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Abstract

Recently, the non-intrusive speech quality assessment method has attracted a lot of attention since it does not require
the original reference signals. At the same time, neural networks began to be applied to speech quality assessment
and achieved good performance. To improve the performance of non-intrusive speech quality assessment, this paper
proposes a neural network-based assessment method using attention pooling function. The proposed systems are
based on the convolutional neural networks (CNNs), bidirectional long short-term memory (BLSTM), and CNN-LSTM
structure. Comparing four types of pooling functions both theoretically and experimentally, we find the attention
pooling function performs the best among the four. Experiments are conducted in a dataset containing various
degraded speech signals with corresponding subjective quality scores. The results show that the proposed CNN-LSTM
model using attention pooling function achieves state-of-the-art correlation coefficient (R) and root-mean-square
error (RMSE) of 0.967 and 0.269, outperforming the performance of standardization ITU-T P.563 and
autoencoder-support vector regression method.
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1 Introduction
Speech quality assessment has become an important part
of speech systems, which can be used to detect the qual-
ity of speech enhancement [1], speech synthesis [2], and
other speech systems. Therefore, it is necessary to develop
an effective, reliable, and flexible speech quality assess-
ment method.
At present, the main challenge facing the speech qual-

ity assessment task is how to improve the prediction
accuracy of non-intrusive methods to approach or even
surpass the intrusive methods on the basis of objective
evaluation. So far, P.563 [3] is the only published stan-
dard in ITU-T to evaluate no-reference speech quality.
It was proposed relatively early and its accuracy is far
from intrusive methods. With the rapid development of
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deep learning technology, many researchers have applied
deep neural networks to speech quality assessment [4–7],
which greatly improved the accuracy of non-intrusive
methods. But none of them paid attention to the pooling
function before the output of neural networks in speech
quality assessment task.
In this paper, we propose a neural network-based non-

intrusive speech quality assessment using attention pool-
ing function [8]. We analyzed four existing pooling func-
tions on speech quality assessment task and conducted
experiments on the convolutional neural network (CNN),
bidirectional long short term memory (BLSTM), and
CNN-LSTM structure. The experiment results verified
that the CNN-LSTM structure using the attention pooling
function has a great performance on this task. As far as we
know, this is the first analysis of the pooling function on
non-intrusive speech quality assessment.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-021-00209-4&domain=pdf
http://orcid.org/0000-0002-3653-9951
mailto: wangjing@bit.edu.cn
http://creativecommons.org/licenses/by/4.0/


Liu et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:20 Page 2 of 10

The rest of this paper is organized as follows. Section 2
introduces the related works about speech quality assess-
ment. Section 3 introduces the related neural networks.
Section 4 presents the pooling function used in speech
quality assessment system. Section 5 introduces the
contrast methods. Section 6 introduces the experiment
setups. Section 7 shows the evaluation experiments to
assess the system performance. Finally, Section 8 states
the conclusions.

2 Related works
The speech quality assessment methods contain subjec-
tive tests and objective tests. Subjective tests, based on
listeners’ feeling to the heard speech, generally use the
mean opinion score (MOS) described in ITU-T P.800 [9]
to measure speech quality. This method is accurate but
time-consuming and labor-intensive. Objective evaluation
methods can be divided into two categories (intrusive and
non-intrusive) according to the presence or absence of
reference signals. Intrusive method not only requires the
speech signal to be evaluated, but also the original clean
signal without damage, as introduced in ITU-T P.862 [10]
and P.863 [11] . The non-intrusive method doesn’t require
a clean signal and directly provides a quality score based
on the signal to be evaluated. The ITU-T P.563 [3] stan-
dard algorithm is one of non-intrusive methods, which
is widely used in the evaluation of narrowband speech.
Although the non-intrusive method is not as accurate as
the intrusive method, it has developed rapidly in recent
years because of its simple implementation.
Many non-intrusive evaluation algorithms of speech

quality have been proposed. ANIQUE [12] is based on
the functional roles of human auditory systems and the
characteristics of human articulation systems. Tiago H.
Falk et al. [13] used gaussian mixture models (GMMs) to
model the behavior of clean speech and compared features
extracted from degraded speech signals to the artificial
reference model signals. D. -S. Kim et al. [14] proposed
a perceptually motivated algorithm based on a temporal
envelope representation of speech to assess speech qual-
ity. Meet H. Soni [15] used the ideal ratio mask (IRM)
for non-intrusive quality assessment of noise suppressed

speech. Wang [16] applied autoencoder to extract bottle-
neck features of speech signals andmapped the features to
the predictedMOS using support vector regression (SVR)
[17].
Recently, deep learning methods have been well applied

in the field of speech quality assessment due to their non-
linear fitting performance. Haemin et al. [4] proposed a
deep neural network (DNN) based non-intrusive speech
quality estimation method in real-time voice communica-
tion systems. Hakami and Kleijn [5] used augmented fea-
ture set and the neural network to improve the prediction
accuracy of the single-ended quality assessment approach.
Quality-Net [6], based on bidirectional long short term
memory (BLSTM), combined the frame-level scores to
the final estimated utterance-level quality score using
average pooling method. Lo et al. [7] adopted the convo-
lutional and recurrent neural network models to build a
mean opinion score predictor. Gabriel and Sebastian [2]
proposed a TTS naturalness prediction model which
achieved promising results on unseen datasets.

3 Related neural networks
Non-intrusive speech quality assessment can be regarded
as a weak labeled regression task. Only the utterance-level
speech quality labels will be provided. The non-intrusive
speech quality assessment system based on neural net-
work is shown in Fig. 1. Many neural network based
methods such as convolutional neural networks (CNNs)
and long short term memory (LSTM) have been used to
predict the speech quality scores. In this section, we will
introduce the related neural networks.

3.1 CNNs
CNNs were first proposed in image classification [18].
Compared with traditional back-propagation NN, CNNs
use the local connectivity and weight sharing methods
to retain important parameters and remove a large num-
ber of redundant parameters in order to achieve better
learning results. Because of its outstanding ability to char-
acterize shallow features, CNNs have been introduced to
speech related tasks such as speech recognition [19] and
speech quality assessment [7, 20]. A conventional CNN

Fig. 1 Non-intrusive speech quality assessment system based on neural network
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consists of convolution layers, pooling layers, and fully
connected (FC) layers. When CNNs are used to process
audio signals, the input data is often a two-dimensional
or three-dimensional array. Before features are sent to the
convolutional layer, they need to be normalized in time
or frequency dimension. Each convolution layer is com-
posed of multiple convolution kernels and each element
of convolution kernels corresponds to a weight coeffi-
cient and a bias value. Convolution layers apply convo-
lution operation to the input and pass the output to the
next layer. The output of a convolutional layer is called
feature maps. There are three main parameters of the
convolution layer, namely the size of convolution kernels,
the step size, and the padding. These three parameters
determine the size of feature maps after the convolu-
tion operation. ReLU activation [21] is usually used to
increase the nonlinearity of models. Recently, batch nor-
malization [22] is adopted in CNN architectures after
convolutional layers to stabilize training. Pooling layers
can effectively reduce the size of feature maps, thereby
reducing the number of parameters in networks. A time
distributed fully connected layer is applied to the output
of the last convolutional layer to predict the quality scores
of each frames in time axis. Finally, the predicted scores
are aggregated over the time axis to obtain the utterance-
wise score.

3.2 LSTM
Speech is a continuous signal in time axis that changes
according to the context. It is not correct to consider
it at a single moment in time axis. CNNs cannot cap-
ture long time dependency in a speech utterance, while
recurrent neural networks (RNNs) [23] are types of neu-
ral networks that can store history information in their
hidden states and thus capture long-term dependency of
sequential data. Therefore, RNNs are more conducive to
modeling the time information of speech signals than
CNNs. A problem with the traditional RNN is that it can-
not distinguish whether the information from previous
moments is useful. In other words, any information from
previous moments will be passed down, which may cause
the gradient disappear or explode in training. Long short

term memory (LSTM) [24] is a variation of RNN. It can
filter information from previous moments by forget gates,
input gates, and output gates, which makes it possible to
overcome the problem of long time dependency. Bidirec-
tional long short-term memory (BLSTM) considers the
past and future information at the same time when cal-
culating, that is, the output is determined by the previous
inputs and the following inputs. BLSTM is applied to our
speech quality assessment systems.

3.3 CNN-LSTM
CNN-LSTM is a neural network structure that combines
CNN and LSTM and it has been recently used for speech
quality assessment [2, 7, 25]. In this structure, CNNs
extract deep features of speech and the CNN feature vec-
tors are then used as input for LSTM network that models
time dependencies, which means that CNN-LSTM has
the advantages of both CNN and LSTM.

4 Pooling functions
As shown in Fig. 1, in the neural network-based speech
quality assessment systems, the role of pooling function
is to aggregate frame-level quality scores into utterance-
level quality scores. Therefore, the choice of pooling
functions has a great influence on final results. How-
ever, most researchers only used the average pooling
function [6, 7] and did not make further attempts. Pool-
ing function has been extensively experimented and
applied to the weakly labeled sound event detection task
[8, 26–28], where linear softmax [27] and attention pool-
ing function [8] achieve a strong performance. In this
section, we will introduce and analyze the max, average,
linear softmax, and attention pooling function in speech
quality assessment system.

4.1 Definition of the pooling functions
Let yi ∈[ 0, 5] be the prediction of a frame-level quality
score at the ith frame and y ∈[ 0, 5] be the aggregated
utterance-level score. We list the definitions of four pool-
ing functions to be compared in Table 1.
The max pooling function takes the maximum of all

frame-level scores yi’s as the utterance-level score y, which

Table 1 Definition and gradient of four pooling functions

Pooling function Definition Gradient

Max pooling y = max
i

yi
∂y
∂yi

=
⎧
⎨

⎩

1, i = argmax
i

yi

0, else

Average pooling y = 1
n�iyi

∂y
∂yi

= 1
n

Linear softmax y = �i(yi)2

�i yi
∂y
∂yi

= 2yi−y∑
j yj

Attention y = �i yiwi
�iwi

∂y
∂yi

= wi∑
j wj

, ∂y
∂wi

= yi−y∑
j wj

n is the number of frames in a utterance



Liu et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:20 Page 4 of 10

Table 2 The specific information of the database

Conditions Background noise

MNRU (Q = 5, 6, 10, 12, 15, 18, 24, 25, 30, 35, 36) No background noise

MNRU (Q = 8, 14, 20, 26, 32) Car noise: 15dB

G.729.1 No background noise

Office noise: 40dB

Babble noise: 40dB

Babble noise: 128dB

Car noise: 15dB

Street noise: 20dB

G.711, Codec1, Codec2 No background noise

Background music

Office noise

Babble noise

Interfering talker

Car noise

Office noise: 40dB

G.729, G.729E, Codec3, Codec4, Codec5, Codec6 No background noise

Car noise: 15dB

means that only the frame with the largest score will have
an impact on the final utterance-level score.
The average pooling function [26] takes the average of

all frame-level quality scores yi’s to get the utterance-level
score y, which means it assigns an equal weight to all
frames.
The linear softmax pooling function computes y as a

weighted average of yi’s, where the weights are equal to the
frame-level scores yi’s themselves. In this way, larger yi’s
receive larger weights. Compared to average pooling, the
utterance-level score is mainly determined by frames with
the larger frame-level scores and the affect of frames with
smaller scores will be reduced.
Finally, the attention pooling function is also a weighted

average. Unlike linear softmax, the weights wi for each
frame are learnable and modeled by a dedicated layer in
neural network. The utterance-level score y is then com-
puted using the general weighted average formula of yi’s.
The attention pooling function appears to bemost favored
by researchers because of its flexibility in sound event
detection task [29, 30].

4.2 Analysis of the pooling functions
As stated before, we only have the utterance-level speech
quality labels. When the overall quality of a speech utter-
ance is good, listeners will give it a high score. But when
only part of a speech utterance is bad, listeners will give
a lower score. This means that a speech utterance with a
high score should have high scores for each frame, and a
speech utterance with a low score must have bad frames

but may also have good frames. Based on this concept,
we will analyze the gradient of the loss function w.r.t. the
frame-level quality scores yi’s. And the weights wi’s also
will be analyzed in the case of attention pooling.
Let t ∈[ 0, 5] be the utterance-level ground truth. The

loss function we used is the mean squared error (MSE):

L = (y − t)2 (1)

The gradient of the loss function w.r.t. the utterance-level
quality scores is represented as:

∂L
∂y

= 2(y − t) (2)

It does not depend on the choice of the pooling function.
It is negative when the utterance-level predicted score
is smaller than the utterance label (y < t) and positive
when the utterance-level predicted score is larger than the
utterance label (y > t).
According to the chain rule, we can get the loss function

w.r.t. the frame-level scores yi and the frame-level weights
wi respectively:

∂L
∂yi

= ∂L
∂y

∂y
∂yi

(3)

∂L
∂wi

= ∂L
∂y

∂y
∂wi

(4)

We can divide it into two terms to analyze. The second
item, ∂y/∂yi (and ∂y/∂wi), is calculated for four pooling
function in Table 1.
With the max pooling function, ∂y/∂yi equals 1 for the

frame with the largest score and 0 elsewhere. It will cause
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Table 3 Configuration of different model structures. The symbol C indicates the number of convolutional kernels and the symbol - - -
indicates that the model structure does not have this part

Model BLSTM CNN CNN-LSTM

Input layer Log mel spectrogram (bs ×800 frames ×64 mel bins)

Convolution layer - - -

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
3 × 3@C

BN,ReLU

⎞

⎠ × 2

avg. pooling

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

× 4

Recurrent layer BLSTM-32 - - - BLSTM-32

FC layer FC-1, ReLU (frame-level score)

Output layer Max pooling, average pooling, attention pooling, linear softmax (utterance-level score)

only this frame to receive a non-zero gradient during the
back propagation of the network. Since we want to evalu-
ate the utterance-level quality as a whole, it seems unrea-
sonable that only the parameters related to the frame with
the largest score are updated.
With the average pooling function, ∂y/∂yi is always pos-

itive and equals 1/n for each frame-level score yi, which
means the gradient is distributed evenly across all frames.
When the utterance predicted score is smaller than the
utterance label (y < t), the gradient ∂L/∂yi is negative, and
this will boost the scores yi’s of all frames. This is in line
with our requirement for good speech utterances to have
good quality in each frame. When the utterance predicted
score is larger than the utterance label (y > t), the gradient
∂L/∂yi is positive and the scores of all frames have to be
suppressed, which is not what we expected. It may cause
the scores of many good frames to be incorrectly dropped.
With the linear softmax pooling function, ∂y/∂yi is pos-

itive when yi > y/2 , and negative when yi < y/2. When
the utterance predicted score is smaller than the utterance
label (y < t), the gradient ∂L/∂yi is negative when yi > y/2,
and positive when yi < y/2. As a result, larger yi’s will be

boosted, while smaller yi’s will be suppressed. It is wrong
to make good frames better and bad frames worse. When
the utterance label is larger than the utterance predicted
score (y > t), the gradient is positive when yi > y/2, and
negative when yi < y/2. As a result, larger yi’s will be sup-
pressed, while smaller yi’s will be boosted. This is different
from what we expected for low-score speech.
With the attention pooling function, the second term

∂y/∂yi is always positive because wi is always larger than
zero. Therefore, the attention pooling function will boost
all frames when y < t and suppress all frames when y > t.
The strength of the boosting or suppression depends on
the learned weight, which is different from the average
pooling function. Because the weights wi’s are learned, we
should also consider the gradient of the loss function w.r.t.
the weights , ∂y/∂wi. The second term ∂y/∂wi is positive
where yi > y, and negative where yi < y. When the utter-
ance predicted score is smaller than the utterance label
(y < t), the gradient ∂L/∂wi is negative when yi > y,
and positive when yi < y. This will cause the weight wi
to rise where the frame-level score yi is large and to drop
where yi is small, which means frames with larger scores

Table 4 Performance of the proposed systems on the test set

Stytems R RMSE

LSTM-max 0.961 0.283

LSTM-avgerage 0.953 0.365

LSTM-linear softmax 0.949 0.335

LSTM-attention 0.962 0.283

CNN-max 0.955 0.302

CNN-avgerage 0.959 0.370

CNN-linear softmax 0.961 0.317

CNN-attention 0.963 0.299

CNN-LSTM-max 0.964 0.273

CNN-LSTM-avgerage 0.965 0.283

CNN-LSTM-linear softmax 0.957 0.315

CNN-LSTM-attention 0.967 0.269
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yi’s should get larger weights wi’s. It can help the weighted
average result y to rise faster. When the utterance pre-
dicted score is larger than the utterance label (y > t),
the weight wi will rise where the frame-level score yi is
small and drop where yi is large, which means that larger
weights will concentrate upon frames with smaller scores.
In the process of declining scores in all frames, this oppo-
site phenomenon will cause scores of bad frames drop
faster, but scores of good frames may avoid too much
drop. This agrees with what we expected for low-score
speech.

5 Contrast methods
5.1 ITU-T P.563
ITU-T P.563 [3] is a non-intrusive speech quality evalu-
ation standard proposed by ITU-T. P.563 includes three
main modules, simulation module, speech reconstruction
module, and estimation module. The simulation module
extracts the feature parameters using the principles of
speech and auditory perception. The speech reconstruc-
tion module uses parameters extracted from distorted
speech to reconstruct speech in order to generate quasi-
pure speech. The role of estimation module is to deter-
mine the type of distortion and give evaluation scores
according to the gap between the input speech and the
generated quasi-pure speech. If the input is a severely dis-
turbed speech signal, the difference between the input and
output signal will be large and the quality score will be low.
On the contrary, if the input is a clean speech signal, the
quality score will be high.

5.2 Autoencoder-SVR
Autoencoder-SVR, proposed in [16], uses autoencoder to
extract bottleneck features of speech signals and then
maps the features to the predicted MOS using SVR. The
method trains the autoencoder and SVR in turn at first.
First, autoencoder is trained from training speech signals
represented by the log-power spectra features. Then, the
parameters of the autoencoder are fixed. Next, bottleneck
features extracted from the well-trained autoencoder and
the corresponding MOS values are used to train the map-
ping model SVR. Autoencoder-SVR is not an end-to-end
trainedmodel since autoencoder and SVR are trained sep-
arately. Therefore, its final performance depends on the
two parts of autoencoder and SVR and its training process
will be more complicated and difficult than end-to-end
methods’.

6 Experiments
6.1 Database
We evaluate the proposed method on a narrowband
MOS-labeled database including both clean and degraded
speech signals, which come from subjective Chinese lis-
tening tests designed by Beijing Institute of Technology.

All speech signals are processed from data in the NTT-
AT Chinese corpus. The database consists of 1248 speech
pairs with subjective MOS ranging from 1 to 5. All the
speech utterances are sampled at 8 kHz rate with 16
bits resolution and in the length of 8 s. Six professional
listeners scored each sentence in the professional acous-
tics laboratory. After each speech utterance is scored,
the final MOS is the average of scores of the six indi-
viduals. In the whole corpus, the average variance of all
scores for each speech utterance is 0.7. The database
contains many processing conditions including different
standard codecs, acoustic noise background, and mod-
ulated noise reference unit (MNRU) of various levels.
Table 2 shows the detail of the conditions. The number
of speech utterances in each condition with each back-
ground noise is 24. Without considering the background
noise, approximately 90% speech files (1100 samples)
under each distortion condition were randomly selected
as the training set, while the remaining data (148 samples)
is used for testing. In [16] and [31], Shan and Wang con-
ducted experiments on this database and achieved some
results.

6.2 Feature
We use log mel spectrogram as input feature follow-
ing previous work on deep learning-based speech quality
assessment [2]. The short time Fourier transform (STFT)
with a Hanning window of 256 samples with a hop size
of 80 samples is applied to extract spectrogram. We apply
64 mel filter banks on the spectrogram to obtain log mel
spectrogram. Themel filter banks have a lower cut-off fre-
quency of 50 Hz to remove low frequency noise. We use
the torchlibrosa [32] package to build logmel spectrogram
extraction.

6.3 Data augmentation
We use SpecAugment [33] as our data augmentation
method to prevent systems from overfitting. SpecAug-
ment, a simple data augmentation method, is applied to
the feature inputs of a neural network. The augmen-
tation policy consists of warping the features, masking
blocks of frequency channels and masking blocks of
time steps. In our speech quality assessment systems,
SpecAugment is applied to the log mel spectrogram of
a speech utterance using frequency masking and time
masking. Frequency masking is applied so that f con-
secutive mel frequency bins [ f0, f0 + f ) are masked,
where f is chosen from a uniform distribution from
0 to a frequency mask parameter f ′, and f0 is chosen
from [ 0, F − f ), where F is the number of mel fre-
quency bins [33]. More than one frequency mask can be
applied to each log mel spectrogram. The frequency mask
can improve the robustness of our systems to frequency
distortion of speech utterances [33]. Time masking is
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applied in the time domain, which is similar to frequency
masking.

6.4 Model
The detailed configuration of different structures in our
system, including CNN, BLSTM, and CNN-LSTM struc-
ture, is shown in Table 3. They have shown to perform
well on speech quality assessment [7]. In CNN and CNN-
LSTM structure, the convolution layer part includes 4
convolutional blocks. Each convolutional block consists of
2 convolutional layers with kernel sizes of 3×3. Batch nor-
malization and ReLU function is applied after each con-
volutional layer. The convolutional block consists of 8, 16,
32, and 64 kernels, respectively. The symbolC following@
represents the number of kernels in Table 3. A 2 × 2 aver-
age pooling is applied after the first three convolutional
blocks. A 1×8 average pooling is applied after the last con-
volutional block to average out frequency axis. In BLSTM
and CNN-LSTM structure, BLSTM with 32 hidden states
is applied in the recurrent layer part. Then, in three model
structures, time distributed fully connected layer with
ReLU function is applied to predict the quality score of

each time frame. To obtain the utterance-level prediction
for supervised learning, aggregation functions including
max, average, linear softmax, and attention pooling along
time frames are applied. For attention pooling function, a
separate fully connected layer with softmax activation is
used to generate the weights.

6.5 Training
In order to avoid experimental contingency, for each
model structure, we trained ten models using the 10-fold
cross-validation and got 10 corresponding results on the
test set. We took the average of all the 10 results as the
final result of each model structure.
During model training, we use the Adam [34] opti-

mizer with the initial learning rate of 0.001. The learn-
ing rate is scaled by 0.1 times if there is no more
decrease on the loss of validation set within 5 epochs
and training stops if there is no more decrease on
the loss of validation set within 20 epochs. The total
number of training epochs is 80. The mini batch size
is 32. The network was trained using the PyTorch
toolkit.

Fig. 2 Scattered plots of predicted MOS versus subjective MOS obtained from twelve models in Table 4
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Table 5 Performance of different methods on the test set

Methods R RMSE

P.563 0.610 1.430

Autoencoder-SVR [16] 0.954 0.308

Cnn-LSTM-attention 0.967 0.269

6.6 Evaluation metrics
To evaluate the performance of systems, we use the corre-
lation coefficient (R) and root-mean-square error (RMSE)
between the predicted score Sk and the subjective score S′

k
of each speech utterance k. The definition of correlation
coefficient is as follows:

R =
∑N

k=1 (Sk − S)(S′
k − S′)

√
∑N

k=1 (Sk − S)2
∑N

k=1 (S′
k − S′)2

(5)

where S is the average of Sk and S′ the average of S′
k . N is

the number of MOS labeled utterances in test set.
RMSE of MOS is defined as:

RMSE =
√

∑N
k=1 (Sk − S′

k)
2

N
(6)

The R is the larger the better while the RMSE is the
smaller the better.

7 Results and discussions
7.1 Comparison of different systems
Table 4 shows R and RMSE results for different model
structures. Comparing the results of the combined exper-
iment of the twelve models, we can find that the per-
formance of attention pooling is better than the other
three pooling functions regardless of the model structure.
This shows that attention pooling has great robustness in
different model structures. The CNN-LSTM structure is
slightly better than CNN and LSTM structures as a whole
because of its good learning both in time domain and fre-
quency domain. The highest R of 0.967 and the lowest
RMSE of 0.269 can be achieved by CNN-LSTM model
using attention pooling function.
Figure 2 shows the scattered plots of predicted MOS

versus subjective MOS of the test speech signals obtained
from twelve models. The red diagonal line is the ideal sit-
uation that the objective MOSs are equal to the subjective
MOSs. The blue dots represent the distribution of each
test sample. Observing the alignment degree between data
points and the diagonal line, we can see that the result
distribution from the model using attention pooling func-
tion is closer to the diagonal line than that from the model
using max, average and linear softmax pooling function.

7.2 Comparison of different methods
The results of different methods on the test set are shown
in Table 5. On the one hand, the performance of the pro-
posedmethod is much better than P.563, whichmeans our
proposed neural network-based non-intrusive assessment
method has significantly improvement compared to tradi-
tional signal processing methods. On the other hand, the
proposed method outperforms autoencoder-SVR method
[16] with 1.4% relative increase in R and with 12.7% rela-
tive reduction in RMSE. This shows that our method has
advantages over machine learning-based methods.

8 Conclusion
In this paper, we propose a neural network-based non-
intrusive speech quality assessment using attention pool-
ing function. We conduct experiments to compare four
pooling functions among which attention pooling proved
to be the best among them. From the experiment results,
it can be seen that the proposed method has significant
improvement in performance compared with the stan-
dardization ITU-T P.563 and autoencoder-SVR method.
Specifically, the CNN-LSTM model using attention pool-
ing function achieves the highest R of 0.967 and the lowest
RMSE of 0.269. In the future, we will continue to research
more on non-intrusive speech quality assessment meth-
ods considering the effects of different conditions and
languages.
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