {1,...,L}. We define by ¢(!') the number of
frames with maximal correlation attained at the /'th frame,
ie.

cl) =g W)|

where g~ 1(I') = {l e S1gl) = l’} is the inverse image of
g and |- | denotes the set cardinality. The frame associated
with the first speaker is the one most frequently detected
as a maximum point:

(15)

[1 = maxc(n). (16)
neSy

The probabilities associated with frame /; satisfy q(/1) =

p(l1) = ey; hence, in (11), we have:

ty,(n) = pT )q(n) = el q(n) = q1(n) = p1(m).  (17)

Next, we define a smaller subset of frames with low
probability of activity of the first speaker:

S) = {l € Sl:tll ) < 8} (18)

with ¢ a threshold parameter. A second frame, dominated
exclusively by the second speaker, is chosen using the
same criterion as in (16), [, = max;es, ¢(n), where the
search runs now over S;. Limiting our search to frames
in Sy prevents choosing a frame dominated by the first
speaker.

Assuming that r—1 speakers have already been detected,
a frame dominated by the rth speaker is identified by:

I, = maxc(n) (19)
neSy
where
S, = {l S S,«71,t1,_1 ) < 8} (20)

The process is stopped when r = J. The probabili-

ties of the speakers in each frame are estimated by their
. . oo v .

correlation to the identified frames {l/}j=1'

pj(n) = tlj(n), Vnef{l,...,L},je{l,...,]}.

In the case the set S, is empty and » < ], we replace the
search rule of (19) by:

(21)

r—1
I, = ,52}31} 21: t; (). (22)
I:
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Note that according to (21), Z;;ll ty(n) = er;ll pi(n);
hence, the criterion in (22) amounts to selecting the frame
with lowest activity probability of the speakers that were
already detected. The proposed maximum correlation
method is summarized in Algorithm 1.

2.2.2 Correlation simplex method

For the second method, we aggregate the values of the
correlation function defined for each frame in an L x 1
correlation vector t; defined as:

Algorithm 1: Maximum Correlation Method

e Define g(/) by detecting the maximum point for
each correlation function (14).

e Define ¢(/) by counting the number of times each
frame serves as a maximum point (15).

e Detect frames dominated by each speaker:

- & =1{1,...,L}
— forr=1:/do

* I, = maxyes, c(n)
* Spp1 = {l €St ) < 8}

® Obtain the activity probabilities p;(n) = ty;(n) (21).

t =40, 4(2),....4D)]". (23)
Based on (13), we have:
J J
=Y pipj+ Ay~ Y pi(Dp; (24)
j=1 j=1

where p; =[p;(1), pj(2), ... ,pj(L)]T is the probability vec-
tor of size L x 1, which consists of the probabilities
of the jth speaker in each frame. Here, At; = (1 —

][=1 pjz(l))ej represents a small difference vector that
stands for the deviation in the jth entry due to the fact
that the self-correlation of the frame with itself equals
“1” This deviation has a negligible effect and is therefore
ignored.

According to (24), the correlation vectors {tl}lL:1 are
obtained as convex combinations of {pf}/]‘=1 ; hence, they lie
in the following simplex in R

J
O={opi+...+6p|Y 6<16>0¢,
j=1

(25)

where the simplex vertices are {Pj}/]':p and there is an
additional vertex at the origin, since the sum of the
weights can also be lower than one. Therefore, recovering
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Algorithm 2: Correlation Simplex Method
¢ Define the simplex obtained by the correlation
vectors {tf}]le of (23).
® Detect frames dominated by each speaker by
recovering the simplex vertices using SPA [43]:

- Pt=1
—forj=1:]/do
ES argmaxllPJ-tl||§
le(1,....L)
_pl
* dj =P €

# P = (1 didT/14)13) P
— end

® Obtain the activity probabilities p; = t;; (26).

the simplex vertices with indexes {/;} provides an estimate
of the columns of the probability matrix P, i.e.:

pi =t (26)
The simplex vertices are detected by means of convex
geometry tools using the successive projection algorithm
(SPA) [42, 43]. In this algorithm, the vertices are sequen-
tially detected by maximum norm criterion, when each
vector is first projected to the orthogonal complement of
the subspace spanned by the already identified vertices.
The proposed correlation simplex method is summarized
in Algorithm 2.

Note that the two proposed methods are based on iter-
ative procedures for detecting frames dominated by a
single speaker. In the maximum correlation method, the
detection criterion is based on how frequently the frame
serves as a maximum point, while the simplex correla-
tion method is based on maximum norm criterion. These
two criteria are related to each other since when a frame
is frequently detected as a maximum, it implies that it
has high correlation with other frames, indicating that
its correlation vector has high norm. The main differ-
ence is that for the maximum correlation method, the
detection criterion is computed only once, and the set
of possible frames is reduced in each step by eliminating
frames with non-negligible correlation to previously iden-
tified frames, while for the simplex correlation method
the detection criterion is computed in each iteration by
first projecting the correlation vectors to the orthogonal
complement of the subspace spanned by the correlation
vectors of the previously identified frames. Following this
difference, we show in the experimental part that the max-
imum correlation method is much more computationally
efficient.
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2.2.3 Relation to Simplex-EVD method
In this section, we discuss the relation of the proposed
methods for activity probability estimation and our pre-
viously proposed simplex method [36]. Both the simplex
algorithm [36] and the proposed methods rely on the
statistical model presented in Section 2.1.2, and specif-
ically on the correlation between frames (10). In [36],
we define a correlation matrix with L columns that cor-
respond to the correlation vectors defined in (23). We
apply eigenvalue decomposition (EVD) to the correlation
matrix and obtain a simplex representation embedded in
R/. Next, we detect the simplex vertices and use them to
transform the simplex representation that is based on the
computed eigenvectors to the probability simplex. This
method shares some similarity with the correlation sim-
plex method derived in Section 2.2.2. The difference is
that in [36], we first apply an EVD of the correlation
matrix, while here we use the correlation vectors directly.
Accordingly, in [36], we obtain a simplex in R/, while
here we have a simplex in RY. The maximum correla-
tion method, derived in Section 2.2.1, takes an entirely
different approach that is based on LP theory. Note also
that both proposed methods estimate the probabilities
directly from the correlations, while in [36] they are esti-
mated based on the computed eigenvectors. A diagram
summarizing the three methods is depicted in Fig. 2a.
We discuss the computational complexity of the three
methods:

1. Maximum correlation method: (i) Search for the
maximum of each correlation function O(L?). (ii)
Count the number of times each frame is detected as
a maximum O(L). (iii) Sequentially select frames
most frequently detected as maximum and with low
correlation to previously identified frames O(J - L).
Total: O(L2 +J - L); for ] <« L we have O(L?).

2. Correlation simplex method: (i) SPA. For each
source: project correlation vectors O(L3), compute
the norm O(L?), find maximum norm O(L). For all ]
sources: O(J - L3).

Total: O( - L?).

3. EVD simplex method [36]: (i) EVD O(L3). Note that
since only the first ] eigenvectors are required, the
computational complexity can be reduced by using
iterative methods and by computing only the required
eigenvectors, for example with Arnoldi iterations
[44]. (ii) SPA. For each source: project correlation
vectors O(J? - L), compute the norm O(J - L), find
maximum norm O(L). For all J sources: O(J3 - L).
(iii) Probability estimation: inverse of vertices matrix
O(J3), transform to probability vectors O(J? - L)
Total: O(L3 + J3 - L)

We compare the performance and the computational time
of the three methods in Section 3.
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Fig. 2 Block-diagrams of a the methods for activity probability detection (“Max-Corr” derived in Section 2.2.1,

“Simplex-Corr” derived in Section 2.2.2,

and “Simplex-EVD” proposed in [36]) and b the overall separation system

2.3 Separation based on activity probability

We present a separation scheme that relies on the esti-
mated activity probabilities. In the first stage, we estimate
the spectral mask M(J,f) based on the activity probabili-
ties. In the second stage, we utilize the estimated spectral
mask for the actual separation by applying a multichannel
beamformer followed by a single-channel postfilter.

2.3.1 Spectral mask estimation

The spectral mask is estimated per frequency by combin-
ing the local relations between the bin-wise ratio features
r(l,f) defined in (7) with the activity probabilities p(/) esti-
mated by one of methods derived in Section 2.2. Specifi-
cally, the value of the spectral mask is determined for each
TF bin based on the following weighted nearest-neighbor
rule:

M(Lf) = argmax —szn(f) - pj(n)

jell,..J+1} 70

27)

where the weight wy,(f) of each frame n with respect to
the inspected frame / is inversely proportional to distances
in the space defined by {r(/,f) }le. Particularly, we use the
following Gaussian weighting:

o (f) = exp {~|lr(.f) = r(n.ll}. (28)

In (27), j serves as a class normalization and is given by:

L
T = ij(”)~
n=1

Note that since the local mappings are aligned using the
same global probabilities, the proposed method does not
suffer from permutation ambiguity of the identity of the
speakers across the different frequencies. The mask esti-
mation procedure was adopted from [45], with a change
in the definition of the local feature vectors. In [45], the
feature vectors were defined based on a local simplex rep-
resentation extracted from the EVD of the correlation

(29)
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matrix defined for each frequency, while here we directly
use the ratio values of all microphones.

2.3.2 Separation and enhancement
The separation is performed based on the estimated spec-
tral mask (27) and is carried out in two stages by applying
a multichannel beamformer followed by a single-channel
spectral masking. The beamformer utilizes the diversity
in the spatial characteristics of each speaker location and
the noise, while the spectral masking utilizes the spectral
diversity of the signals in the TF domain.

In the first stage, we apply a linearly constrained mini-
mum variance (LCMV) beamformer:

- H
PEMY L f) = (BFMY )y
where the LCMV beamformer is defined by:

(30)

bEMY(f) = @1 HC() (C (@, (HCH) g
(31)

where ®,,(f) is the noise power spectral density (PSD)
matrix of size M x M and C(f) is an M X ] matrix, com-
prising the RTFs of all speakers, i.e., [ C(f)] ;= H]m(f)
The estimation of the noise PSD matrix and the RTF
matrix is summarized in Algorithm 3. The vector g; € R/
extracts the jth speaker, with one in the jth entry and zeros
elsewhere.

In the second stage, residual noise and interference
signals at the output of the LCMV beamformer can be
further suppressed by applying the estimated spectral
mask:

+B(1-LN) VM (32)

where [;(/,f) is the indicator function defined in
Algorithm 3 and $ is an attenuation factor. The entire
separation process is summarized in Algorithm 4, and a
block-diagram is depicted in Fig. 2b.

3 Results and discussion

The algorithm performance was tested on a dataset that
was self-recorded at the Bar-Ilan University (BIU) acoustic
lab. We first describe the competing methods, the per-
formance measures used for evaluation, the experimental
setup, and the examined scenarios. Next, we present and
discuss the results obtained by the proposed methods and
the baseline methods.

3.1 Competing methods

In all experiments, we compared the proposed methods
(“Max-Corr” and “Simplex-Corr”) to the simplex method
(“Simplex-EVD”) [36]. As a baseline method, we used
independent low-rank matrix analysis ILRMA) algorithm
[15], which is a state-of-the-art blind source separation
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Algorithm 3: Beamformer Parameter Estimation

Define the indicator function, 1 <j < J:

e 1M =)
b =10 it 2

Noise PSD estimation:

L
1
Y LaGHYGHYLS

‘i)nn(f) = L
Y @) =t
=1

RTF estimation:

e Speech PSD estimation:

L
A 1
() = ——— Y LLHYLHY! S
> Lidf) =t
=1

e Solve the following generalized eigenvalue
decomposition (GEVD) problem [33]:

(i)]](f)w](f) = /L(i)nn(f)'/’}(f)

e RTF estimate of the jth speaker:
- [ Dn (D)
P L))
[‘I’nn(f)'ﬁ,(f)h

(BSS) method that unifies IVA and NMF. Moreover, we
compared to an ideal separator, which uses an ideal mask
computed from the individual signals of each of the
speakers.

3.2 Performance measures

The separation performance was evaluated in terms of
signal to interference ratio (SIR) and signal to distortion
ratio (SDR) measures as defined in [46]. The SIR measure
reflects the suppression of interfering speech components
with respect to the desired estimated speaker. The SDR
measure reflects the preservation of the original speech
components of the desired estimated speaker with respect
to the corresponding true reference signal. Both measures
were evaluated using the BSS-Eval toolbox [46].

3.3 Experimental setup

We describe the setup for the recordings carried out at
the BIU acoustic lab. The room of size 6 x 6 x 2.4 is
equipped with controllable panels mounted over the ceil-
ing, the floor, and the walls, which are used to adjust the
reverberation time. In this experiment, the panels were
adjusted to create two reverberation levels: a low reverber-
ation level set to Tgp ~ 150 ms, and a high reverberation
level set to Tgo =~ 550 ms. The recordings included 20
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Algorithm 4: The entire Separation Algorithm

Feature Extraction:

e Compute ratios {Rm(l,f)}l,f,m (4).

e Construct ratio vectors {r(l)}lL:1 (7).
Spectral Mask Estimation:

e Estimate the activity probabilities by Algorithm 1
or 2.

e for each frequency f = 1: K:

— Compute weights {a)an Hin (28).
— Estimate the mask M([,f) (27) for each
frame.

end
Separation and Enhancement

e Estimate the beamformer parameters using
Algorithm 3
e Compute the LCMV beamformer b]]fCMV(f ) (31)

e Obtain f’jLCMV (l,f) by applying the LCMV
beamformer bjLCMV(f) on y(!) (30).

e Obtain f’jLCMV+MASI<(l, f) by applying a
sAingle—channel spectral masking on
YEMY(Lf) (32).

human participants (10 females and 10 males), sitting in
6 possible seats around a rectangular table. The partici-
pants were recorded individually one at a time to enable
the generation of various multi-party scenarios. Each par-
ticipant was recorded 12 times for each seat and for each
reverberation level. In each recording, the speaker uttered
five different sentences of about 5 s each with a pause of
about 5 s between two subsequent sentences. The sen-
tences were unique for each speaker and for each seat.
The signals were measured by 24 CK32 omnidirectional
microphones of AKG, placed in the room and mounted on
the table. The room layout with the positions of the speak-
ers and the microphones is depicted in Fig. 3a, and a photo
of the room setup is presented in Fig. 3b.

In addition, a babble noise was recorded, imitating a dif-
fuse noise field that arrives evenly from all directions. To
generate this noise, 8 loudspeakers were placed at each
corner of the room and at the middle of each of the walls,
as illustrated in Fig. 3a. The loudspeakers were pointed
towards the walls and were recorded while playing babble
noise signals.

In the experiments presented here, we utilized the mea-
surements of a subset of M = 8 microphones with indexes
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25-32 in the setup depicted in Fig. 3a. The signals were
acquired with 24-bit resolution and 48 kHz sampling rate,
and were then downsampled to 16 kHz for further pro-
cessing. The signals were analyzed in the STFT domain
with window length of K = 2048 samples with 75%
overlap between adjacent frames. The feature vectors (7)
consist of F = 257 frequency bins, corresponding to
1-3 kHz. Note that we focus on a range that contains
most of the speech power, and exclude low frequencies
that mostly contain noise, as well as high frequencies, in
which there is typically only low speech energy. The fol-
lowing parameter values were used: ¢ = 0.2, 8 = 0.3.
The parameters were chosen empirically to obtain good
and stable results. The parameter ¢ (18) is a probability
threshold used for excluding frames correlated with
sources that have already been identified, and therefore
should be low enough to exclude all the frames associ-
ated with the detected sources but high enough so that
the remaining sources would not be missed. The parame-
ter B (32) presents a trade-off between speech distortion
and noise and interference suppression, such that as g
increases we obtain better SIR but lower SDR, and vice
versa.

3.4 Examined scenarios

The performance was examined on two scenarios as sum-
marized in Table 1. The first scenario consists of mixtures
of 4 speakers, where the first speaker has infrequent activ-
ity while the other three speakers have balanced activity.
The first speaker is active solely for a short duration,
and then, the other 3 speakers start speaking one after
the other. In the second scenario, there are mixtures of J
speakers with balanced activity.

At the beginning of each mixture signal, there is a 1-
s-long segment with noise only. The total length of the
signals is 20 s. For each condition in each scenario, we con-
ducted 50 Monte Carlo (MC) trials. In each trial, a random
subset of speakers and seats was chosen. Representative
timelines of the two scenarios are given in Fig. 4.

3.5 Results

For the first scenario, we examined two levels of activity
of the first speaker, i.e., 5% and 10% activity percentages
with respect to the entire signal duration. The signal to
noise ratio (SNR) was set to 20 dB. The scores of the first
speaker were averaged over 50 trials, and the scores of the
three balanced speakers were averaged together in all 50
trials. The average SIR scores are given in Table 2, and
the average SDR scores are given in Table 3 for the two
reverberation levels.

We observe the superiority of the proposed methods
over ILRMA in all cases, and especially for the infrequent
speaker. The “Simplex-EVD” and “Simplex-Corr” meth-
ods obtain similar scores for the balanced speakers, which
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Fig. 3 a The room layout, containing a table (blue rectangle), 6 chairs where speakers are sitting (purple squares), 32 microphones (black circles),

and 8 loudspeakers emitting noise (yellow rectangles). The microphones utilized for the presented experiments are 25-32 or 1-6. b A photo of the
room setup of the experiments conducted at the BIU acoustic lab

are higher than the scores obtained for the “Max-Corr”
method. Both “Simplex-Corr” and “Max-Corr” methods
obtain better performance compared to the “Simplex-
EVD” method with respect to the infrequent speaker. For
this speaker, we observe an advantage of the “Max-Corr”

Table 1 Examined scenarios

Scenario Infrequent Balanced Spks SNR [dB] Teo [ms]
Spks

Unbalanced 1 3 20 150, 550

Balanced None 3 5-20 150, 550
None 2-5 20 150, 550

method compared to “Simplex-Corr” method, except
for the case of high reverberation and 10% activity
percentage.

For the second scenario, we first examined the per-
formance with respect to the noise level for mixtures
of ] = 3 speakers with balanced activity. We carried
out 50 MC trials for each SNR level and averaged the
obtained scores over all trials and over the three speak-
ers. The average SIR and SDR scores are depicted in Fig. 5.
It can be seen that the performance of the “Simplex-
Corr” method is comparable to that of the “Simplex-EVD”
method, and both of them are superior with respect to
the “Max-Corr” method. In addition, both “Simplex-Corr”
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Fig. 4 Representative temporal activity of a the first scenario with a
mixture of J = 4 participants, consisting of one speaker with low
activity, and b the second scenario with a mixture of J = 4
participants with balanced activity

and “Max-Corr” methods achieve better results compared
to the ILRMA algorithm.

In order to show that the obtained performance trends
are not tailored to a specific array configuration, we
repeated this experiment with a different array constella-
tion. We used a uniform linear array (ULA), located on the
room table, which consists of six microphones, indexed
as 1-6 in Fig. 3a. The results obtained for mixtures of 3
speakers are depicted in Fig. 6. The performance trends
obtained for the ULA are similar to those obtained for
the distributed array in Fig. 5, and here too the proposed
methods outperform ILRMA. In general, the SIR scores
are lower and the SDR scores are higher for the ULA
compared to the distributed configuration.

For the second scenario of balanced speakers, we also
carried out an evaluation of the performance with respect
to the number of speakers, based on microphones 25-32.
The obtained scores are depicted in Fig. 7, where each
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point in the figure represents an average over 50 MC tri-
als and over all speakers. The SNR was set to 20 dB. We
observe a decrease in the separation scores obtained by
all methods as the number of speakers increases. Similar
trends are observed here as for the performance evalu-
ation with respect to the noise levels, namely the com-
parable performance of “Simplex-Corr” and “Simplex-
EVD” methods that is superior to that of the “Max-Corr”
method. Regarding ILRMA algorithm, it outperforms the
“Max-Corr” method in terms of the SDR score only
for high reverberation conditions and large number of
speakers, and achieves lower scores in all other cases as
compared with both proposed methods.

In addition, we conducted an experiment to evaluate
the running time of the three methods for activity prob-
ability estimation. The algorithms were implemented in
Matlab on a standard PC (CPU Intel Core2 Quad 3.7 GHz,
RAM 8 GB). The running times of each algorithm for
mixtures of /] = 3 speakers are summarized in Table 4
for different recording lengths. Each running time in the
table is obtained by an average over 4 trials. We observe
that the “Max-Corr” method achieves the lowest running
times.

3.6 Activity detection of a counseling session

Finally, we demonstrate the performance of the proposed
methods on real recordings of a session of a psychological
counseling recorded at the BIU Psychotherapy Research
Lab. For this purpose, we used a two lapel microphone
recording of a client, which speaks most of the time, and
a therapist, who is involved only during short time seg-
ments. Figure 8 depicts the two-channel measured wave-
forms. On top, asterisks denote true and estimated time
instances with activity of each speaker. The true annota-
tion was manually determined with Praat software [47].
We observe that the “Simplex-EVD” method detects only
the client, while the proposed methods successfully detect
the activities of both the client and the therapist almost all
the time, even when they overlap.

3.7 Discussion
We conclude that the proposed methods obtain high sep-
aration scores for both balanced and infrequent speakers

Table 2 Distributed array: SIR scores—mixtures with unbalanced activity for “Low"/"High” reverberation and for “5%"/10%" activity of

the 1st speaker

L. Infrequent speaker
Reverb. Activity prec.

Balanced speakers

Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA
Low 5% 19.87 16.82 1211 8.64 1.54 23.77 21.03 22.23 22.04 11.89
10% 2161 19.79 16.98 16.72 6.00 2365 2086 2192 22.22 10.38
High 5% 1746 14.03 12.34 6.26 —134 2238 19.05 21.11 21.10 10.63
10% 19.18 1413 16.22 1550 3.17 2233 1829 2038 20.83 9.82
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Table 3 Distributed array: SDR scores—mixtures with unbalanced activity for “Low"/"High” reverberation and for “5%"/"10%" activity of

the 1st speaker

- Infrequent speaker
Reverb. Activity prec.

Balanced speakers

Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA Ideal Max-Corr Simplex-Corr Simplex-EVD ILRMA
Low 5% 964 6.95 3.08 0.25 —336 998 753 837 8.68 5.80
10% 986 8.22 6.02 6.19 0.60 985 762 832 8.96 443
High 5% 747 5.2 354 —1.74 —547 766 522 6.63 6.96 411
10% 796 391 5.73 538 —1.73 769 494 6.39 7.06 3.58

and outperform the ILRMA algorithm for most cases in
various noise and reverberation conditions.

The robustness of the proposed methods to reverber-
ation may be attributed to the fact that for both parts
of the activity detection and separation, we use the RTF,
which consists of the full reflection pattern. For the activ-
ity detection, we differentiate between the speakers using
features based on the RTFs and thus obtain robustness
to reverberation compared to methods that rely on the
direct-path only, which may be masked by reflections
in high reverberation conditions. For the separation, we
apply a beamformer that is constructed with a steering
vector based on the RTF rather than the direct-path only,
which results in milder distortion of the speech signal due

to the preservation of the entire speech power coming
from both the direct and reflected paths, as was shown
in [39]. Note also that relying on the RTFs, which provide
a richer spatial information compared to the direct-path
only, has also the potential of separating sources that are
located one behind the other, as was demonstrated in [48]
and [36] (see Fig. 8 therein).

For speakers with balanced activity, the best per-
formance is achieved by the “Simplex-Corr” and the
“Simplex-EVD” methods with a small advantage for
latter. For infrequent speakers with low activity, the
“Simplex-Corr” and the “Max-Corr” methods are prefer-
able over the “Simplex-EVD” method, where the “Max-
corr” method performs the best in the case of very low
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Fig. 8 Blue and green waveforms of microphones attached to a
therapist and to a patient, respectively. The true and the estimated
time instances with activity of each speaker are marked by asterisks

activity. The lowest computational time is achieved by the
“Max-corr” method. Table 5 presents several scenarios
and the method that would be preferred in each case.
The reason for the differences in the performance
of “Simplex-EVD,” “Simplex-Corr,; and the “Max-Corr”
methods can be explained as follows. The “Simplex-EVD”
method performs a global processing using an EVD and
hence may have the best performance in standard cases,
but often misses low-active speakers, which have a minor
contribution to the obtained decomposition. In contrast,
the local approach taken by both proposed methods is
more sensitive to infrequent participants. It turns out that
in most cases, the performance of the “Simplex-Corr”
method is preferable; however, the “Max-Corr” method is
more sensitive to speakers with very low activity and also
has the advantage of lower computational complexity.

4 Conclusions

We presented two novel methods for multichannel
speaker separation. For the first method, it is shown that
the maxima of the correlation function between different
frames correspond to single-speaker frames. Accordingly,
we propose an algorithm for sequential recovery of frames
dominated by each speaker, and in turn, we use their cor-
relations as an estimator for the activity probabilities. In
the second method, single-speaker frames correspond to

Table 4 Running times in seconds of methods for activity
probability estimation

40s 80s

120s 160s 200s 240s

Simplex-EVD 0.07 0.09 0.20 0.35 0.55 0.80
Simplex-Corr 0.18 1.09 364 8.57 17.50 29.06
Max-Corr 0.02 0.05 0.10 0.18 0.30 0.51
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Table 5 Preferred methods in different scenarios

Scenario/method Max-Corr Simplex-Corr Simplex-EVD
High reverberation v v

High noise v v

Many speakers v v

Infrequent speaker v v

Lowest complexity v

vertices of the simplex defined by the correlation vectors
and are detected by means of convex geometry. A spec-
tral mask is recovered by the estimated probabilities and
is utilized for the actual separation of the mixture. Both
proposed methods show high separation capabilities in
real-life scenarios for different reverberation and noise
levels, and especially in the challenging scenario of speak-
ers with low activity. The maximum correlation method
has better performance for speakers with very low activity
and is also more computationally efficient, while the cor-
relation simplex method performs better for speakers with
balanced activity, especially in adverse conditions of high
noise and reverberation.
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