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Abstract

Sound event detection (SED), which is typically treated as a supervised problem, aims at detecting types of sound
events and corresponding temporal information. It requires to estimate onset and offset annotations for sound events
at each frame. Many available sound event datasets only contain audio tags without precise temporal information.
This type of dataset is therefore classified as weakly labeled dataset. In this paper, we propose a novel source
separation-based method trained on weakly labeled data to solve SED problems. We build a dilated depthwise
separable convolution block (DDC-block) to estimate time-frequency (T-F) masks of each sound event from a T-F
representation of an audio clip. DDC-block is experimentally proven to be more effective and computationally lighter
than “VGG-like” block. To fully utilize frequency characteristics of sound events, we then propose a
frequency-dependent auto-pooling (FAP) function to obtain the clip-level present probability of each sound event
class. A combination of two schemes, named DDC-FAP method, is evaluated on DCASE 2018 Task 2, DCASE 2020
Task4, and DCASE 2017 Task 4 datasets. The results show that DDC-FAP has a better performance than the
state-of-the-art source separation-based method in SED task.
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1 Introduction
Sound event detection (SED) becomes an important
research topic in auditory perception. It has many poten-
tial applications such as healthcare in smart home [1, 2],
surveillance monitor in public area [3], and large-scale
information retrieval [4]. The goal of SED is to predict
event classes and corresponding time stamps, i.e., onset
and offset times of sound events, while audio tagging
(AT) aims at detecting what occurred in an audio clip.
Therefore, it is desired that strongly labeled data that con-
tains information of precise presence and absence time
for sound classes can be used to train SED systems [5–8].
However, it is costly to acquire such strongly annotated
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data in realities. On the other hand, there is a large amount
of weakly labeled data that is tagged with only types of
sound events at clip-level and does not provide the cor-
responding temporal information. For instance, AudioSet
released by Google consists of a collection of 2,084,320
human-labeled 10-s sound clips [9, 10].
Multiple instance learning [11–13] (MIL) is a common

framework to train using weakly labeled data. In MIL
methods for SED, the audio clip (bag) is divided into
overlapped frames (instances), where only ground truth
labels of clips are available. An audio clip is labeled pos-
itive if the clip contains at least one positive frame. MIL
methods usually consist of two parts, a dynamic predic-
tor for generating the present probability of the specific
event in each frame and a pooling function for aggregating
frame-level probabilities to a clip-level prediction. For the
dynamic predictor, conventional support vector machine
(SVM) [14], Gaussian mixture model (GMM) [15], and
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neural network approaches [16–19] are employed to per-
form prediction for each event class. The pooling func-
tion is used to reduce the dimension of the dynamic
feature space, which has a great impact on the overall
performance of the weakly supervised SED system. Sev-
eral pooling functions are exploited in the literature. The
global max pooling (GMP) focuses on instances with the
highest probability, which is difficult to estimate onset
and offset annotations for long-time events. The global
average pooling (GAP) assumes that all the instances con-
tribute equally, and hence, short-time events are likely to
be underestimated. Attention pooling [20, 21] is a flexi-
ble weighting method, which adds a dense neural network
to learn weights for each frame in parallel. However, a
limitation of the attention pooling is that larger attention
weights concentrate upon frames with smaller probabili-
ties when the label is negative [19]. An auto-pooling (AP)
function is developed in [22] by introducing a learnable
parameter for each class to deal with the weakly labeled
SED problem. The AP function reduces to min-, mean-, or
max-operators with the increase of the learnable parame-
ter, which can be interpreted as an automatic interpolation
between different standard pooling behaviors.
Another aspect of research is based on source sepa-

ration framework for non-overlapping case [23, 24] or
overlapping case [25, 26]. As a starting point, [24] focuses
on the non-overlapping sound events. Time-frequency (T-
F) segmentationmasks are learned from the clip-level tags
and then aggregated over both the time and frequency
indices to obtain present probabilities of sound events.
The T-F segmentation mask is equivalent to ideal ratio
mask (IRM) [27] in the context of speech enhancement
and source separation. As a byproduct, each sound event
can be separated from the mixed audio. In this method,
a global weighted rank pooling (GWRP) [28] function is
employed to aggregate the masks to clip-level predictions.
The T-F bin with a larger value is assigned a larger weight.
GWRP is a generalization of GMP and GAP in essence.
But, the decay coefficient of GWRP function is manually
chosen and may not be optimal in practice.
In this paper, we propose an improved source

separation-based approach to solve the problem of weakly
supervised SED. The proposed method has a similar
framework as in [24], which consists of a segmentation
mapping stage and a classification mapping stage. In the
segmentation mapping stage, we employ a CNN to cap-
ture local patterns of the input spectrogram, i.e., to learn a
T-Fmask of each specific sound event fromweakly labeled
data. Concretely, we build a dilated depthwise separable
convolution block, named as DDC-block. DDC-block first
applies a single-layer dilated filter to each input chan-
nel and then applies a 1 × 1 convolution to combine
the output of the previous layer. The presented DDC-
block outperforms the “VGG-like” CNN originally used in

[24] in terms of the detection performance and the com-
plexity. In the classification mapping stage, we present
a frequency-dependent auto-pooling function (FAP) to
aggregate T-F masks to clip-level predictions of sound
events. The FAP function inherently considers the fact
that each sound event exhibits different frequency char-
acteristics by introducing a learnable frequency-varying
vector for each class. Furthermore, we show that there
are close links between the proposed FAP and the com-
monly used GMP, the soft-max pooling, the GAP, and
the AP functions. In this paper, the proposed method is
not specifically designed for handling overlapping sounds.
We first focus on the weakly labeled problem without
considering the impact of overlapping. Next, we evalu-
ate the proposed method on DCASE 2017 task 4 dataset
and DCASE 2020 task 4 dataset, which are recorded in
a realistic environment and contain overlapping sound
events.
The remainder of the paper is organized as follows:

In Section 2, we present the proposed method in detail,
including DDC-block for producing T-F masks of sound
events and FAP used to aggregate T-F masks to clip-level
predictions. In Section 3, we carry out extensive exper-
iments to evaluate the performance of the new method.
Section 4 concludes the paper.

2 Proposedmethod
We now describe the proposed source separation-based
framework and how this method can be used to solve the
weakly supervised SED as well as AT problems.
The training process of the new framework consists of

two steps, i.e., segmentation mapping and classification
mapping. In the segmentation mapping stage, a log-mel
spectrogram of the audio clip x(n) is extracted to obtain a
feature matrixX =[ |X(t, f )|]∈ IRT×F+ , where t = 1, 2, ...,T
and f = 1, 2, ..., F represent frame and frequency indices,
respectively; T denotes the number of audio clip frames;
and F is the number of frequency bands. Then, a segmen-
tation mapping of X → M̂ is modeled via a deep neural
network, where M̂ =[ M̂k(t, f )]∈ IRK×T×F+ is the estima-
tion of the IRM for each sound event class, k is the index of
class, and K represents the number of predefined classes.
In [24], a “VGG-like” CNN is employed to complete the
transformation from the input feature to the specific mask
of each sound event. In this paper, we utilize DDC-blocks
for this task to obtain a better performance. The details of
implementation is presented in Section 2.1. Because only
the clip-level tag y =[ y1, y2, · · · , yK ]T ∈ IRK×1+ is available
for weakly supervised problems, a global pooling function
should be designed to transform the estimated T-F mask
into the presence probability of the kth sound event. In
the classification mapping stage, we map the estimated
T-F mask into the clip-level prediction, i.e., M̂ → ŷ ,
where ŷ =[ ŷ1, ŷ2, · · · , ŷK ]T ∈ IRK×1+ denotes the clip-level
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probability. The objective is to minimize the binary cross-
entropy between ŷk and clip-level tag yk , and the loss
function is given by:

L(ŷ, y) = −
∑K

k=1
yk log(ŷk) + (1 − yk)log(1 − ŷk). (1)

Several global pooling functions such as GMP, GAP, and
GWRP have been adopted for the classification mapping.
We present a frequency-dependent pooling function to
fully exploit the potentials of the source separation-based
approach in Section 2.2.
Both AT and SED tasks share the same training stage

as described above. Once the training is completed, we
can obtain the prediction of the trained model as the AT
result. However, for SED task, extra operations need to
be carried out to get frame-level probabilities at infer-
ence process. Since the estimated mask M̂k(t, f ) contains
the information of sound event activities, the frame-
level probability can be obtained by aggregating the mask
across frequency axis as:

ŷk(t) =
∑F

f=1
wk(f )M̂k(t, f ), (2)

where wk(f ) denotes the weight of the f th frequency band
for the kth class, and ŷk(t) is the estimated frame-level
probability. In [24], Kong et al. average over frequency
axis of the mask with wk(f ) = 1/F , whereas we uti-
lize the learned vector wk =[wk(1),wk(2), · · · ,wk(F)]T ∈
IRF×1+ of FAP to calculate the weighted average along
the frequency dimension. To produce smooth frame-level
predictions [24], we first select a frame t as a seed where
ŷk(t) ≥ 0.2. Then, we merge the neighboring frames on
both sides in a region-growing style until the frame t′
where ŷk(t′) ≤ 0.1. The diagram of the proposed source
separation-based method is shown in Fig. 1.

2.1 The segmentation mapping stage
The segmentation mapping performs feature transforma-
tion via the deep neural network. The model consisting
of VGG-blocks has been proven quite promising since
it can capture local patterns of input features. However,
the utilization of VGG-block leads to a high computa-
tional cost. To solve this problem, we build a convolutional
block, i.e., DDC-block, which employs depthwise sepa-
rable convolution [29, 30] with dilated filters instead of
the typical CNN as in [24]. The architecture of DDC-
block is shown in Fig. 2. Each of the three convolution
operations is followed by a non-linearity activation and
a batch normalization process. The stack of depthwise
and pointwise convolution is called depthwise separable
convolution, which is considered to be a single convo-
lution layer as the typical CNN. Thus, the number of
convolution layers in DDC-block is the same as that in
VGG-block.
For the depthwise convolution, the number of filters

is required to be equal to that of input channels, which
means the spatial convolution is performed independently
in each input channel. For the pointwise convolution, 1×1
filters are used to project the outputs of the depthwise
layer onto a new feature space. It has been demonstrated
that the stack of depthwise and pointwise layer can reduce
the number of parameters by a factor of 1/N + 1/(wwidth ·
wheight), where wwidth and wheight represent width and
height of the filter, respectively, and N is the number of
output channels [31]. Such a design can significantly alle-
viate the over-fitting problem. Additionally, we propose
to use dilated filters in depthwise layer. Dilated filters
can increase the size of receptive field without introduc-
ing extra parameters. We carried out experiments (not
shown here) and found that the utilization of dilation has
a positive impact on both AT and SED tasks. The process
of depthwise separable convolution with dilation rate is
shown in Fig. 3.

Fig. 1 Diagram of the proposed source-separation-based method
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Fig. 2 The internal structure of DDC-block module

At this point, we present a detailed configuration of the
model which is used in the segmentation mapping stage.
We first apply four DDC-blocks on the input log-mel spec-
trogram, and the channel numbers of the four blocks are
32, 64, 128, and 128, respectively. Then, a K-channel con-
volution layer with 1 × 1 filter is used to convert the
output of the last DDC-block to T-F segmentation masks
through sigmoid activation functions. Finally, a global
pooling function is used to aggregate the estimated mask
to the clip-level prediction. The proposed network has

a similar depth compared to the “VGG-like” network in
[24], which leads to a fair comparison. The detail of the
proposed model architecture is summarized in Table 1.

2.2 The classification mapping stage
In this subsection, we model the classification mapping
of M̂ → ŷ via the pooling function. To this end, pool-
ing functions such as GMP, GAP, and GWRP [26] are
commonly used in SED field. GMP only concerns on the
T-F bin with the maximum probability, leading to the

Fig. 3 Block diagram of the depthwise separable convolution with dilated filter in DDC-block
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Table 1 Model architecture

Block (filter, channels, dilated) Output shape (channels
× frequency× frame)

Input log-mel spectrogram 1 × 64 × 311

DDC-block(3 × 3, 32, 2) 32 × 64 × 311

DDC-block(3 × 3, 64, 2) 64 × 64 × 311

DDC-block(3 × 3, 128, 2) 128 × 64 × 311

DDC-block(3 × 3, 128, 2) 128 × 64 × 311

CNN (1 × 1, K, 1) K × 64 × 311

Global pooling function K × 1

constrained gradient path and inefficient computation.
GAP assumes that all the T-F bins contribute equally to
the clip-level prediction, which means GAP is unable to
focus on the specific T-F bins.

(1) Global weighted rank pooling, GWRP can be
understood as a generalization of GMP and GAP. The
main idea of GWRP is to put high weights on the T-F bins
with high values [26]. The T-F bins of the kth sound event
M̂k are sorted in a descending order, and the correspond-
ing jth element of the sorted sequence is denoted by M̂k,j.
The clip-level prediction can be represented as:

ŷk = 1
∑T ·F

j=1 r
j−1
k

∑T ·F
j=1

rj−1
k · M̂k,j, (3)

where rk ∈[ 0, 1] is a hyper parameter that controls
the behavior of GWRP function. Notice that the GWRP
reduces to GMP for rk = 0 and GAP for rk = 1. Since the
value of weight increases as M̂k,j becomes large, the aggre-
gation performance is improved compared with GMP and
GAP. However, the performance of GWRP highly depends
on the interpolation coefficient rk which is difficult to be
chosen in practice.We thus propose a FAP function which
can determine the interpolation coefficient automatically
as required.

(2) Frequency-dependent auto-pooling, FAP function
is actually an improved version of soft-max pooling,
which introduces a learnable parameter vector αk =
[αk(1),αk(2), · · ·αk(f )]T ∈ IRF×1 as weighting coefficients
for the kth class. FAP treats αk as a free vector that can be
learned during training. The expression of FAP is:

ŷk =
∑

t,f
M̂k(t, f ) ·

exp
(
αk(f ) · M̂k(t, f )

)

∑
t,f exp

(
αk(f ) · M̂k(t, f )

) , (4)

where αk(f ) is the weight of the f th frequency band.
Note that the frequency-varying αk(f ) is shared among all
frames in each frequency band.

We now show the relationship between the proposed
FAP and several well-known pooling functions. The pro-
posed FAP function can be treated as an extension of
AP proposed in [22]. FAP is specifically used for 2D
data like spectrograms, so the prior information of fre-
quency distribution for event classes can be considered
during aggregation. That is, FAP can focus on the cru-
cial frequency bands adaptively by learning the vectors.
Additionally, FAP reduces to GMP, soft-max pooling, and
GAP when αk(f ) → ∞, αk(f ) = 1, and αk(f ) = 0,
respectively.
A word on the bound of the parameter αk(f ) is appro-

priate here. For αk(f ) < 0, FAP is similar to min-pooling,
and hence, T-F bins with smaller values attract muchmore
attention, which is not desired. On the other hand, for
αk(f ) → ∞, FAP simplifies to GMP which may result in
the gradient explosion problem. We thus propose to set
the parameter αk(f ) to 0 < αk(f ) < αmax, where αmax is
a predefined constant. In this paper, αmax = 10 is empiri-
cally chosen and achieves a satisfactory performance.

3 Experimental results
3.1 Data preparation
We utilize the audio clips of DCASE 2018 Task 1 dataset
as background noises which are recorded in 10 scenes
such as metro station and shopping mall. For the sound
events, 3710 manually verified clips that include 41 cat-
egories are obtained from DCASE 2018 Task 2. These
events involve various human activities, household events,
instrument events, etc. All of the audio clips are sam-
pled at 32 kHz. More details on the preparation of data
are shown in Table 2. We fix the duration of every sound
events to 2 s which is same as [24] to make sure that the
generated clips are non-overlapping. To be specific, the
events shorter than 2 s are padded with zeros to 2 s. For
the events longer than 2 s, we extract the first 2 s of them
as training data and remove the other parts of the record-
ing. Three randomly selected events are mixed with the
background noise without any overlapping at 0-dB SNR.
The onsets of events are 0.5 s, 3 s, and 5.5 s, respectively.
Thus, we can ensure that the impact of overlapping can be
avoided, which will help us to focus on the weakly labeled
task first. We synthesize 8000 audio clips and divide them
into 4 cross-validation folds.

Table 2 Setting of experiment data

Acoustic scene Sound event

Dataset DCASE2018 Task 1 DCASE2018 Task 2

Instances 8640 3710 (manually verified)

Length 10 s 0.3–30 s

Class 10 41
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3.2 Setup
We choose 64 bands log-mel spectrum as the input data
representation to our model. A 64-ms-long Hanning win-
dow is employed for STFT with 50% overlap. Then, each
frame is converted into a 64-dimensional vector by a log-
mel filter bank. This process converts a 10-s audio clip
into a 64 × 311 dimensional log-mel spectrogram rep-
resentation. Learning rate is initially set to 1e−3 and
automatically reduced to 0.9 times of the previous value
per 1000 iterations. Xavier initialization is used to ini-
tialize the model. The experiment setting is shown in
Table 3, and each result shown in this paper is obtained by
averaging over 10 independent experiments.
We observed that the prediction result of AT task is

more convincing than that of SED task. In order to reduce
false positives for SED task, we first evaluate the clip-level
predictions of each clip. Only the classes that are predicted
as active at clip-level can be selected to evaluate the frame-
level predictions [24]. Since the lengths of most events are
longer than 10 frames, we treat the predictions which are
shorter than 10 frames as false-positive cases and remove
them to reduce inserts. Moreover, some classes such as
“Knock”, occur discontinuously in audio clips, but their
ground-truth frame-level labels are always continuous.
Thus, the events or the silence gap of events shorter than
10 frames are removed or merged. We set the onset col-
lar of 200 ms and an offset collar of 200 ms/50% to count
the true positives of the prediction, which is similar to the
configuration of [32].
As for evaluation metrics, we use F-score, area under

the curve (AUC), mean average precision (mAP) [32],
and error rate (ER) to evaluate the performance of AT
and SED tasks. The F-score is computed as a harmonic
mean between precision and recall. The AUC is the area
under ROC curve which plots true-positive rate (TPR)
versus false-positive rate (FPR). The mAP is the average
of precision at different recall values regardless of thresh-
olds. The mAP can evaluate the model comprehensively
and is widely used in the weakly supervised SED field.
Error rate (ER) measures the number of errors includ-
ing deletions (D) and insertions (I). ER is a score rather
than a percentage which can become larger than 1 in the
case when the system makes more errors than correct
predictions.

Table 3 Experiment setting

Fourier setting Training parameters setting

Sampling rate 32 kHz Batch size 18

Window size 2048 Iterations 20,000

Overlap 1024 Optimizer ADAM

Mel bands 64 Learning rate 1e−3, 1000 iter*0.9

3.3 Performance evaluation of the pooling functions
In this section, we evaluate the performance of five pool-
ing functions including GMP, GAP, GWRP, AP, and FAP.
To fairly validate the effectiveness of FAP function, we
employ the same model in the segmentation mapping
stage. Specifically, the DDC-blocks in Table 1 are replaced
with four VGG-blocks. For GWRP function, the interpo-
lation coefficient rk is set to 0.9998 as in [24].
As seen from Table 4, GMP and GAP are inferior to

the other approaches due to the impractical assumptions.
As expected, FAP achieves the highest scores in all the
involved methods in terms of the mAP and AUC for
both AT and SED tasks. Especially, FAP achieves a signifi-
cant performance improvement over GWRP and AP. This
is mainly because FAP function can automatically inter-
polate between different pooling behaviors through the
learnable frequency-wise vectors.
Figure 4 illustrates the parameters learned by the pro-

posed FAP function. Clearly, the learned weights vary
with frequency bands for certain acoustic events, and
the weight vectors αk exhibit different distribution char-
acteristics for different sound events. For instance, the
energy of keys_jangling events and bark events are mainly
distributed in the high- and low-frequency bands, respec-
tively. The corresponding vectors αk show a consistent
tendency with the energy distribution. It is observed in
the experiments that αk(f ) ≤ 3 for most cases, and we
present the results for αmax = 3, 5, 10, respectively. Table 5
investigates the effect of the upper bound of αk(f ) on the
overall performance. In the case of αmax = 10, FAP func-
tion achieves the best performance, and hence, it is used
for the proposed method in the other experiments.

3.4 Performance evaluation of the proposedmethod
We compare the performance of DDC-blocks and VGG-
blocks based on GWRP, AP, and FAP functions. Two well-
known examples of MIL methods, i.e., Attention [20] and
TALNet [19], are also involved to make a comprehensive
comparison. The results are shown in Table 6.

Table 4 Performance of different pooling functions

Metrics GMP GAP GWRP AP FAP

AT F-score 0.433 0.386 0.572 0.538 0.590

AUC 0.797 0.883 0.923 0.909 0.923

mAP 0.450 0.452 0.635 0.639 0.672

SED F-score 0 0.252 0.429 0.352 0.407

AUC 0.675 0.669 0.803 0.823 0.848

mAP 0.078 0.214 0.372 0.362 0.385

Error ER 1 2.610 1.991 1.886 1.776

rate D 1 0.896 0.780 0.844 0.823

I 0 1.718 1.210 1.042 0.952



Liu et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:19 Page 7 of 11

Fig. 4 Learned αk(f ) parameters for each event class

We first compare the performance of DDC-blocks and
VGG-blocks. Using the same pooling function, the meth-
ods with DDC-blocks outperform that with VGG-blocks
in terms of the F1-score, AUC, and mAP. As for the
model size, the required parameters for DDC-block-
based approaches decrease by 49.5% compared with the

Table 5 The different upper bound setting of FAP

Metrics FAP-3 FAP-5 FAP-10

AT F-score 0.560 0.589 0.590

AUC 0.924 0.922 0.923

mAP 0.654 0.667 0.672

SED F-score 0.429 0.412 0.407

AUC 0.840 0.847 0.848

mAP 0.385 0.384 0.385

Error ER 2.229 1.845 1.776

Rate D 0.772 0.821 0.823

I 1.457 1.024 0.952

VGG-block-basedmethods. Thus, the utilization of DDC-
blocks significantly reduces the number of parameters
while it achieves a better performance in segmentation.
Moreover, DDC-FAP achieves the highest mAP and AUC,
the lowest ER, and the least insertion among all the source
separation-based methods. It turns out that the com-
bination of DDC-block and FAP achieves a significant
performance improvement compared with the method in
[24].
In AT task, DDC-FAP is comparable with Attention [20]

and TALNet [19] . The proposedmethod achieves a some-
what higher AUC score in the AT task. It indicates that
DDC-FAP makes fewer false-negative predictions, which
is consistent with the observation that DDC-FAP gets
fewer deletions compared to Attention [20]. As for the
SED task, it is apparent that DDC-FAP achieves the high-
est mAP (0.427) and AUC (0.868) and hence outperforms
the other methods. To provide a better illustration, we
summarize the results of 10 independent experiments to
draw the box plot of the main metrics in Fig. 5. It shows
that the results of DDC-FAP are relatively stable in these
metrics and superior to the other methods in SED task.
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Table 6 The results of MIL and source-separation-based methods

Method Parameters Audio tagging Sound event detection Error rate

10 k F-score AUC mAP F-score AUC mAP ER D I

MIL Attention [20] 54.15 0.671 0.923 0.723 0.341 0.861 0.348 1.574 0.885 0.689

TALNet [19] 94.06 0.646 0.911 0.687 0.397 0.849 0.390 1.339 0.865 0.474

Source VGG-GWRP [24] 58.76 0.572 0.923 0.635 0.429 0.803 0.372 1.991 0.780 1.210

separation VGG-AP 58.76 0.538 0.909 0.639 0.352 0.823 0.362 1.886 0.844 1.061

-based VGG-FAP 58.76 0.590 0.923 0.672 0.407 0.848 0.385 1.776 0.823 0.952

DDC-GWRP 28.84 0.626 0.931 0.689 0.468 0.808 0.404 1.850 0.813 1.037

DDC-AP 28.84 0.573 0.919 0.684 0.382 0.845 0.398 1.831 0.853 0.978

DDC-FAP 29.10 0.633 0.931 0.719 0.446 0.868 0.427 1.689 0.845 0.844

In order to show the performance of the aforementioned
methods more intuitively, we let the model parameters as
the abscissa and the mAP in SED task as the ordinate as
shown in Fig. 6. An ideal SED system should require fewer
parameters and achieves a highermAP. It can be seen from
Fig. 6 that the method using the DDC-block outperforms
all the other approaches.

3.5 Performance evaluation on DCASE 2020 Task 4
Compared with the aforementioned synthetic dataset,
some of the events in DCASE 2020 Task 4 are overlapped.
DCASE 2020 Task 4 dataset mainly consists of a FUSS
dataset and a DESED dataset. The FUSS dataset used for
sound separation task does not provide labels for event
classes, so that DDC-FAP method cannot utilize it for
training. The DESED dataset is used for the SED task,

which consists of strong labeled, weakly labeled, and unla-
beled audio clips. We evaluate the proposed method on
the weakly labeled training set of DESED. The results are
shown in Table 7. The performance of the mentioned
methods on DCASE 2020 Task 4 dataset is similar with
that in Section 3.4. For SED task, DDC-FAP still achieves
the best results for all metrics. For AT task, DDC-FAP
ranks 2nd, which is slightly worse than Attention. Exper-
imental results show that although the proposed method
is not specifically designed for overlap, it still has good
performance for the overlapping case.

3.6 Performance evaluation on DCASE 2017 Task 4
Data imbalance is also a challenging problem for SED task.
We utilize DCASE 2017 Task 4 dataset to verify the effec-
tiveness of DDC-FAP on unbalanced situation. We add

0.905 0.91 0.915 0.92 0.925 0.93

DDC_FAP

DDC_AP

DDC_GWRP

VGG_FAP

VGG_AP

VGG_GWRP

TALNet

Attention

The value of AUC metric for AT task

AUC
0.62 0.64 0.66 0.68 0.7 0.72

The value of mAP metric for AT task

mAP

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87

DDC_FAP

DDC_AP

DDC_GWRP

VGG_FAP

VGG_AP

VGG_GWRP

TALNet

Attention

The value of AUC metric for SED task

AUC
0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43

The value of mAP metric for SED task

mAP

Fig. 5 The metrics box plot of the mentioned methods
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Fig. 6 The number of parameter and performance in the SED task

a mini-batch data balancing operation to ensure that the
number of the most frequent events is at most five times
than the least frequent samples in a mini-batch. To be
consistent with [19], the class-specific thresholds which
achieve the highest F-score of AT task are utilized to make
the clip-level predictions. The performance of AT and
SED task is evaluated on the clip level and 1-s segment
level, respectively. In addition to the mentioned methods,
the adaptive distance-based pooling function has been
proposed recently. It compensates non-relevant informa-
tion of audio events by applying an adaptive transforma-
tion in temporal axis. For a comprehensive comparison,
we show the results of the mentioned methods in Table 8.
It can be seen that the proposed method achieves the

best F-score in both AT and SED task. Besides the unbal-
anced property, some of sound events are overlapping in
the dataset. Moreover, the events of DCASE 2017 Task 4
have not been padded or trimmed, which contain a more
natural and diverse distribution of duration. The results

show that DDC-FAP performs well in these situations,
which indicates its robustness to complex scenes.

4 Conclusion
In this paper, we proposed a novel source separation-
based method for weakly supervised SED. In segmen-
tation mapping stage, we designed a model consisting
of four DDC-blocks to convert the input feature to the
T-F mask of each sound event. To utilize the prior fre-
quency information, we proposed the FAP function which
introduces learnable vectors to find the key bands when
aggregating the T-F masks. Both of the temporal location
of the predefined events and the separated waveform can
be obtained from the trained T-F mask. Extensive experi-
ments demonstrated that the DDC-block is more effective
and computationally lighter than the VGG-block in seg-
mentation mapping stage, and the FAP function outper-
forms the widely used pooling operators. The proposed
DDC-FAPmethod achieves a better performance than the

Table 7 The results of DCASE 2020 Task 4 dataset

Method Parameters Audio tagging Sound event detection Error rate

10 k F-score AUC mAP F-score AUC mAP ER D I

Attention [20] 54.15 0.719 0.946 0.810 0.557 0.867 0.572 1.715 0.755 0.960

TALNet [19] 94.06 0.672 0.917 0.741 0.536 0.851 0.516 1.523 0.773 0.750

VGG-GWRP [24] 58.76 0.675 0.938 0.772 0.499 0.843 0.578 1.866 0.769 1.096

DDC-FAP 29.10 0.694 0.941 0.795 0.595 0.881 0.610 1.755 0.790 0.965
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Table 8 The results of DCASE 2017 Task 4 dataset

Method AT SED

F-score Precision Recall F-score ER

Attention [20] 0.561 0.559 0.585 0.476 0.866

TALNet [19] 0.525 0.556 0.537 0.463 0.893

VGG-GWRP [24] 0.561 0.518 0.641 0.470 0.964

DDC-FAP 0.572 0.595 0.583 0.482 0.962

Adaptive 0.487 0.677 0.465 – –

distance-based

pooling [33]

state-of-the-art source separation-based methods in var-
ious situations such as the non-overlapped, overlapped,
and unbalanced cases.
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