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Abstract

Nowadays automatic speech recognition (ASR) systems can achieve higher and higher accuracy rates depending on
the methodology applied and datasets used. The rate decreases significantly when the ASR system is being used with
a non-native speaker of the language to be recognized. The main reason for this is specific pronunciation and accent
features related to the mother tongue of that speaker, which influence the pronunciation. At the same time, an
extremely limited volume of labeled non-native speech datasets makes it difficult to train, from the ground up,
sufficiently accurate ASR systems for non-native speakers.
In this research, we address the problem and its influence on the accuracy of ASR systems, using the style transfer
methodology. We designed a pipeline for modifying the speech of a non-native speaker so that it more closely
resembles the native speech. This paper covers experiments for accent modification using different setups and
different approaches, including neural style transfer and autoencoder. The experiments were conducted on English
language pronounced by Japanese speakers (UME-ERJ dataset). The results show that there is a significant relative
improvement in terms of the speech recognition accuracy. Our methodology reduces the necessity of training new
algorithms for non-native speech (thus overcoming the obstacle related to the data scarcity) and can be used as a
wrapper for any existing ASR system. The modification can be performed in real time, before a sample is passed into
the speech recognition system itself.

Keywords: Speech recognition, Style transfer, Autoencoder, Non-native speaker, Machine learning, Neural network,
Deep learning, Artificial intelligence

1 Introduction
Automatic speech recognition is a function that has been
the subject of extensive research for decades. Enabling the
communication between a human and amachine has been
one of the most difficult problems to tackle and one of the
most intensively studied topics.
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Recently developed speech recognition tools can recog-
nize speech with an almost human-like accuracy, depend-
ing on the dataset and benchmark test used [1]. Such
performance can be achieved only when the system is
used for recognizing the speech of native speakers (i.e.,
the native speakers of the language represented by the
dataset used to train the ASR system). In the case of non-
native speakers of the language of the ASR system, the
accuracy of even the most advanced speech recognition
systems cannot reach human-like or even high levels [2,
3]. The main reason for this drop is the presence of pat-
terns related to the speaker’s mother tongue which can
influence the pronunciation of the second language. This
makes their language biased to some extent which causes
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the speech recognition system’s accuracy to decrease in
such cases [4–7]. The current pace of development in the
global economy, education, and mobility of the workforce
creates the need to properly recognize the speech of non-
native speakers who nowadays represent the vast majority
of users.
Traditional approaches for training speech recognition

classifiers usually tend to employ supervised learning
techniques [8–15]. While perfectly fitted for cases of rec-
ognizing speech of most popular languages worldwide,
supervised learning methodologies will not produce clas-
sifiers of a decent quality for non-native speakers. The
main reason is the lack of labeled datasets of non-native
speech which would be large enough to be used as a train-
ing set in a supervised learning algorithm. We have dealt
with the problem of data scarcity regarding the non-native
speech in our previous research [16–19]. Our idea at the
time was to use unlabeled datasets (e.g., Japanese people
who speak English and English corpus) in a setup called
dual supervised learning.
This time we plan to tackle the problem of non-native

accents using the style transfer methodology [20, 21]
adapted for the case of speech. The application of style
transfer in the audio domain is not new. In [22], the
authors investigated how to transfer the style of a refer-
ence audio signal to a target audio content. They proposed
a flexible framework for the task, which uses a sound
texture model to extract statistics characterizing the refer-
ence audio style, followed by an optimization-based audio
texture synthesis to modify the target content. In contrast
to mainstream optimization-based visual transfer meth-
ods, the process proposed by the authors is initialized
by the target content instead of random noise and the
optimized loss is only about texture, not structure.
In [23], the authors presented a new machine learn-

ing technique for generating music and audio signals. The
focus of their work was to develop new techniques paral-
lel to what has been proposed for artistic style transfer for
images by others. They presented two cases of modifying
an audio signal to generate new sounds. A feature of their
method is that a single architecture can generate these
different audio-style-transfer types using the same set of
parameters which otherwise require complex hand-tuned
diverse signal processing pipelines.
To tackle the problem of non-native speech recognition,

we plan to apply and adjust style transfer to the domain of
speech and sound in order to create an algorithm for real-
time pronunciation and accent modification. Having done
that, it would enable the possibility of creating a wrap-
per over already existing and trained ASR systems. Such
an approach could allow the modification of a non-native
speaker’s voice in real time, so that the ASR system used
at the time can recognize the speech with a higher degree
of accuracy.

2 Methods
Within this article, we present an approach for handling
the problem related to a specific, non-native accent. We
created a method that modifies the accent of a non-native
speaker so that it resembles the accent of a native speaker
to a higher extent. The purpose of this method is to
increase the accuracy of ASR systems which had already
been developed and trained using a native speech dataset,
without the necessity to train new ASR models adapted
for a specific non-native accent.
Our idea is to modify the accent of speech using the rep-

resentation of a sound wave in a graphical domain, i.e., a
spectrogram.
The general flow of our approach is depicted in Fig. 1.
At the beginning, we transform a sound wave file into a

spectrogram (the process indicated as A on the diagram).
Secondly, accent modification is performed. Within the
second step, we decided to check two ways of modifying
accent with spectrograms and they are described in detail
in Sections 2.1 and 2.2.
Finally, the sound wave, in modified form, is fed into the

ASR system in order to recognize the speech into text. In
our research, we experimented with two kinds of speech
recognition process. As shown in the figure, one way is
to revert the modified spectrogram back to the sound
wave (the process indicated as B on the diagram) in a
form of WAV file and then feed it to a previously agreed
ASR system. The second way indicated as C is to feed
the spectrogram directly to another ASR system (adapted
for recognizing the speech from spectrograms) created
within this research (Section 2.3).
The accent modification algorithms are trained in a way

that they learn how to modify the spectrogram repre-
senting non-native speech to one resembling the same
utterance by a native speaker. The correctness of the mod-
ified speech is determined by the accuracy of the speech
recognition system trained on a dataset containing native
speaker samples, allowing us to evaluate the quality of
accent modification. The criterion which decides whether
or not the style-modifying algorithm can perform well is a
reduction in themetrics related to the error yielded during
the inference using the ASR networks, which were trained
on native speaker samples.

2.1 Accent modification using autoencoder
In this approach, we came up with an autoencoder based
on a convolutional neural network (CNN) [24]. Our idea
is to employ such a network for the purpose of changing
the pronunciation style (Fig. 2).
The autoencoder was written using the Keras library

[25], and its detailed architecture is described in Table 1.
During the training phase, the autoencoder is fed spec-

trograms of samples of non-native speakers, whereas the
autoencoder’s output is compared against the spectrograms
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Fig. 1 Overall diagram of the solution. a Conversion from sound sample to a spectrogram, (b) conversion from spectrogram to a sound sample, and
(c) spectrogram-based ASR

of exactly the same utterances pronounced by native
speakers of the particular language. Then back-
propagation causes the autoencoder to learn the
conversion of the same words and sentences from the
speech containing a non-native accent to the one with the
modified accent.
During the inference phase, the input spectrogram cre-

ated in the first step of our pipeline is fed into the

autoencoder as input data. The output of the autoencoder
is a spectrogram which is slightly converted according to
the CNN layers’ weights learned after the training.

2.2 Accent modification using style transfer-based
approach

Another approach we decided to experiment with
employs a style transfer methodology adapted for the

Fig. 2 Autoencoder schema. Simple diagram of the CNN-based autoencoder. The numbers represent the filters count per each layer
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Table 1 Detailed architecture of the autoencoder

Layer Output shape Parameters

Conv2D (F=32, K=3) B, X, T, 32 417344

Conv2D (F=64, K=3) B, X, T, 64 18496

Conv2D (F=128, K=3) B, X, T, 128 73856

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2D (F=128, K=3) B, X, T, 128 147584

Conv2DTr (F=64, K=3) B, X, T, 64 73792

Conv2DTr (F=32, K=3) B, X, T, 32 18464

Conv2D (F=32, K=3) B, X, T, 32 82976

Total params: 2,160,768

Trainable params: 2,160,768

Non-trainable params: 0

Conv2D 2-dimensional convolutional layer, Conv2DTr 2-dimensional convolutional
transpose layer, F number of filters, K kernel size, B batch dimension, X dimension
related to spectrogram’s frequency, T dimension related to spectrogram’s time steps

domain of speech and sound. Specifically we decided to
create a method that resembled the style transfer feedfor-
ward algorithm from the graphical domain.
To briefly explain the problem of the graphical style

transfer, we try to modify an image in a way that its style
resembles the style of another, a so-called style image. At
the same time, the content of the image ideally should not
be modified.
The general flow of the accent modification using style

transfer is depicted in Fig. 3.
In order to utilize such a setup, we first train a network

(here, called a loss network) separately, beforehand, which
will be used as a speech recognizer in the style transfer
approach. Its role is to separate speech spectrograms into
multiple layers using a convolutional network. It will be
used for extracting content (related to the utterance) and
style (related to the accent and pronunciation) from the
images (spectrograms). The loss network is depicted on
the diagram as LN. In order to properly extract style and
content from the input spectrograms, the loss network
must be trained using data from such a domain. The data
utilized in the training process is described in Section 3.1
As the loss network model for automatic speech recog-

nition tasks, we combined properties of convolutional
recurrent layers, where the former layers become, in fact,

Fig. 3 Audio style transfer schema during training process. The basic
diagram of style transfer-based accent modification

employed as feature extractors. Convolutional neural net-
works have been proven to give outstanding results when
applied to images, here spectrograms. They are able to
detect and learn local features which are later passed on to
recurrent layers. The architecture of the neural network is
depicted in Table 2. It accepts an image as the input and
outputs a sequence of letters.
The main step of this approach is training the autoen-

coder for style modification, which performs the essence
of the idea. Its architecture is the same as the one of
the autoencoder used in the previous approach for accent
modification and is described in detail in Table 1.
During one training step, the spectrogram of a sample

with a native accent is fed into the loss network, which
extracts style matrix Sn from certain layers. It is depicted
in the diagram as LN(s). Next, the spectrogram of a sam-
ple containing a non-native accent is pushed through the
same loss network which results in extraction of con-
tent matrix Cnn. The process is depicted in the diagram
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Table 2 Detailed architecture of the CNN-RNN model used as
the loss network in style transfer approach

Layer Output shape Parameters

InputLayer B, T, 161 0

Conv1D (F=220, K=3) B, T, 220 389840

Conv1D (F=220, K=3) B, T, 220 389840

Maxpool (P=2) B, T, 220 880

Conv1D (F=150, K=3) B, T, 150 265800

Conv1D (F=150, K=3) B, T, 150 265800

Maxpool (P=2) B, T, 150 600

Conv1D (F=100, K=3) B, T, 100 177200

Conv1D (F=100, K=3) B, T, 100 177200

Maxpool (P=2) B, T, 100 400

Conv1D (F=80, K=3) B, T, 80 141760

Conv1D (F=80, K=3) B, T, 80 141760

Maxpool (P=2) B, T, 80 320

Conv1D (F=80, K=3) B, T, 80 141760

Conv1D (F=80, K=3) B, T, 80 141760

Maxpool (P=2) B, T, 80 320

Conv1D (F=80, K=3) B, T, 80 141760

Conv1D (F=80, K=3) B, T, 80 141760

Bidirectional (U=200) B, T, 400 505200

BatchNormalization B, T, 400 1600

TimeDistributed B, T, 29 11629

Dropout B, T, 29 0

TimeDistributed B, T, 29 870

SoftmaxActivation B, T, 29 0

Total params: 3,038,059

Trainable params: 3,038,059

Non-trainable params: 0

Conv1D 1-dimensional convolutional layer,Maxpoolmax pooling layer, Bidirectional
wrapper with RNN, BatchNormalization batch normalizing layer, TimeDistributed
layer for every temporal slice of the input, Dropout dropout layer, SoftmaxActivation
softmax activation function layer, P pool size, U number of hidden units in the RNN

as LN(c). The sample is also fed into the style modify-
ing autoencoder which outputs a modified spectrogram
that is fed into the loss network to extract matrices rep-
resenting style and content of the transformed sample
(Stnn, Ctnn respectively). It is symbolized in the figure as
LN(s), (c).
After having received Sn, Cnn, Stnn, Ctnn, we can

formulate the content and style losses. Content loss is
calculated as:

Lc =
∑

l

∑

i,j

(
αCnnli,j − αCtnnli,j

)2
(1)

where l is the set of convolutional layers representing the
content of the sound wave.

Style loss is calculated as:

Ls =
∑

l

∑

i,j
(βGnli,j − βGtnnli,j)

2 (2)

where:

Gnl —the Gram matrix of lth layer of Sn received from
the loss network

Gtnnl —the Gram matrix of the lth layer of Stnn

Gram matrix is the result of the multiplication of the
matrix by its transpose.
Therefore, the final loss function is represented as:

L = Ls + Lc (3)

After having formulated our loss function, we backprop-
agate the error to train the style modifying autoencoder
network for the task of accent modification. At this step,
the weights of the loss network are already frozen and do
not take part in the training process.
Such sequences are executed repeatedly with samples

drawn from native speech datasets and non-native ones,
respectively. It is worth mentioning that in cases of style
transfer, as opposed to the autoencoder approach, it is
not necessary for both spectrograms (with native and
non-native accents) to represent the same content. As
mentioned in the experimental part of this article, we per-
formed several runs of training the autoencoder in order
to find the best subsets of convolutions to represent the
style and content layers.
During the inference phase, we use only the trained

autoencoder that modifies the accent of a new sample.

2.3 Speech recognition using spectrograms
At the end of our pipeline, the speech recognition pro-
cess is performed. One of the two approaches we exper-
imented with is using an ASR system trained on spec-
trograms. We decided to create a model for the speech
recognition using spectrograms converted from WAV
files. The architecture of the network playing the role of
the ASR system is depicted in Table 3. We used a com-
bination of convolutional and recurrent neural networks
(CNN-RNN) in order to train a new speech recognition
system. Similar to the loss network mentioned earlier, this
network also accepts images and outputs a sequence of
letters.
We trained the network using a popular and publicly

available dataset LibriSpeech. The details, together with
the metrics and the results of the training process, are
shown in Section 3.

2.4 Speech recognition using sound sample-based ASR
2.4.1 Cloud-based ASR
Another way of speech recognition that we decided to
check is an online ASR service. In our research, we
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Table 3 Detailed architecture of the CNN-RNN model used as
the ASR module

Layer Output shape Parameters

InputLayer B, T, 161 0

Conv1D (F=250, K=3) B, T, 250 443000

Conv1D (F=250, K=3) B, T, 250 443000

Maxpool (P=2) B, T, 250 940

Conv1D (F=150, K=3) B, T, 150 265800

Conv1D (F=150, K=3) B, T, 150 265800

Maxpool (P=2) B, T, 150 600

Conv1D (F=100, K=3) B, T, 100 177200

Conv1D (F=100, K=3) B, T, 100 177200

Maxpool (P=2) B, T, 100 400

Conv1D (F=80, K=3) B, T, 80 141760

Conv1D (F=80, K=3) B, T, 80 141760

Bidirectional (U=200) B, T, 400 505200

BatchNormalization B, T, 400 1600

TimeDistributed B, T, 29 11629

Dropout B, T, 29 0

TimeDistributed B, T, 29 870

SoftmaxActivation B, T, 29 0

Total params: 2,576,759

Trainable params: 2,576,759

Non-trainable params: 0

decided upon Google Cloud Speech-to-Text and used the
results of recognized text to calculate accuracy metrics.

2.4.2 TDNN architecture-based ASR
Another network—TimeDelay Neural Network (TDNN)—
was used as an evaluation tool in our methodology.

3 Results
3.1 Datasets used
One of the two datasets utilized within this research
is a set of around 75,000 samples called English Speech
Database Read by Japanese Students (UME-ERJ) contain-
ing Japanese, as well as Americans, pronouncing English
sentences.

1. Sentences for learning phonemic pronunciation:

• 460 phonetically balanced sentences
• 32 sentences including phoneme sequences

difficult for Japanese to pronounce correctly
• 100 sentences designed for test set
• 302 minimal-pair words
• 300 phonemically balanced words

2. Sentences for learning prosody of speech:

• 94 sentences with various intonation patterns
• 120 sentences with various accent and rhythm

patterns
• 109 words with various accent patterns

The same dataset was used in our previous work [16].
The dataset was employed for training both the autoen-
coder in Section 2.1 and the style transfer network in
Section 2.2, as it contains sentences and words pro-
nounced by both native and non-native speakers. The
training dataset contains around 18,662 pairs of spectro-
grams representing the exact same utterances from native
and non-native speakers. This amount of the recordings
represents around 26 h of speech. The remaining test and
validation subsets did not overlap with the training subset.
Another dataset used in the research is the LibriSpeech

dataset. It was used to train both the spectrogram-based
ASR module (after converting samples to spectrograms)
used as the last part of our pipeline (Section 2.3) and the
TDNN-based network (Section 2.4.2). Another applica-
tion of the dataset is training the loss network for the style
transfer approach in one of the accent modification vari-
ants (Section 2.2). Also, we used the dataset to train the
TDNN-based ASR system, as another network evaluating
the performance of our pipeline.
The summary of utilized datasets is shown in Table 4.

3.2 Experiments andmetrics
The autoencoder introduced in Section 2.1 as well as
the loss network (Section 2.2) and the spectrogram-based
ASR system (Section 2.3) were trained using the Connec-
tionist temporal classification (CTC, [26]) function.
In our research, we designed separate experiments for

several processes in our pipeline. Namely, we performed
experiments and evaluated the results for:

1. Relative improvement in the speech recognition
accuracy in case of autoencoder-based accent
modification, including both approaches for ASR in
the final stage

2. Relative improvement in the speech recognition
accuracy in cases of audio style transfer-based accent
modification, including both approaches for ASR. In
this approach, we performed several runs of training

Table 4 Summary and splits of the utilized datasets

Trained network Utilized dataset

Autoencoder UMEERJ (18,662 samples subset)

Style transfer network UMEERJ (split (0.8/0.1/0.1))

Loss network LibriSpeech (train-clean-360)

CNN-RNN-based ASR LibriSpeech (train-clean-360)

TDNN-based ASR LibriSpeech (train-clean-360)
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the style modifying autoencoder to check the best
combination of subsets of style and content layers in
the loss network

3.3 Metrics
We employed two different evaluation processes depend-
ing on the experiment type.
As a quality metric for the speech recognition processes

(loss network, ASR module, and the cloud-based service),
we chose three different metric types. First is the standard
Word Error Rate (WER) and the second one is Character
Error Rate (CER), which is expressed as:

CER = i + s + d
n

(4)

where:

i —number of insertions
s —number of substitutions
d —number of deletions
n —total number of characters

Another metric type introduced is phoneme similarity
[27]. It is expressed as Mean Similarity Score (MSS) in the
results section of our work.
As for the evaluation of the accent modification itself,

we decided to present a relative decrease in CER yielded
by the ASR module from the last part of our pipeline
(Google Cloud Speech-to-Text and the spectrogram-
based ASR trained using LibriSpeech).

3.4 Results
Each respective result below represents an average over
ten runs of each experiment with a particular setup.

3.4.1 The results without accentmodification
The ASR module (Section 2.3) was trained using spectro-
grams converted from LibriSpeech train-clean-360 subset.
It was evaluated using the test-clean dataset and achieved
15.7% CER and 19.7%WER. This model, evaluated with a
10% test subset of the spectrograms of UME-ERJ dataset,
achieved only 46.3% CER and 56.8%WER.
The averaged result of speech recognition using spec-

trograms yielded by our loss network is 11.2% CER and
and 14.9%WER using the LibriSpeech test-clean dataset.
The 10% test subset of the WAV samples of the UME-

ERJ dataset was also used to evaluate the performance of
the Google Cloud Speech-to-Text API, and the result we
obtained was 39.8% of CER.
The LibriSpeech test-clean dataset was also used for

evaluating the TDNN-based ASR network we trained, and
the result achieved in our test was 10% CER and 12.5%
WER.

3.4.2 Impact of the autoencoder-based accentmodification
After activating the autoencoder-based accent modifica-
tion in our pipeline, the same test subset of the UME-
ERJ dataset gave a result of 36.1% CER (evaluation by
the spectrogram-based ASR model trained only on the
LibriSpeech training set). Therefore, it yielded a 22%(
46.3% − 36.1%

46.3%

)
relative improvement in terms of CER.

In the case of the Google Cloud API, we first fed the data
to the autoencoder and then converted the modified spec-
trograms back to the sound wave format. At the end, we
sent it to the cloud service and recorded the recognized
text. We used the 10% subset of samples from UME-ERJ
and after the process obtained a result of 27.3% CER,
which translates to 31.4% of the relative improvement.

3.4.3 Impact of the accentmodification based on the style
transfer approach

For each combination of subsets tested for style and con-
tent layers, we checked the CER value on the 10% subset
of spectrograms from the UME-ERJ dataset by feeding
it into the trained autoencoder that modifies the style
(Section 2.2) and feeding the respective result into the
ASR (Section 2.3). The best setup gave a result of 31.7%
CER. Therefore, it yielded a 32% relative improvement in
terms of CER.
In the case of the cloud service evaluation, we followed

the analogical process as in Section 3.4.2. The best com-
bination of style and content layers achieved the result of
23.9% CER which means a relative improvement of 40%.
All experimental results with the best CER are pre-

sented in Tables 5 and 6. The results for experiments
conducted on the style transfer approach with different
style and content layers are presented in Tables 8 and
9. Tables 5, 6, 7, 8, and 9 represent the results obtained
when testing the setup with both 10% subset of the UME-
ERJ dataset and specifically prepared 100-sentences test
subset of UME-ERJ.
In the tables, we use the following symbols:

Table 5 Results of the style modification process in cases of
evaluation done using the trained CNN-RNN ASR model

WM A ST

CER 46.3% 36.1% 31.7%

RICER – 22% 32%

WER 56.8% 43.2% 34.9%

MSS − 0.94 1.43 1.97

CER (100-sentences) 42.1% 33.2% 28.3%

RICER (100-sentences) – 21% 24.7%

WER (100-sentences) 51.8% 39.1% 32.3%

MSS (100-sentences) − 0.85 1.56 2.09
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Table 6 Results of the style modification process in cases of
evaluation done using Google cloud service

WN A ST

CER 39.8% 27.3% 23.9%

RICER – 31.4% 40%

CER (100-sentences) 34.3% 23.7% 23.5%

RICER (100-sentences) – 30.9% 31.5%

WM —results of the experiment without the accent mod-
ification process

A —the experiment with the autoencoder-based mod-
ification process

ST —the experiment with the style transfer-based mod-
ification process

RICER —relative improvement for the CER metrics

4 Discussion
This article contains study of the audio style transfer
methods used for improving accuracy of ASR which had
been trained using native speech datasets and is used by
non-native speakers.
We found that the style transfer methodology adapted

to the speech domain yields better results than an autoen-
coder trained in a supervised way. We think that the
reason behind it lies in the fact that we performed the
training step repeatedly by sampling random samples to
include, respectively, non-native and native accents, and
transforming them into the spectrograms. The samples in
each such pair do not have to represent the same. This
observation may suggest another interesting idea that if
this approach were to be extended it might be possible to
create a more universal autoencoder that might convert
the accent of non-native speakers from multiple into one
(e.g., North American English) accent. This is going to be
one of the steps for the future of our research.
Another observation is an extension of the fact that the

accent modification process is not conditioned on any
variables related to the speaker or speech environment.
That causes the situation where during the experiment
testing phase we could detect that the gender of the
speaker in the sample after style transformation is dif-
ferent than in the one from before, while preserving the

Table 7 Results of the style modification process in cases of
evaluation done using TDNN-based ASR network

WN A ST

CER 38.1% 27.1% 26.1%

RICER – 28.8% 31.4%

CER (100-sentences) 34.1% 23.1% 22.2%

RICER (100-sentences) – 32.3% 34.8%

Table 8 Relative improvement depending on the content and
style layers in cases of ASR model-based evaluation using 10%
UME-ERJ subset

Style layers Content layers RI(CER)

1–10 6–12 32%

1–8 8–12 29.6%

1–10 10–12 30.1%

1–5 5–12 26.7%

1–4 4–12 15.6%

actual content of the pronounced word or sentence. How-
ever, we did not treat such cases as failed, as our primary
goal was to increase the accuracy of the ASR system,
which was eventually achieved. Nevertheless, it will be a
next step for our team to address.
As another future step in our research, we would like to

conduct more experiments, i.e., the evaluation of the style
transfer approach described in Section 2.2 using more
datasets. We are also planning to evaluate the process
of a style transfer-based approach and autoencoder-based
approach with longer sentences and samples.
We are planning to develop our idea for non-native

speech recognition further and to constantly improve the
quality of the designed methodology. Furthermore, addi-
tional experiments will be conducted, i.e., using multiple
nationalities of non-native English speakers, as well as
using different datasets including samples of languages
other than English.

5 Conclusions
In this research, we explained the problem of non-native
speech recognition and the reason why training ASR sys-
tems adapted for such speech may be problematic.
We described in detail the idea behind style transfer

methodology and our adaptation to the speech and sound
domain. We presented the method as a way to trans-
form non-native pronunciation so that it resembles native
speech to a higher extent, thus enabling the ASR system to
perform better when being used by a non-native speaker.

Table 9 Relative improvement depending on the content and
style layers in cases of Google cloud-based evaluation using 10%
UME-ERJ subset

Style layers Content layers RI(CER)

1–10 6–12 40%

1–8 8–12 36.1%

1–10 10–12 38.3%

1–5 5–12 29.4%

1–4 4–12 21.1%
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We performed initial experiments using the UME-ERJ
dataset and tested several different pipelines for pronun-
ciation modification. We evaluated each approach on a
custom ASR trained to recognize speech from spectro-
grams, as well as on the publicly available Google Cloud
Speech-to-Text. Our initial findings show that it is pos-
sible to augment the non-native speech samples in a way
that they will be recognized with a higher accuracy by an
ASR system.
We also pointed out several issues that appeared while

we were training and evaluating our algorithms. This
proves that there is definitely a lot of room for improve-
ment in order to adapt the method to multiple speaker-
dependent conditions and other non-native nationalities.
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