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Abstract

When designing closed-loop electro-acoustic systems, which can commonly be found in hearing aids or public
address systems, the most challenging task is canceling and/or suppressing the feedback caused by the acoustic
coupling of the transducers of such systems. In many applications, feedback cancelation based on adaptive filters is
used for this purpose. However, due to computational complexity such a feedback canceler is often limited in the
length of the filter’s impulse response. Consequently, a residual feedback, which is still audible and may lead to system
instability, remains in most cases. In this work, we present enhancements for model-based postfilters based on a priori
knowledge of the feedback path which can be used cooperatively with the adaptive filter-based feedback cancelation
system to suppress residual feedback and improve the overall feedback reduction capability. For this, we adapted an
existing reverberation model such that our model additionally considers the presence and the performance of the
adaptive filter. We tested the effectiveness of our approach by means of both objective and subjective evaluations.

Keywords: Residual feedback suppression, Public address system, In-car communication system, Feedback
cancelation, Postfilter

1 Introduction
Signal processing in a closed electro-acoustic loop is a
challenging task. It occurs in various applications such as
hearing aids [1, 2], public address (PA) systems [3, 4] or
so-called in-car communication (ICC) systems [5, 6]. In
all these systems, feedback occurs because the signal that
is played back using a loudspeaker is recorded by a micro-
phone, processed, and then played back again using the
same loudspeaker. This may lead to an instability of the
system, namely when the loop gain for at least one fre-
quency is larger than 0 dB and the phase is a multiple of
2π . Even if the system is in fact stable, the additional rever-
beration may make the signals sound unnatural or—more
generally—degraded with respect to quality. To reduce
the described effects, different methods already exist.
The state of the art approach is to use an adaptive fil-
ter to estimate the acoustic path utilizing methods like
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the normalized least mean square (NLMS) algorithm or a
Kalman filter [7]. However, besides the fact that operating
in a closed acoustic loop requires a sophisticated con-
trol mechanism for a robust application of adaptive filters,
there are somemore limitations. One is that the filter con-
verges towards a bias due to the high correlation between
the local and the excitation signal. This makes an addi-
tional decorrelation stage essential for many approaches.
Another limitation is that usually a filter with limited
length will be used when implementing the adaptive fil-
ter. Consequently, the filter must be designed in such a
way that its length covers at least the most important part
of the room impulse response (RIR). Sometimes this is
not possible, especially in cases of multichannel applica-
tions where a multitude of filters have to be implemented
or in cases when the reverberation time is long, e.g., for
large rooms like concert halls. The other limitation that
leads to feedback never being completely removed is that
there will always be a residual misalignment in the adap-
tive filter, which in turn leads to an error in the estimated
feedback signal. Figure 1 depicts an example for a true
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Fig. 1 Impulse response of a car cabin in the top graph, estimated
impulse response of an adaptive filter with length 1024 taps in the
middle graph, residual impulse response in the bottom graph

impulse response hLM,i as well as the part ĥLM,i that an
adaptive filter has estimated. The bottom plot shows the
difference between the impulse response hLM,i and ĥLM,i.
The estimation error h�,i is the impulse response which
causes the residual feedback in such a system.
A different method to increase the stability gain in

electro-acoustic loops is to estimate the short-term power
spectral density (PSD) of the feedback by using the energy
envelopes of the room’s subband impulse responses.
These envelopes can be obtained by a priori or online
measurements as well as simulations. With this informa-
tion, a model can be derived which is then used for a
convolution with the loudspeaker subband power signal.
This results in an estimate of the feedback’s short-term
PSD. This estimate is then used within a so-called Wiener
filter (or a variant of it) to attenuate the feedback compo-
nents within the microphone signal. Except from online
measurements, the envelope is assumed to be constant.
However, it can be shown that the model-based methods
are robust against room changes and that the envelopes
vary only slightly over time. The main advantage of this
method is that the model can be implemented recur-
sively and, thus, very efficiently in terms of computational
complexity. There will not be any length limitations as
described when using adaptive finite impulse response
(FIR) filters. However, there are disadvantages, too. The
main one lies in the derivation of the Wiener filter, which
assumes that both the desired and the undesired signals
are orthogonal. In the presented application this is not
the case, since the feedback signal (undesired) is only a
delayed and processed version of the local speech sig-
nal (desired). This means that not only feedback will be

reduced, the model-based approach will also affect the
desired signal. However, due to the fact that speech is
assumed to be short-time stationary and there is a delay
in the processing and also in the path between loud-
speaker and microphone, it is usually observed that the
attenuation of the desired signal is small compared to the
attenuation of the feedback signal. Hence, this method is
able to increase the stability in closed-loop systems.
In [8], we presented a method that makes use of the

advantages of both described systems. Therefore, we
introduced three ways to estimate the residual feedback
PSD recursively, taking an adaptive filter into account. We
also compared this with the model-based feedback sup-
pression which was presented in [9]. In this work wemade
some improvements regarding the models. Furthermore,
we showmore implementation details. The objective eval-
uation was improved by adjusting the features. Additional
simulations were also performed to investigate the perfor-
mance during room changes and the convergence of the
adaptive filter in the presence of a postfilter. In addition,
further acoustic paths were simulated.

1.1 Organization of this paper
The paper is organized as follows: after this introduction,
previous research work is summarized in Section 2. After-
wards the model-based feedback suppression approach is
explained in Section 3. In Section 4, we show how we
adapted the model-based approach to use it as a postfil-
ter. After that, we present different methods to derive the
required model parameters in Section 5. Finally, we show
the evaluation procedure in Section 6 before a conclusion
is provided in Section 7.

1.2 Notation
Throughout this contribution the notation will follow
some basic rules:

• Scalar quantities such as time-domain signals are
written in lowercase, non-bold letters such as s(n) for
a signal at time index n.

• Short-term frequency-domain quantities are
described by upper case letters such as X(μ, k), with
k being the frame index and μ as frequency index.

• Vectors are noted as bold letters, e.g., H(μ, k)
represents a vector containing filter coefficients in
subband μ at frame index k.

• Smoothed signals are noted by over-lined letters such
as x(n) and estimated signals are written as letters
with a hat such as x̂(n).

• All signals are represented in discrete time.

2 Previous and related work
Electro-acoustic feedback is a challenge in various tech-
nical systems. The most prominent ones are hearing aids,
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public address systems, and in-car communication sys-
tems. Therefore, lots of research has been done in those
domains in recent years. A comprehensive overview of
different approaches regarding feedback suppression can
be found in [10]. In this work, we will focus on room
modeling methods.
To fully erase the feedback and, therefore, to allow arbi-

trary gains, the impulse response of the feedback path
must be estimated by means of an adaptive filter. Early
approaches use a standard echo canceler to fulfill this
task [11–13]. Here, the impulse response is estimated e.g.
with a normalized least mean square (NLMS) algorithm
in the time domain. If the local signal and the excitation
signal are correlated, the problem is that adaptive filters
converge to a biased solution. This is strongly the case in
closed-loop electro-acoustic systems [14].
One solution to overcome this problem is to decorrelate

the signals. This can, for example, be realized by frequency
shifting. It is shown in [15–17] that a slight frequency
shift within the frequency range of speech is sufficient to
improve the convergence of the adaptive filter. The sig-
nals can also be decorrelated with linear prediction or
pre-whitening [18]. In addition to the decorrelation of the
signals, a special step-size control can further improve the
convergence of the adaptive filter. In [1, 19], the decor-
relation methods frequency shift and pre-whitening are
compared and combined with a step-size control, based
on a derivation of the so-called pseudo-optimal step size.
Another step-size control that is able to improve the
convergence of the adaptive filter without the need of
any decorrelation method is described in [20, 21]. Here,
the reverberation of the system is exploited to adapt the
filter, since signals are not correlated during reverbera-
tion. With this step-size control, both stability and speed
of convergence can be improved also for high system
gains.
One drawback of the feedback cancelation approaches

is that the adaptive filter must cover the relevant length
of the room’s impulse response. Otherwise, residual feed-
back is audible and may even cause the system to become
instable. Since long filters increase the computational
complexity as well as the convergence time, short filter
lengths are often preferred.
In the field of acoustic echo cancelation (AEC), postfil-

ters based on frequency-domain Wiener filters are com-
monly used [22–25]. The idea is that the residual echo is
nothing but the undisturbed error signal which is the sig-
nal after the subtraction of the AEC took place assuming
the absence of any local speech and noise signals. A very
similar approach was already used for residual feedback
suppression [13]. The downside of this technique is that
the PSD estimation should only be done in remote single
talk conditions [26]. Such a situation does not exist in case
of closed-loop systems. There is however one exception

which is the end of a speech segment when there is still
some power in the loop due to the loop delay.
In [9], the authors present a feedback suppression

method based on well known speech dereverberation
techniques [27, 28]. Here, the feedback path is modeled
with an statistical model. Based on this the feedback’s PSD
is estimated.
In [8], the model-based feedback suppression is tai-

lored in a way that it can be used as a residual feedback
suppression in combination with an adaptive feedback
canceler. Therefore, three adapted statistical models have
been proposed which can be used to model the feed-
back path taking an adaptive filter into account. Model-
based approaches have already been used in adaptive
echo cancelation systems [29, 30]. In [31], the authors
also use a model-based approach as a postfilter for
adaptive echo cancelation. The idea is to use adaptive
approaches to model the residual echo power spectral
density. However, in all of these approaches the adap-
tive filter is assumed to work perfectly and only the
acoustic path, which is not covered by the filter is taken
into account. In AEC applications, this might be suf-
ficient as reasonable steady-state performance can be
reached. However, this is not the case in adaptive feedback
cancelation.
In the presented paper, the adapted models for residual

feedback suppression are further investigated and a more
detailed insight, as well as more simulations and results
are given.

3 Model-based feedback suppression
In [9] it was shown that room dereverberation techniques
as they were introduced in e.g. [27, 28] can be used to
increase the stability of closed electro-acoustic loops as we
face them in ICC systems. In this section, themodel-based
feedback suppression will be described before adapting it
for a system with feedback cancelation. We will start with
linear, time-invariant systems with coefficient index i. Of
course, we can assume here only short-term stationar-
ity. Therefore, we will introduce time-variance (by adding
also a frame index k) after this generic view on the entire
system.
A simple example of a time-domain system operating in

a closed electro-acoustic loop can be seen in Fig. 2.
The signal y(n) is the microphone signal at time index

n and g is a Wiener filter with coefficients based on
the estimated feedback which is used to suppress the
recorded feedback that is present in y(n). hSE is the
impulse response that belongs to the system of the indi-
vidual application, where SE stands for signal enhance-
ment. It differs with the individual application and may
include noise suppression in case of an ICC system or an
equalization filter in case of a public address (PA) system.
After the signal enhancement stage, x(n) is played back
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Fig. 2 Structure of a single-channel, closed-loop system with
feedback suppression, which is first of all assumed to be time invariant

using a loudspeaker resulting in a feedback r(n). The latter
is obtained by a convolution of x(n)with the room impulse
response hLM. As mentioned above, the room impulse
response is assumed to be constant for now. Thus, the
time index n can be dropped and we obtain the feedback
signal as

r(n) =
∞∑

i=0
x(n − i) hLM,i. (1)

r(n) is recorded again by the microphone together with
additional background noise b(n) and local speech s(n),
yielding the microphone signal

y(n) = s(n) + b(n) + r(n). (2)

The transfer function of the entire electro-acoustic loop
can be described as follows:
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ej�
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Here, � = 2π f /fS ∈[ 0, 2π) is the frequency f normal-
ized with respect to the sampling frequency fS. Further-
more,
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is the so-called open-loop gain. For stability reasons
∣∣C

(
ej�

)∣∣ < 1 ∀� (5)

and

∠C
(
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) �= η2π ∀�, η ∈ Z
+
0 (6)

should hold. G(ej�) can be used to fulfill this condition.
One possibility would be to choose the transfer function
based on the estimated feedback

G
(
ej�

) = 1 − Ŝrr
(
ej�

)

Ŝyy
(
ej�

) . (7)

Therefore, an estimate of the feedback PSD Ŝrr(ej�) is
required, which can be derived from Eq. (1).

To make this method more robust against small varia-
tion in hLM and to get the ability to save computational
complexity we define a model of hLM based on its so-
called reverberation time T60 and some other parameters,
which will be explained next.
This finally results in an exponentially decaying model

of the power envelope of the subband version of HLM(μ)

∣∣HLM,mod,A(μ, k)
∣∣2 (8)

=
{
0, for k < P(μ),

A(μ) e−γ (μ)(k−P(μ)), for k ≥ P(μ),
(9)

whereμ is the discrete subband index, k is the frame index
and A(μ) are coupling factors that describe the coupling
properties of the acoustic path. P(μ) is the delay of the
acoustic path in frames and

γ (μ) = 2 · 3 ln(10)L
T60(μ) fS

(10)

describes the decay behavior, where L denotes the
frameshift in samples. Using Eq. (8) the estimated short-
time PSD of the current feedback Ŝrr,A(μ, k) can be cal-
culated as the convolution of the short-time PSD of the
loudspeaker signal Ŝxx(μ, k) with the magnitude square of
the modeled subband impulse response

Ŝrr,A(μ, k)

=
∞∑

i=P(μ)

Ŝxx(μ, k − i)A(μ) e−γ (μ)(i−P(μ))

= A(μ)Ŝxx (μ, k − P(μ))

+ e−γ (μ) Ŝrr,A(μ, k − 1). (11)

On the top left of Fig. 3, the energy envelope of the
modeled subband impulse response for a single subband
is depicted. This can now be used for a subband version

GX(μ, k) = max
{
0, 1 − Ŝrr,X(μ, k)

Ŝyy(μ, k)

}
(12)

of Eq. (7), with X indicating the individual model type, e.g.,
X=A.

4 Model-based feedback suppression as postfilter
Due to stability reasons, FIR filters are commonly used in
adaptive filter applications like echo- or feedback cance-
lation. If this kind of method is used in a closed electro-
acoustic loop system, it is capable of subtracting parts
of the feedback signal r(n) from the microphone signal
y(n) depending on how good it is adapted to the true
room impulse response. However, there are some limita-
tions in the steady-state performance. One of them is that
there will always be a residual system mismatch which is
caused by non-optimal control or estimation errors, even
if robust adaptive control schemes are used. If an efficient
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Fig. 3 Overview of the four different models

implementation in the subband domain is chosen, the per-
formance is also limited due to aliasing effects caused by
the filter banks. The other limitation is due to the part of
the true room impulse response which cannot be covered
by the adaptive filter. This happens because the FIR fil-
ter needs to be implemented with a fixed length, which is
often restricted by computational complexity.
Here, a postfilter is usually used to suppress the parts

of the feedback which remain after a feedback cancelation
approach as it is depicted in Fig. 4.
The idea is to use the method proposed in the previ-

ous section and adapt it, so it can be used as a postfilter.

Fig. 4 Structure of a single-channel system in a closed loop with
feedback canceler and residual feedback suppression

Because of its recursive nature, the model will also cover
rooms with a long reverberation time without signifi-
cant impact on the complexity. However, it has to be
adapted with respect to the presence of the adaptive fil-
ter. Therefore, the effective impulse response, which is a
combination of the true impulse response and the one
estimated by the adaptive filter, needs to be computed to
derive a new model. The effective impulse response can
be derived using the signal e(n) from Fig. 4. For this signal
holds:

e(n) = s(n) + b(n) +
∞∑

i=0
x(n − i) hLM,i(n) − r̂(n)

= s(n) + b(n) +
∞∑

i=0
x(n − i) hLM,i(n) − xTm(n) ĥLM(n)

= s(n) + b(n) +
∞∑

i=0
x(n − i) hLM,Res,i(n).

(13)

Here,

ĥLM(n) =
[
ĥLM,0(n), ĥLM,1(n), · · · , ĥLM,m-1(n)

]T
(14)

is a vector containing the adaptive filter coefficients and

xm(n) = [x(n), x(n − 1), · · · , x(n − m + 1)]T (15)
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contains them latest samples of x(n), wherem is the num-
ber of filter coefficients in the adaptive filter. With this the
effective impulse response can be derived as:

hLM,Res,i(n)

=
{
hLM,i(n) − ĥLM,i(n), for 0 ≤ i < m,

hLM,i(n), else,

=
{
hLM,�,i(n), for 0 ≤ i < m,

hLM,i(n), else.
(16)

As one may expect, knowledge about the actual sys-
tem mismatch for each subband is necessary as it has an
influence on the amount of residual feedback. Another
difference compared to model A is that there is a direct
connection from the loudspeaker signal to the error signal
now which is caused by the misalignment in the adaptive
filter.
However, this is unknown and has to be estimated.

Furthermore, assumptions about the shape of the system
misalignment over filter taps has to be made.
During the time when adaptive filters were being stud-

ied very extensively—decades ago—two different ideas of
the progress of the filter coefficients during an adaptation
period co-existed—and still do so today.

4.1 Model B
One idea is that adaptive algorithms spread the error
more or less equally over all coefficients. As a conse-
quence, the system mismatch vector can be modeled as
a white process with zero mean and a time-variant, but
lag-independent variance. Our investigations showed that
this seems to be correct if the filter is well converged. So
the first approach is to model a constant systemmismatch
for all filter taps, yielding a power envelope of the residual
subband impulse response:

∣∣HLM,mod,B(μ, k)
∣∣2

=
{
M ‖H�(μ, k)‖2 , for 0 ≤ k ≤ M − 1,

A(μ) e−γ (μ)(k−P(μ)), forM ≤ k.
(17)

In this work, this approach is named model B. M is
the filter length in frames. In case of subband processing,
H�(k) is a vector containing the system mismatch vector
in every subband.

‖H�(μ, k)‖2 = ‖H(μ, k) − Ĥ(μ, k)‖2 (18)

=
M−1∑

j=0
|H(μ, k − j) − Ĥ(μ, k − j)|2 (19)

is a vector containing the norms of the system mis-
match vectors. This is often estimated within adaptive
control schemes. An overview about several estimation
procedures can be found in [32]. The estimated residual

feedback Ŝrr,B(μ, k) can be obtained by convolving this
modeled subband impulse response with the PSD of the
loudspeaker signal yielding a solution consisting of two
parts:

Ŝrr,Res,B(μ, k)

=
M−1∑

i=0
Ŝxx(μ, k − i)M ‖H�(μ, k)‖2

+
∞∑

i=M
Ŝxx(μ, k − i)A(μ) e−γ (μ)(i−P(μ))

=
M−1∑

i=0
Ŝxx(μ, k − i)M ‖H�(μ, k)‖2

+
∞∑

i=0
Ŝxx(μ, k − i − M)A(μ) e−γ (μ)(i−P(μ)+M)

= Ŝxx,rec(μ, k)M ‖H�(μ, k)‖2 + Ŝmm(μ, k). (20)

Each of these two parts can be calculated recursively,
leading to a very low computational complexity:

Ŝxx,rec(μ, k) = Ŝxx,rec(μ, k − 1)
+Ŝxx(μ, k) − Ŝxx(μ, k − M) (21)

Ŝmm(μ, k) = e−γ (μ) Ŝmm(μ, k − 1)
+Ŝxx(μ, k−M)A(μ) e−γ (μ)(M−P(μ)).

(22)

In the top right of Fig. 3, the energy envelope of the
subband-impulse response for a single subband of model
B compared to model A (introduced in the previous
section) can be seen.

4.2 Model C
The second idea is that the system mismatch of the indi-
vidual coefficients is more or less proportional to the
magnitude of the room impulse response of the system
that should be identified. This behavior is also observ-
able, but mainly at the beginning of adaptation processes
or—in general—whenever the filter is not well adapted.
Since feedback cancelation approaches for ICC systems
face generally hard conditions e.g. permanent double-talk
and high background noise levels, this model would be an
option here.
To model this we assume the first interval for the direct

part of the residual impulse response to be zero. This is
usually the case only when the adaptive filter is initialized.
After some iterations the coefficients will differ from zero.
However, the system mismatch in this interval will always
stay small compared to the interval between the largest
coupling and the rest of the adaptive filter. Here, the sys-
tem mismatch is modeled as exponentially decaying with
the same T60 as it is used in all other approaches. Fur-
thermore, we introduce Q(μ) which is the power of the
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maximum value in the systemmismatch vector. This leads
to the following power envelope of the model

∣∣HLM,mod,C(μ, k)
∣∣2

=

⎧
⎪⎨

⎪⎩

0, for k < P(μ),
Q(μ, k) e−γ (μ)(k−P(μ)), for P(μ) ≤ k < M,
A(μ) e−γ (μ)(k−P(μ)), forM ≤ k.

(23)

Using this model, the PSD of the residual feedback can
be calculated as follows:

Ŝrr,Res,C(μ, k)

=
M−1∑

i=P(μ)

Ŝxx(μ, k − i)Q(μ) e−γ (μ)
(
i−P(μ)

)

+
∞∑

i=M
Ŝxx(μ, k − i)A(μ) e−γ (μ)

(
i−P(μ)

)
(24)

= e−γ (μ) Ŝrr,Res,C(μ, k − 1)

+ Ŝxx
(
μ, k − P(μ)

)
Q(μ, k)

+ Ŝxx(μ, k−M)
(
A(μ)−Q(μ)

)
e−γ (μ)

(
M−P(μ)

)
.

(25)

4.3 Model D
The drawback of the two proposed models is that the
performance will depend on how accurate the estimation
of the system distance is. An easier method compared
to models B and C is to assume that the adaptive filter
operates perfectly well and there is consequently only the
length limitation which has to be covered by the postfil-
ter. This would be advantageous, but it is not very realistic
in practical approaches. Models B and C are better in this
regard. In this case, ‖H�(μ, k)‖2 can be set to zero and the
estimated PSD of the feedback signal simplifies to

Ŝrr,Res,D(μ, k)
= e−γ (μ)(M−P(μ)) A(μ) Ŝxx(μ, k − M)

+e−γ (μ) Ŝrr,Res,D(μ, k − 1), (26)

which corresponds to Ŝmm(μ, k) in Eq. (22).

5 Model parameters
To use the proposed model-based approach, a priori
knowledge about the room is needed. In this work, the
room is assumed to be power stationary, meaning that the
power envelope of the room impulse response does not
vary much over time. Depending on the particular control
mechanism used for the adaptive filter, a correction of the
model parameters based on the adaptive filter is also pos-
sible. The parameters can be extracted using a measured
impulse response like it was proposed in [33].

To follow this approach, the time-domain impulse
response has to be transformed into the subband domain

HLM(μ, k) =
N−1∑

κ=0
hana,κ hLM,kL+κ e−j2π μκ

N , (27)

where N is the window length and, thus, the length of the
DFT, and hana is the window function used in the filter
bank. The absolute value of the subband impulse response
is smoothed along the frequency axis in both positive
(Eq. (28)) and negative (Eq. (29)) direction for every frame
with the smoothing constant ζ :

H̃LM(μ, k)
=(1 − ζ ) H̃LM(μ − 1, k) + ζ |HLM(μ, k)| (28)

H̄LM(μ, k)
=(1 − ζ ) H̄LM(μ + 1, k) + ζ H̃LM(μ, k). (29)

This way, a zero-phase low-pass filter is realized to
reduce the variance along the frequency axis. As a first
step, the delay can be determined for each subband by
finding the index of the first maximum value of the
smoothed magnitude subband impulse response in each
subband

P(μ) = argmax
k∈[0,1,··· ,LLM−1]

{
H̄LM(μ, k) λk

}
, (30)

with LLM representing the considered length of the
impulse response in frames and λk representing an expo-
nentially decaying series with λ ∈ (0, 1), which can be
used to avoid choosing late constructive interferences as
maxima.
Next, a vector of length MLM is defined for every

subband. It contains the logarithmic impulse responses,
starting at the delay which was found before:

h̆LM(μ) =
[
ln

(
H̄LM(μ,P(μ))

)
, · · · ,

ln
(
H̄LM(μ,MLM + P(μ))

) ]T
. (31)

This can be modeled linearly for each subband

h̆LM(μ, k′) = Ã(μ) + γ̃ (μ)k′ (32)
k′ ∈ {0, 1, · · · ,MLM − P(μ) − 1} .

Written in matrix notation, the logarithmic subband
impulse responses can be combined to

h̆LM = � �, (33)

where � is the observation matrix and 
 represents the
parameter vector

� =

⎡

⎢⎢⎢⎣

0 1
1 1
...

...
MLM − P(μ) − 1 1

⎤

⎥⎥⎥⎦ ,� =
[

γ̃ (μ)

Ã(μ)

]
. (34)
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To find the unknown parameters in �, Eq. (33) can be
modified according to

� =
[
�T �

]−1
�T h̆LM, (35)

with
[
�T�

]−1
�T = �† being the pseudo inverse of �.

The last step is to convert the logarithmic values to linear
values

γ (μ) = eγ̃ (μ), (36)

A(μ) = eÃ(μ). (37)

A simplification, which we also used for our simula-
tions, would be to assume the model parameters except
the coupling factors to be identical for all frequencies. In
this case, the delay and the decay constants can be com-
puted directly from the energy decay curve (EDC) defined
as

EDC(i) =

NLM−1∑
i′=i

|hLM,i′ |2

NLM−1∑
i′=0

|hLM,i′ |2
. (38)

The EDC describes the remaining energy in the system
at time instance i normalized to 0 dB. An example of an
EDC measured in a car cabin can be seen in Fig. 5. The
delay TD is the time instant where the EDC begins to drop.
Using this value, the delay in frames can be derived as

P(μ) ≈ P =
⌊
TD · fS

L

⌋
∀μ, (39)

with �...� denoting rounding towards the next smaller inte-
ger. The reverberation time T60 is the time instant when
the energy that remains in the tail of the room impulse
response reaches − 60 dB. Often, this cannot be found in
the EDC, because there is measurement noise dominating
when using a measured impulse response. In this case, the
EDC has to be extrapolated linearly, as it was done in the

example shown in Fig. 5. Using this value the decay instant
can be derived:

γ (μ) ≈ γ = 2 · 3 ln(10) L
T60 fS

∀μ. (40)

The remaining parameters which need to be estimated
are the coupling factors. These are the absolute squared
values of the maximum of the subband impulse response,
which can be found at frame index k = P according
to Eq.(30). Therefore, the smoothed version of Eq. (29)
should be used to reduce the variance along the frequency
axis to yield

A(μ) = ∣∣H̄LM(μ,P)
∣∣2. (41)

In Fig. 6, a time-frequency analysis of the measured
impulse response and the corresponding model can be
seen.

6 Results and discussion
The proposed schemes were tested in an ICC application.
For this, an impulse response measured in a van was used.
It is the same one as shown in Fig. 5. The complete setup
is shown in Fig. 7.
For our simulation we used clean speech signals from

different male and female speakers sampled at 44.1 kHz.
The DFT order was set to N = 512 and we used a
frameshift of L = 256. The NLMS-based adaptive filter

Ĥ(μ, k) =Ĥ(μ, k − 1)

+ α
E∗(μ, k − 1)X(μ, k − 1)

‖X(μ, k − 1)‖2 (42)

with a fixed step-size α and E(μ, k) and X(μ, k) being the
error signal or the excitation signal vector, respectively,
was adapted until a specific system distance for all sub-
bands was obtained. Afterwards the adaption was stopped
by setting α to zero. As the system distance for this par-
ticular simulation was known, we used this value also as
a parameter in model B and C to avoid the influence of

Fig. 5 Energy decay curve and coupling factors of an impulse response measured in a car cabin
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Fig. 6Measured and modeled time-frequency representation of the energy envelope of hLM

estimation errors. M was set to four frames, correspond-
ing to a filter length of 46.4 ms. Afterwards the step-size
was set to zero for the simulation. This was done since
the models would affect the convergence behavior of the
adaptive filter, so the results would also be affected. The
aim of the postfilter is to reduce the residual feedback in
the microphone signal as much as possible without affect-
ing the desired speech signal. To prove this, the ratio of the
mean logarithmic speech power and the mean weighted
logarithmic speech power was calculated as

Ps =

NFrames−1∑
k=0

μStop∑
μ=μStart

P̃s(μ, k)

NFrames−1∑
k=0

μStop∑
μ=μStart


s(μ, k)
(43)

with

P̃s(μ, k) = 10 log10

(
Sss(μ, k) 
s(μ, k)

Sss(μ, k) 
s(μ, k)G2
X(μ, k)

)

= 10 log10

(
1

G2
X(μ, k)

)∣∣∣∣∣

s(μ,k) �=0

. (44)

The same can be done for the reverberation parts of the
signal

Pr =

NFrames−1∑
k=0

μStop∑
μ=μStart

P̃r(μ, k)

NFrames−1∑
k=0

μStop∑
μ=μStart


r(μ, k)
(45)

with

P̃r(μ, k) = 10 log10

(
Sss(μ, k) 
r(μ, k)

Sss(μ, k) 
r(μ, k)G2
X(μ, k)

)

= 10 log10

(
1

G2
X(μ, k)

)∣∣∣∣∣

r(μ,k) �=0

, (46)

where NFrames is the total number of processed frames
in this simulation and μz ∈[μStart,μStart+1, · · · ,μStop]
are the investigated subbands representing frequencies
between about 90Hz and 8000Hz, where most of the
speech power is located. Sss(μ, k) is the short-term power
spectrum of the input frame of the clean speech signal.

s(μ, k) is a binary mask based on a subband voice activ-
ity detection which is one for subbands where voice is
detected and zero for those without voice. 
r(μ, k) is the
equivalent for the reverberation signal with the additional
condition that all time-frequency bins where 
s(μ, k) = 1
are set to zero. An example of the described masks can be
seen in Fig. 8, where the speech signal of the investigated

Fig. 7 Structure of a single-channel system used for the simulation
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Fig. 8 Spectrogram of the speech signal at the top, speech active mask in the middle and reverberation active mask at the bottom

subbands is at the top, the mask for the clean speech is in
the middle, and the mask for the reverberation is at the
bottom. Using these masks, the impairment is only evalu-
ated where the respective signals are present. The reason
for using this method is that we wanted to observe the
ratio between speech impairment and feedback suppres-
sion as well as both quantities alone. This is important
because a large speech impairment could lead to audible
artifacts. More established methods like segmental SNR
would only show the feedback reduction, which is not
sufficient for our purpose.
Furthermore, we used a short-time objective intelli-

gibility (STOI) measure, which was proposed in [34].
This measurement shows good performance in evaluating
degradation caused by time-frequency based algorithms
e.g. noise reduction. As a reference signal we used the
clean speech s(n). The loudspeaker signal x(n) was the
signal to be evaluated.
In Table 1, the simulation results for different system

distances are shown. Ps is the unwanted impairment of the
clean speech signal, Pr is the equivalent for the reverbera-
tion signal. Pr −Ps is the distance between both. Since one
impairment is wanted and the other one is not, it describes
the attenuation of the unwanted signal. Consequently Ps
has to be treated as an offset and needs to be compensated.
When the system distance is at − 40 dB, the results in

terms of the different approaches (B–D) for Pr −Ps as well
as STOI are similar. However, it can also be seen that the
impairment of the clean speech is significantly higher in
case of model A, which is the original unadapted model.

Table 1 Simulation results for the four different models at
different system distances

System-distance/dB Model Ps Pr (Pr − Ps) STOI

/dB /dB /dB

− 40 A 10.72 18.22 7.50 0.86

B 5.29 15.24 9.95 0.94

C 5.24 15.24 10.00 0.94

D 5.24 15.25 10.01 0.94

- 0 0 0 0.99

− 30 A 10.72 18.46 7.74 0.86

B 5.64 15.67 10.03 0.94

C 5.25 15.27 10.02 0.94

D 5.24 15.27 10.03 0.94

- 0 0 0 0.99

− 20 A 10.69 18.03 7.34 0.86

B 7.97 16.66 8.69 0.91

C 5.35 14.26 8.91 0.94

D 5.25 13.96 8.71 0.94

- 0 0 0 0.99

− 10 A 10.77 16.98 6.21 0.84

B 13.68 18.34 4.66 0.77

C 6.19 13.05 6.86 0.91

D 5.14 11.73 6.59 0.92

- 0 0 0 0.95
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Model B, which is assumed to be correct for this simula-
tion because the filter is well adapted and has a constant
system mismatch, is very similar to models C and D with
respect to Ps and Pr . This happens due to the fact that in
case of a small system distance models (B–D) are nearly
the same. When the system distance is increased, the
impairment of the clean speech caused by models A and
D are nearly constant whereas it increases in case of mod-
els B and C. This is exactly what one would expect because
of the short-time stationary nature of speech leading to a
large correlation when reducing the lag between an input
frame and the models response. The system distance is
used as a weight. By increasing it while decreasing the
response time the correlation between the wanted and the
unwanted signal increases.
In case of model B, there is an immediate response to

an input signal. Model C also produces a response in the
region of early feedback, resulting in a higher value of Ps
when increasing the system distance. However, Pr − Ps
is slightly better than in case of all other models. The
best compromise regarding the impairment of the clean
speech is reached with models C and D. Evaluating with
STOI shows similar results. It can be seen that the results
improve when the system distance decreases. For large
system distances the scores are low even if there is no
postfilter applied (-). This is due to the existing feedback
in the processed signal. For a system distance of −10 dB
it can also be seen that the score of model D is slightly
higher, although Pr − Ps of model C is slightly larger.
This is due to the fact that model D causes less speech
impairment in this particular setup. Furthermore, a rela-
tion between STOI and Ps can be observed. A large value
for Ps leads to a low STOI rating, which is due to the
fact that STOI evaluates the degradation of the speech
signal, which is mainly influenced by Ps. The best results
in terms of STOI are reached when there is no postfil-
ter at all. However, this does not mean that it makes no
sense to use a postfilter at all, because one of its main
purpose is to increase stability while saving computing
power.
The impulse responses used for the model-based

approach were measured under certain conditions. For
example, this could be an empty vehicle at a certain
temperature. In reality, however, these are subject to per-
manent fluctuations due to room changes. For example,
a car could be fully loaded and fully occupied or empty.
In addition, objects directly in front of sound sources or
microphones could cause large attenuation.
Even changes in the distance between loudspeaker and

microphone are conceivable. In the following, we will
investigate such a situation where the model parame-
ters are determined based on an impulse response of an
empty van, but in fact there is a fully occupied interior.
This variation of the acoustic path results in a reduced

T60 = 80.3 ms compared to the original 119.9 ms as well
as different coupling factors, which can be seen in Fig. 9.
The results (see Table 2) show that both STOI and (Pr −

Ps) are only slightly worse than before, but still very good.
In order to have a more robust evaluation, we simu-

lated a second acoustic path. This time it is one that was
recorded in a lecture hall and has a significantly longer
decay time T60 of 777.8 ms. The delay TD is 18.7 ms.
The results can be seen in Table 3. The higher reverber-
ation time results in a slightly higher influence on the
desired signal than in the simulation before. However, a
clear attenuation of the feedback can still be seen. The pre-
viously discussed effects of the differentmodels apply here
without restriction.
In order to evaluate the subjective impairment of the

desired signal we conducted a listening test with 26
untrained participants aged between 21 and 46 years.
We used the same setup as shown before with a system
distance of −30 dB.
Overall the procedure was a degradation category rat-

ing (DCR) according to ITU-T Rec. P.800 [35], which
was modified for our purpose. We always played the
unprocessed clean speech signal as reference and then the
simulated versions with either one of the models (A–D) or
the cancelation only (–) in random order. We used three
female and two male speakers saying German sentences
according to ITU-T Rec. P.501 [36]. In sum, every partici-
pant had to rate 25 signals. One of the female speakers was
used for a trial run which we did not take into account to
give the participants the opportunity to get used to the test
procedure. The signals are provided on a web page [37].
The rating was defined as following:

• 5. Excellent – Speech sounds like the unprocessed
signal

Fig. 9 Coupling factors of the empty car used as model parameters
for simulation and true coupling factors of the fully loaded car
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Table 2 Simulation results for the four different models at
different system distances with incorrect system parameters after
a room change

System-distance/dB Model Ps Pr (Pr − Ps) STOI

/dB /dB /dB

− 40 A 10.72 18.08 7.36 0.86

B 5.29 14.26 8.97 0.94

C 5.28 14.22 8.94 0.94

D 5.28 14.23 8.95 0.94

- 0 0 0 1.00

− 30 A 10.72 17.90 7.18 0.86

B 5.41 13.90 8.49 0.94

C 5.28 13.75 8.47 0.94

D 5.28 13.73 8.45 0.94

- 0 0 0 1.00

− 20 A 10.74 17.14 6.40 0.86

B 6.60 14.00 7.40 0.93

C 5.30 12.42 7.12 0.94

D 5.26 12.29 7.03 0.94

- 0 0 0 1.00

− 10 A 10.73 16.41 5.68 0.86

B 11.47 16.60 5.19 0.83

C 5.63 11.24 5.61 0.93

D 5.20 10.41 5.21 0.93

- 0 0 0 0.99

• 4. Good – Speech is slightly impaired, but sounds
natural

• 3. Fair – Speech is impaired, but the artifacts are not
disturbing

• 2. Poor – Speech quality degrades, interfering
artifacts are clearly audible

• 1. Bad – Speech is heavily impaired

The results in terms of a mean opinion score (MOS) can
be seen in Fig. 10.
The unadapted model and the version without any post-

filter were rated with amean opinion score below 2.5. This
shows that artifacts caused by the postfilter are as bad as
the residual feedback when there is no postfilter at all. All
of the adapted models are rated with a MOS between 3.2
and 3.6 whichmeans that the impairment is less compared
to the unadapted model. Here model C shows the best
results compared to models B and D. However, a Tukey
honest significant difference (HSD) test with α = 0.05 as
suggested in [35] shows that there is no significant dif-
ference between models B, C, and D as well as between
model A and no postfilter at all. However, the approaches
can be grouped in model (B, C, and D) and (A and −).

Table 3 Simulation results for the four different models at
different system distances with impulse response of a lecture
room

System-distance/dB Model Ps Pr (Pr − Ps) STOI

/dB /dB /dB

− 40 A 12.94 19.33 6.39 0.80

B 6.84 17.24 10.40 0.90

C 6.84 17.24 10.40 0.90

D 6.84 17.24 10.40 0.90

- 0 0 0 0.99

− 30 A 12.94 19.25 6.31 0.80

B 6.90 17.25 10.35 0.90

C 6.84 17.24 10.40 0.90

D 6.84 17.24 10.40 0.90

- 0 0 0 0.99

− 20 A 12.94 18.82 5.88 0.80

B 7.41 17.07 9.66 0.90

C 6.88 16.59 9.71 0.90

D 6.87 16.58 9.71 0.90

- 0 0 0 0.99

− 10 A 12.94 17.72 4.78 0.80

B 10.50 17.39 6.89 0.87

C 6.96 14.80 7.84 0.89

D 6.92 14.76 7.84 0.89

- 0 0 0 0.98

The results in Table 4 are consistent with the objective
results, with the exception of STOI. In the hearing test, the
subjects rated a larger feedback as disturbing as a strong
degradation of the speech signal. In contrast, the results
according to STOImust be interpreted in such a way that a
stronger feedback has less influence than the degradation
of speech.
In a next step, we want to evaluate the model influence

on the convergence behavior of an adaptive filter. For this,
we used an NLMS-based adaptive filter based on pseudo-
optimal step-size

αopt(μ, k) ≈ E
{|Eu(μ, k)|2

}

E
{|E(μ, k)|2} (47)

according to [26], where the expected value E{·} was
approximated by first order IIR smoothing. The so-called
undisturbed error Eu(μ, k), which is the error signal
E(μ, k) without local signals, must be estimated as well.
For this, it is replaced by

Eu(μ, k) = E(μ, k) − S(μ, k) − B(μ, k) (48)
= HH

�(μ, k)X(μ, k), (49)
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Fig. 10 Results (mean opinion score and variance) of subjective
evaluation for the adaptive filter only (−), the “standard” model (A),
the model with const. system mismatch (B), the model with an
exponentially decaying shape of the system mismatch (C), and the
model based on perfect adaptive filter (D)

with H�(μ, k) being still not known. First, we replace it
with an estimate yielding

∣∣∣ ¯̂Eu(μ, k)
∣∣∣
2 = |X̄(μ, k)|2 · β2

x (μ, k). (50)

In acoustic echo cancelation, β2
x (μ, k) could be esti-

mated by minimum tracking the power of the noise-
reduced error signal, which is then divided by the
smoothed power of X(μ, k). However, this is not possible
in feedback cancelation due to the permanent presence of
local speech. Here, an approach [38] is to split β2

x (μ, k)
into

Table 4 Results of Tukey’s HSD test with α = 0.05

Model 1 Model 2 Mean Adjusted Reject

difference p value

(−) A 0.2596 0.1635 False

(−) B 1.0481 0.001 True

(−) C 1.3077 0.001 True

(−) D 1.125 0.001 True

A B 0.7885 0.001 True

A C 1.0481 0.001 True

A D 0.8654 0.001 True

B C 0.2596 0.1635 False

B D 0.0769 0.9 False

C D − 0.1827 0.5075 False

β2
x (μ, k) = β2

LEM(μ, k) · |E(μ, k)|2 − Ŝbb(μ, k)
|Y (μ, k)|2 − Ŝbb(μ, k)

(51)

= β2
LEM(μ, k) · β2

y (μ, k), (52)

with β2
LEM(μ, k) being a pre-measured quantity based on

A(μ) and β2
y (μ, k) being the smoothed power ratio of the

microphone and the error signal.
For the simulation, we used speech signals recorded in

a car at 100 km/h. Now we replaced the fixed values of
||H�(μ, k)||2 with its estimate which we get from the step-
size control β2

x (μ, k). Q(μ, k) in model C was replaced
with MA(μ)β2

x (μ, k). The loop gain initially was at 5 dB
and was increasd with 0.8 dB/second until it reached the
final value of 28 dB. The results in terms of the system
distance over time with the same adaptive filter and the
different models for the postfilter are shown in Fig. 11.
It can be seen that the best performance is reached when

there is no postfilter at all. This is due to the fact that the
achievable system distance at a fixed step-size depends
only on the power ratio between feedback signal and local
signal [26]. Even with an adaptive step-size control, as in
this case, it does not always work well enough to compen-
sate for this. As mentioned before, this is mainly due to
Ps. This value attenuates the desired signal, which reduces
the power of the loudspeaker signal by the same amount.
To adjust the achievable filter performance, the filtered
signal must be amplified by the value Ps, which is shown
in Fig. 12.
Here, we adjusted the gain by an offset of 5 dB in case of

models C and D and 10 dB in case of model A. For these
three models this nearly matches the individual values of
Ps. However, this did not work for model B, where we had
to add 17 dB to the loop gain. The difference is that Ps of
models A,C, and D has only a small or no dependency on

Fig. 11 System distance of adaptive filter over time with different
models
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Fig. 12 System distance of adaptive filter over time with different
models with gain adjustment

the system distance, whereas it increases with decreasing
system difference in case of model B.

7 Conclusion
In this work, we investigated existing and proposed
slightly extended postfilter schemes which are capable
of suppressing residual feedback in closed-loop systems
where adaptive feedback cancelers are used. We showed
that there are different ways to adapt the reverberation
model with respect to the feedback canceler. We were
able to show by means of subjective and objective evalu-
ation that all of our adapted models provide a better per-
formance then using the standard reverberation model
(model A) as a postfilter in a system with acoustic feed-
back canceler. However, there is a drawback. In the model,
it was assumed that knowledge about the current system
distance is available. This is, however, a quantity which is
not available in real systems. But there are several step-
size control methods available where a robust estimation
of this quantity is included. In this case, it can also be used
for the model-based postfilter. In all other cases, when no
estimation of the system distance exists we propose to use
the other adapted model, which assumes the system dis-
tance to be zero (model D). Beside models A to D several
other models could be thought of and some of them were
also tested during this research work, but at the end, we
decided to continue only with these four approaches to
keep this publication at a reasonable length.
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