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Abstract

If music is the language of the universe, musical note onsets may be the syllables for this language. Not only do note
onsets define the temporal pattern of a musical piece, but their time-frequency characteristics also contain rich
information about the identity of the musical instrument producing the notes. Note onset detection (NOD) is the basic
component for many music information retrieval tasks and has attracted significant interest in audio signal processing
research. In this paper, we propose an NOD method based on a novel feature coined as Normalized Identification of
Note Onset based on Spectral Sparsity (NINOS?). The NINOS? feature can be thought of as a spectral sparsity measure,
aiming to exploit the difference in spectral sparsity between the different parts of a musical note. This spectral structure
is revealed when focusing on low-magnitude spectral components that are traditionally filtered out when computing

note onset features. We present an extensive set of NOD simulation results covering a wide range of instruments,
playing styles, and mixing options. The proposed algorithm consistently outperforms the baseline Logarithmic
Spectral Flux (LSF) feature for the most difficult group of instruments which are the sustained-strings instruments. It
also shows better performance for challenging scenarios including polyphonic music and vibrato performances.
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1 Introduction

Musical note onsets can be simply defined as the start
of the notes and hence determine the temporal structure
of music, but also play an important role in music color
(timbre) perception [1]. This makes note onset detection
(NOD) one of the most frequently encountered problems
in the arising research fields of machine listening, music
processing, and music information retrieval. It can be for-
mulated as an acoustic event detection problem with the
signal under processing being a piece of music and the
events being the note onsets.

Despite being a long-standing problem, literature does
not offer a single but rather different definitions for note
onsets. From a music performer’s perspective, it is the
time instant at which the performer plays the note. Alter-
natively, when a note is decomposed into a transient
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(attack and decay) followed by a steady-state (sustain and
release) component [2], an onset can be defined as the
start of the note’s attack [3]. Different definitions have
led to different (often manual) labeling methods for onset
ground truth generation, used in NOD algorithm design
and evaluation. While the onset definition of [3] is the key
behind the proposed NOD feature, the definition found
in [4] considering an onset as the first detectable part of
a note in an isolated recording will be considered in this
paper for labeling the datasets used for tuning and testing
NOD methods based on the proposed and state-of-the-art
features.

Note onset detection is increasingly gaining research
interest due to its usefulness in many music-related activi-
ties and applications: automatic music transcription [5, 6],
audio-to-score (audio-to-symbolic representation) align-
ment [7], music analysis (tempo and beat tracking) [8] [9]
and synthesis (enhancement of the attacks of synthesized
notes) [10], instrument identification [1], and adaptive
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audio effects [11], e.g., applying different time stretch-
ing for transient and steady-state components of a note.
Moreover, onsets are of great importance for music search
engines and recommender systems when used as acoustic
meta-data about songs [12, Ch. 3].

A general scheme for NOD has been summarized in [3]
where the main component is the onset detection func-
tion (ODF). The ODF describes the variation of an NOD
feature over time and typically represents a highly sub-
sampled version of the original music signal from which
onsets should be easily detectable as distinctive amplitude
peaks [4]. In literature, two main groups of NOD methods
can be distinguished: data-driven and non-data-driven
methods. Data-driven methods build statistical models
for note onsets by employing machine learning methods
on a large set of training data. For instance, learning a
probabilistic (hidden Markov) model exploiting the rhyth-
mic regularity in music [13], training a neural network
(recurrent [14], convolutional [15-18]), or learning dic-
tionaries describing onset/non-onset patterns [7]. These
machine learning methods can either solve a classifica-
tion problem, differentiating onsets from non-onsets, or
a regression problem of which the output is then used
to estimate a suitable ODF. On the other hand, in non-
data-driven methods, the ODF is directly calculated from
the analyzed signal or its extracted features. Even though
data-driven methods have been shown to slightly outper-
form non-data-driven methods on the Music Information
Retrieval Evaluation eXchange (MIREX) dataset [19], the
former need to be trained on large annotated datasets
in order to be generically applicable, which is currently
impractical as most of the available datasets require man-
ual annotation. Moreover non-data-driven methods are
sometimes preferred over data-driven methods as the for-
mer allow more easily to find direct relations with the
signal’s musical properties compared to the latter.

Non-data-driven NOD methods [2] may operate in the
time domain or frequency domain [20] and differ in the
type of features extracted from the analyzed signal: mag-
nitude, phase, energy, power spectral density, or time
derivatives of these [1]. Many non-data-driven methods
exist, see [3] for an early overview: envelope follower,
high frequency content (HFC), spectral difference, phase
deviation, etc. For a more recent overview, we refer to
MIREX [19], where different methods are submitted and
evaluated on the same dataset. According to the MIREX
results [19], the state-of-the-art non-data-driven method
employs the Complex Flux feature [21] which is based on
the Super Flux feature [22] taking also phase information
into consideration. Both features were proposed to tackle
a specific but widely occurring problem (i.e., robustness
to vibrato and tremolo effects) and share the basic prop-
erties of the Logarithmic Spectral Flux (LSF) feature [20],
which in turn is based on the spectral dissimilarity or
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Spectral Flux (SF) feature proposed earlier in [1] but
includes additional pre- and post-processing. This fam-
ily of features results in an ODF that tracks the temporal
evolution of the short-time spectrum based on first-order
differences between spectral features in successive signal
frames. Several enhancements were proposed to this fam-
ily, for example adaptive whitening [23], to counter the
effect of spectral roll-off. Another related NOD method is
the constrained linear reconstruction method [24] which
instead of calculating the first-order spectral differences,
aims to minimize the spectral difference between the cur-
rent frame and a group of previous frames and uses the
residual as an ODF. These variations add some computa-
tional complexity with a slight performance improvement.
As all these methods rely on differences between suc-
cessive frames, the performance of these methods may
drop when comparing successive notes sharing a consider-
able number of harmonics or with repeated notes having
insufficient increase in magnitude at their onset. Finally,
a more recent approach to NOD using pitch tracking
was presented in [25] and performs better with pitched
non-percussive instruments.

This paper provides a detailed treatment of a new non-
data-driven NOD method based on the NINOS? feature
that was proposed earlier by the authors in the context
of guitar note onset detection [26]. The NINOS? fea-
ture represents a (normalized) sparsity measure of the
analyzed signal magnitude spectrum. Even though spec-
tral sparsity implicitly contributes to the operation of the
previously discussed non-data-driven methods by differ-
entiating between notes’ transient and steady-state com-
ponents, it has not been explicitly investigated. Earlier
research exploiting signal sparsity in the context of NOD
has not resulted in a sparsity measure that can directly
be used as an ODF, but has rather focused on the esti-
mation of a sparse signal representation, e.g., by matching
pursuit [27] or sparse decomposition [28], from which
a suitable ODF is then calculated. In our previous work
[26], we focused on guitar notes and chord progres-
sions. Here instead we show and analyze results covering
a wider range of instruments and playing styles. More-
over, we provide an in-depth analysis of the NINOS?
feature in terms of its sparsity properties, propose two
new and improved variants of the feature, compare its
computational complexity to the baseline non-data-driven
feature, and show its superior performance in challeng-
ing NOD scenarios involving polyphonic music, repeated
notes, and vibrato effects. Finally, this paper also pro-
vides a more detailed explanation of the novel annota-
tion approach introduced in [26], in which semi-synthetic
music excerpts are generated and automatically annotated
out of isolated musical note recordings.

Having introduced the problem, the related work,
and challenges, Section 2 will discuss in further detail



Mounir et al. EURASIP Journal on Audio, Speech, and Music Processing

the related non-probabilistic methods and their general
solution steps. Section 3 provides an in-depth treat-
ment of the NINOS? feature and the resulting novel
NOD method. The experimental evaluation is shown in
Section 4 comparing NOD results with the NINOS? and
LSF features. Finally, Section 5 presents the conclusion
and hints for future work.

2 Related work

The majority of non-data-driven NOD methods follow
a general scheme that could be divided into three steps,
see Fig. 1: pre-processing, reduction, and peak picking
[3]. In the pre-processing step, the signal is processed in
order to emphasize features related to onsets or to remove
noise, which makes the detection easier. The second and
most important step is the reduction step in which the
ODF, sometimes alternatively named novelty function, is
computed based on extracted signal features. The result-
ing ODF is then run through the peak-picking step, in
which distinct points marking the estimated onset times
are selected from the ODF. This latter step is sometimes
referred to as the Onset Selection Function (OSF), and
its accuracy highly depends on the quality of the ODF
in terms of the presence of noise and artifacts and in
terms of the presence and waveform shape of ODF peaks
at onset locations [3, 14]. Several OSF approaches have
been proposed, either with fixed or adaptive peak picking
thresholds, and their impact on the overall onset detection
performance has been experimentally assessed [29].

As stated previously, the baseline non-data-driven
methods are operating on spectral features of the input
signal in order to detect spectral dissimilarities at note
onsets. Their respective ODFs are calculated as the first-
order difference of the spectral magnitude over successive
frames, with some enhancements like adding phase infor-
mation or adaptive whitening. The SF ODF is defined as
follows?,

¥-1

SE(m) = Y {H(Xx (m)] — | X¢ (n — D]},
k=1

where H is the half-wave rectification operator keeping

track only of positive changes and neglecting the negative
ones representing offsets,

(x + |xD)

HE) = —— ()

X (n) is the N-point short-time Fourier transform (STFT)
at frame index 7 and frequency k of the windowed time-

1)

In some publications, the SF ODF is defined by squaring the output of the
half-wave rectification operator in (1) before summing over all frequency bins.
Also, the lower summation index in (1) and (5) is sometimes chosen as

k = —N /2 which results in a scaling of the resulting ODF with a factor of 2,
due to the symmetry of the magnitude spectrum and the absence of a DC
component.
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domain input signal x (n),

51 .
Xie(n) = Z w(m)x(n—!—m)e*%, (3)
m=—1

and w(m) is a length-N window function. In order to
make the ODF invariant to signal scaling, in [30], the
first-order difference was applied to the log-magnitude

Pre-processing

Y

Detection Function

Y

Peak picking
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Fig. 1 Solution scheme for NOD. An example of the output of the
different steps is shown when NOD is applied on an input music
excerpt
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spectrum which is equivalent to the logarithm of the mag-
nitude spectrum ratio between successive frames. In other
words, instead of using the STFT magnitude coefficients
| Xk (m)| in (1), the STFT log-magnitude coefficients were
used, defined as,

Yie (n) = log(A Xk (M| + 1), (4)

where X is a compression parameter and a constant value
of 1 is added to ensure a positive value for the logarithm.
The resulting LSF ODF is defined as

N
|

LSE(n) = Y (H Yk (n) — Yk (n— 1))},
k=1

(5)

This ODF generally gives better results compared to the
SF ODFE. We use the LSF ODF for comparison with the
proposed method as it is generally considered the base-
line non-data-driven method [20]. Optionally, a filterbank
according to the Western music scale can be applied as a
pre-processing step before the LSF ODF calculation [20].

3 Proposed note onset detection method

3.1 Idea: transient vs. steady-state components

A musical note can be considered as a signal consisting
of a transient component followed by a steady-state com-
ponent, where each component can be expressed as a
sum of sinusoids. From a sinusoidal modeling perspective,
the key difference between the transient and steady-state
components of a note is the number of sinusoids needed
to represent each. In fact, a transient requires a much
larger number of sinusoids than a steady-state compo-
nent to be accurately approximated. For some percussive
instruments, the attack is nearly an impulse signal which
conceptually corresponds to the sum of an infinite num-
ber of sinusoids. On the other hand, for non-percussive
instruments, the transient is stretched over a longer time
interval in which it typically also exhibits a broadband
behavior which again leads to a representation requiring
many sinusoids. This observation also follows from the
definition of transients as short time intervals in which
the statistical and energy properties of the signal change
rapidly [2]. Consequently, the magnitude spectrogram of
a musical note shows transients (attacks) that are spec-
trally less sparse than the subsequent steady-state (tonal)
part. Spectral sparsity is considered here along the vertical
(frequency) dimension of a magnitude spectrogram and
indicates if few or many sinusoids are needed to represent
the signal in that particular time frame.

In the following three subsections, we will explain how
this idea of spectral sparsity can be realized in the frame of
the three-step non-data-driven NOD scheme introduced
earlier. At this point, let us start by defining the input
to the first step of this scheme. First, the analyzed music
signal is divided into overlapping windowed frames and
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the STFT is computed as in (3). The STFT log-magnitude
coefficients Yy (n) are then calculated using (4), i.e., in the
same manner as for the LSF ODF.

3.2 Pre-processing: coefficients subset

Before calculating the NINOS?> ODF, we apply a pre-
processing step to maximize the differentiation between
the STFT log-magnitude spectra of frames containing
onsets and other frames in terms of spectral sparsity.
Instead of measuring the spectral sparsity of the entire
STFT log-magnitude spectrum of each frame, only a sub-
set of the STFT log-magnitude coefficients will be used.
This is motivated as follows.

For the majority of pitched musical instruments, when
looking at the magnitude spectrogram of an isolated note
recording, it can be observed that the frequency compo-
nents corresponding to the note’s fundamental frequency
and harmonics exhibit high energy during transients fol-
lowed by a slow energy decrease after the transient. On
the other hand, the remaining frequency components, i.e.,
those not related to the note’s fundamental frequency or
harmonics, show a remarkable increase in energy dur-
ing transients followed by a relatively fast energy decay,
i.e., faster than the post-transient energy decay of the
harmonics.

To illustrate this observation, Figs. 2—4 compare the
time variation over 600 signal frames of the energy per
frequency bin, after splitting the frequency bins for each
time frame into two subsets: one subset containing the
frequency bins with low energy (LE Bins, upper sub-
plots in Figs. 2—4) and another subset containing the
frequency bins with high energy (HE Bins, middle sub-
plots in Figs. 2—4). This is shown in Figs. 2—4 for three
different instruments: electric guitar (Fig. 2), cello (Fig. 3)
and trumpet (Fig. 4). It can be clearly observed that the
energy variation in the LE Bins exhibits more pronounced
peaks in frames containing onsets (marked by the vertical
green lines in Figs. 2—4), compared to the energy varia-
tion in HE Bins. While the energy in HE Bins does not
always increase when reaching an onset, the energy in
LE Bins does. Apart from this, it can also be observed
that the shape of the energy decay curve after an onset
seems to be characteristic for the type of instrument. For
instance, the LE Bin energy curves for the electric guitar
and the cello do not show an explicit sustain component
for their notes while the same curves for the trumpet do
show a clear distinction between the transient (attack and
decay) and steady-state (sustain and release) components.
We can also notice, again from the LE Bin energy curves,
that the electric guitar has a faster attack and decay differ-
entiating it from the other two instruments shown here.
Finally, the lower subplots for each instrument in Figs. 2—
4. show the time variation of the £1-norm of the vector of
STFT log-magnitude coefficients, again separated into the
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Fig. 2 Temporal variation of signal energy per frequency bin and of spectral sparsity for electric guitar (major seventh stopped) excerpt. Note onsets
are indicated by vertical lines. (Top and middle) Low- and high-energy log-magnitude spectrograms. (Bottom) Low- and high-energy STFT
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subsets of HE Bins and LE Bins. Indeed, the £1-norm is
one of the simplest sparsity measures [31] and illustrates
in these examples that spectral sparsity may be used to
detect onsets when applied to the subset of LE Bins.

In  summary, removing high-energy = STFT
log-magnitude  coefficients before calculating a
spectral-sparsity-based ODEFE, thus neglecting coeffi-
cients corresponding to fundamental frequencies and

harmonics, will enhance the discriminative power of the
ODFE. It is important to emphasize how fundamentally
different this pre-processing step is from existing NOD
methods. Indeed, pre-processing often emphasizes signal
components in HE Bins, considering components in LE
Bins to be less relevant for NOD.

The frequency bin subset selection is implemented as
follows: the N/2 — 1 STFT log-magnitude coefficients

vector £1-norm variation

N
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Fig. 3 Temporal variation of signal energy per frequency bin and of spectral sparsity for cello (non-vibrato) excerpt. Note onsets are indicated by
vertical lines. (Top and middle) Low- and high-energy log-magnitude spectrograms. (Bottom) Low- and high-energy STFT log-magnitude coefficient
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Fig. 4 Temporal variation of signal energy per frequency bin and of spectral sparsity for trumpet (Bach) excerpt. Note onsets are indicated by vertical
lines. (Top and middle) Low- and high-energy log-magnitude spectrograms. (Bottom) Low- and high-energy STFT log-magnitude coefficient vector
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Yi(n), k =1,...,N/2—1 for frame » are sorted in ascend-
ing order and only the first / out of N/2 — 1 coefficients
are used afterwards, with

_| Y (N _
]_Loo(z 1>J ©)

where |-| denotes the floor function and y represents
the percentage of (one-sided) STFT frequency bins to be
contained in the LE Bins subset. These J coefficients are
collected in a length-J vector y(#) and their frequency bin
indices are collected in the set Zy g (n), i.e.,

y(n) = [Yr(m)], k € Iie(n). (7)

3.3 ODF: spectral sparsity feature

We now provide a detailed derivation of the NINOS?
feature and its resulting ODF, starting from the idea of
spectral sparsity introduced in Section 3.1. First, after hav-
ing collected the STFT log-magnitude coefficients of the
LE Bins subset during pre-processing, a spectral spar-
sity feature denoted in [26] as Identifying Note Onsets
based on Spectral Sparsity (INOS?) is introduced. The
INOS? feature is actually an inverse-sparsity measure as to
yield large values for non-sparse frames, thus highlighting
possible onset locations in time. Considering the INOS?
feature per frame 7, the INOS? ODF is obtained,

2
D kezien) Ve D)

Ykezieon Ye (”))

lyomli3

= (8)
lly(m)ll4 (

Yy, (1) =

N

We will first argue why the INOS? feature can indeed be
interpreted as an inverse sparsity measure, before consid-
ering how it could be further improved for the purpose of
NOD. Even though sparsity is usually defined as the num-
ber of non-zero elements in a vector, which corresponds
to its £op-pseudonorm, there is no universal consensus
for defining and measuring sparsity [31]. When measur-
ing sparsity of signal vectors that contain noise or other
artifacts, the £y-pseudonorm becomes useless since it can-
not discriminate between small (“near-to-zero”) and large
(“far-from-zero”) elements in the vector. Two basic con-
ditions that should be satisfied by any sparsity measure
have been stated in [31]: the most sparse signal is the one
having all its energy concentrated in one sample while the
least sparse is the one having its energy uniformly dis-
tributed over all its samples. For example, according to
this definition, a measure S that satisfies the following
inequalities for vectors of equal length would indeed be
considered a sparsity measure,

Smax :S([0,0,0,0, 1]) > > S([0,0, 1;11 1])
>>S([1’1;1’1;1]):Sml}’l (9)

where S is a sparsity measure defined for vectors of equal
length. Using this dummy example, it can be verified that
the INOS? feature in (8) is indeed an inverse sparsity mea-
sure. However, this observation only holds if the vectors in
comparison have similar energies. For instance, according
to the INOS? feature, the vector v =[ 0, 0, 100, 100, 100] is
less sparse than the vector [ 1, 1, 1, 1, 1], which clearly con-
tradicts with the basic conditions for a sparsity measure
given above. The explanation for this behavior is that the



Mounir et al. EURASIP Journal on Audio, Speech, and Music Processing

INOS? feature is in fact a joint energy and inverse spar-
sity measure. This becomes clear when rewriting (8) as
follows,

ly(m) 2

. 10
ly(m)lla 10

Yeyeq(m) = ly(m]l2 -
The first factor |y(n)|2 is the vector £y3-norm which
directly relates to the signal frame’s energy. As onsets are
usually accompanied by an increase in energy, see, e.g.,
Figs. 2—4, this property of the INOS? feature is actually
desirable for NOD. In fact, the use of a pure energy mea-
sure was proposed as one of the earliest features for NOD,
resulting in an ODF known as the envelope follower [1].
The second factor in (10), i.e., the ratio between the signal
frame’s £5-norm and £4-norm, can be understood to mea-
sure inverse sparsity by applying the unit-ball concept [2]
as shown in Fig. 5.

The figure shows a 2-D coordinate system where each
point is representing a vector v € R, Focusing on the first
quadrant, it can be noticed that points near the X or Y
axis, represent sparse vectors and inversely, while moving
away from the axes towards the 45° line (e.g., moving away
from the X axis in the direction of the (solid) red arrow),
vectors get less sparse. By applying the basic conditions
for a sparsity measure given above, the most sparse vec-
tors correspond to points lying on the axes, e.g., [0, 1] and
[ 1,0], while points lying on the +45° lines correspond to
the least sparse vectors, e.g. [ +/0.5, +/0.5] lying on the unit
circle. Now, let us consider the relation between £,-norms
for different p in this 2-D coordinate system. The unit cir-
cle represents the £3-norm unit ball, i.e., the set of points
representing vectors having an £3-norm equal to 1. For

S —
,
,
;
;
»
’

Fig. 5 2-D unit-ball illustration of the relation between the £;-norm
and £4-norm

(2021) 2021:30 Page 7 of 17

each of the points on the £3-norm unit ball, we can graph-
ically evaluate the £4-norm by looking at the £¢4-norm
unit ball and its scaled versions each containing one of
the points. We observe that the scaled £4-norm ball gets
smaller, shrinking along the dashed red arrow, while con-
sidering a point moving along the (solid) red arrow. This
means the ratio of the £5-norm and the £4-norm increases
as the vector becomes less sparse.

Apart from the two basic conditions discussed above,
a number of additional desirable properties of a sparsity
measure have been proposed in [31]. These properties and
their interpretation for a sparsity-based NOD feature are
briefly summarized here:

® Robin Hood: Taking from the richest (highest-energy
signal samples) and giving to the poor (lowest-energy
signal samples) decreases the sparsity of a signal.
Considering the analogy with spectral sparsity in the
NOD context, the transient component of a note
represents a scenario with many poor where energy is
fairly distributed, after which the energy shifts to the
harmonics in the steady-state component which
represents a scenario with few rich.

® Scaling: Sparsity is independent of signal scaling, e.g.,
$([0,0,1,1,1]) = S([ 0,0,100, 100, 100] ). This is an
important property in terms of decoupling an NOD
feature into an energy measure and sparsity measure,
as discussed above when factorizing the INOS?
feature as in (10).

e Rising Tide: Adding a constant value to each of the
signal samples decreases sparsity.

¢ Cloning: Sparsity measures should preferably assign
the same value to cloned signals, i.e.,
$(10,1]) = S([0,0,1,1]) = S([0,0,0,1,1,1] = ...).
As will be discussed below, this property is relevant
to reduce the amount of computations needed for the
NOD feature calculation and to make the resulting
ODF insensitive to the use of frames with different
frame lengths.

e Bill Gates: As an individual gets richer, sparsity
increases. In the context of NOD, as the steady-state
component of a note shows a more pronounced tonal
behavior, i.e., the more its energy is concentrated in a
few frequency components, it will be easier to
discriminate the transient from the steady-state
component using a spectral sparsity

e Babies: Appending zeros to a signal increases its
sparsity.

The ratio of a signal vector’s £4-norm and £;3-norm, i.e.,
the inverse of the second factor of the INOS? feature in
(10), can be understood to satisfy all of the above proper-
ties except for the cloning property. In other words, this
ratio is sensitive to changes in the vector length, i.e., / in
the context of the INOS? feature. This is an undesirable
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property for an NOD feature for several reasons. Firstly,
it makes the choice of a detection threshold and peak-
picking parameters dependent on the frame size N and
pre-processing parameter y. Secondly, it makes the fea-
ture incompatible with a processing strategy in which
successive signal frames may have different lengths to
achieve detections with different time resolutions (which
is however outside the scope of this paper). Finally, it
would yield different feature values for the cases that the
full frequency grid or only the positive frequency grid is
used in the feature calculation, as briefly touched upon
earlier!!],

For these reasons, the INOS? feature can be improved

by normalizing the inverse-sparsity factor in (10) such
that it yields a value €[ 0, 1] independently of the length
J of the vector y(n). Let us denote the inverse-sparsity
factor in (10) as S(n) = |ly(n)|l2/|ly(n) |4 and its (theoret-
ically achievable) minimum and maximum value as Spin
and Smax, respectively. A normalized version of S(n), i.e.,
S(n) €[0,1] can then be obtained as follows,
S(n) — Smin
- Smin '
The values Spmin and Smax can be found by considering
two extreme cases of an arbitrarily scaled length-J vector:
the sparsest possible vector [4,0,0,...,0] having S(n) =
1 £ S,in and the least sparse vector [a,a, 4, . . ., a] having
Sn) = W £ Smax. By substituting these values in (11)
we obtain that

(11)

Iy 2
_ Sn)—1 _ Iyl

V-1 V-1
Combining this normalized inverse-sparsity factor with
the energy factor in (10) finally results in the normalized
version of the INOS? feature denoted as NINOS?. Consid-
ering the NINOS? feature per frame #, the NINOS? ODF
is obtained,

S(n) (12)

Ry, (1) = (13)

ly()ll2 (||Y(ﬂ)||2 - 1)
JT—1 \Ily®lla '

This definition of the NINOS? ODF slightly differs from
the original definition in [26] because of the different
normalization procedure. The two definitions deviate in
particular for relatively small values of J, and only the def-
inition proposed here in (13) guarantees that the inverse-
sparsity factor Swn) €[0,1].

Finally, in this paper, we also propose a new sparsity-
based NOD feature, starting from the observation that
the above unit-ball demonstration can be applied to any
ratio of norms, [ly(n)ll,/Ily(n)ll4, where p < g. A particu-
larly interesting choice is p = 1,4 = 2, since in this case
the energy factor ||y(n) |2 cancels out with the denomina-
tor of the inverse sparsity factor ||y(n)|1/|y(n)||2, and the
joint energy and inverse sparsity measure reduces to the
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£1-norm, i.e., (compare to (10)),
ly(m) 1

Yoy (m) = lly(mllz - Tt = fly(m)]h. (14)
ly(ll2

When applying the same normalization strategy as above,
the £1-norm version of the NINOS? ODF is readily
obtained,

Ry, (n) = (15)

ly(m)ll2 (”Y(”)Hl _ 1)
VI =1 \lyml: '

However, by comparing the expressions in (14) and (15),
it is clear that the non-normalized expression is much
cheaper to compute due to the cancelation of the £3-norm
in (14). Therefore, we will further consider the INOS? (¢;)
ODF in (14) as a computationally appealing alternative to
the NINOS? (¢2¢4) ODF in (13).

3.4 Peak-picking

To allow for a fair comparison of the proposed ODF with
the state of the art, the same peak-picking procedure as
used with the baseline non-data-driven NOD method in
[21] is adopted here. According to this procedure (shown
here for the NINOS? (¢2¢4) ODF and similar for the other
ODFs), an onset is detected in the nth signal frame if all of
the following conditions are satisfied,

(1) RVm) =max; R(n+ 1),
@ N> g Y R+ D) +6,
3)

where «, 8, a, b, and © are the peak-picking parameters
defined using the following terminology, before maxi-
mum, after maximum, before average, after average, and
combination width, all counted in frame units, and p is
the frame index of the previously detected onset. The
interpretation of the above conditions is that (1) an onset
should correspond to the highest ODF amplitude in the
neighborhood of the frame index #, (2) an onset’s ODF
amplitude should be an amplitude offset § above its neigh-
borhood average ODF amplitude, and (3) an onset should
be ® frames apart from the closest preceding onset.

While the peak-picking parameter values are kept the
same as in [21], the combination width ® is set equal to
the detection window length which is the maximum num-
ber of frames in which a single ground-truth onset could
occur. This value depends on the frame overlap and is
calculated using the following relations:

with [ =—qa,...,+8,

n—p>0,

h=1(1-qNT, (16)
r’:f;/h, (17)
® = [rN/f], (18)

where |-] and [-] denote the nearest integer and ceiling
functions, % is the frame hop size in samples, g €[0, 1] is
the frame overlap factor, N is the frame size in samples,
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r is the frame rate, f; is the sampling frequency, and ©® as
defined above is the number of frames to be skipped after
one onset detection before aiming to detect a new onset. It
is advisable to choose the value of ® greater than the value
given in (18) in case of instruments with very long attacks.

3.5 Onset detection parameters

For a complete understanding of the new non-data-driven
NOD method based on the (N)INOS? feature and of
the performance measures explained further, the most
important parameters impacting the method’s NOD per-
formance are summarized here:

® Processing frame size (N): It should be larger than a
single period of the signal [1] yet small enough to
capture transients.

e Detection resolution: It depends on the frame rate r
which is inversely proportional to the hop size h.

® Processing mode: The detection algorithm could be
run in either offline or online mode. In the latter, the
peak-picking parameters 8 and b are set to zero.

e Evaluation window: It is used to increase the
detection window—implementing an onset
ground-truth—to handle the lack of precision
inherent in the onset annotation process, i.e., onsets
may occur slightly before or after the annotated
ground-truth onset.

4 Experiment setup and evaluation

4.1 Dataset

As mentioned earlier, the majority of NOD results found
in literature are obtained by testing on manually anno-
tated datasets. A manual annotation process consists in
asking music experts to listen to a number of music
excerpts and to inspect their waveforms and spectro-
grams in order to find the onset times. The final anno-
tation is obtained by averaging the different experts’
onset times. Some NOD results reported in literature
are instead obtained by testing on automatically anno-
tated datasets [26, 32]. Various ways of achieving auto-
matic annotation have been proposed [33, 34], e.g., by
using a musical instrument equipped with electrome-
chanical sensors or by synthesizing music signals starting
from isolated note recordings. The choice to test NOD
methods with either manually or automatically annotated
datasets depends on several factors. The main advan-
tage of manual annotation over automatic annotation is
that manually annotated onsets represent perceived note
onsets rather than onsets based on some non-perceptual
detection threshold. This advantage however only holds
to some extent, as manual annotation is often based on
audiovisual rather than purely auditive inspection of an
audio file. Arguments in favor of automatic annotation
are its ease of deployment in generating large annotated
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datasets, as manual annotation is time-consuming and
labor-intensive, and its potential to yield objective and sys-
tematic results independent of manual annotation errors
or subjective differences across human annotators.

With these arguments in mind, in this paper, we use
automatically-annotated semi-synthetic datasets. To this
end, a Matlab tool called “Mix Notes” has been devel-
oped by the authors to generate music excerpts from
isolated note recordings together with their respective
ground-thruth onset annotation?. The tool loads isolated
note and/or chord recordings from a database and then
automatically determines the ground-truth note onsets
(and offsets) based on a short-term energy measure. This
can indeed be done easily and accurately when notes are
individually recorded and avoids the dependency of the
annotation on the musical note context. Here, we used a
simple energy measure: the onset is chosen to be the ear-
liest point in time n, at which the absolute value of the
signal amplitude |x(#,)| satisfies that

x(no) > 2 max |x(n)], 0 < p < 100, (19)
100 "X

where p is a percentage of the note’s highest amplitude
and should define the amplitude threshold of a just audible
sound. The tool then generates a melody by automati-
cally mixing the selected note recordings while imposing
a specified minimum time spacing between successive
onsets. An annotation file for the generated melody is
automatically created using the isolated note annotations
with the timing information from the mixing process.

For the evaluation of the NOD methods, in this
paper, we have created an automatically annotated semi-
synthetic dataset using the MixNotes tool with isolated
note recordings of various instruments and playing styles,
starting from the recordings in the McGill University
Master Samples (MUMS) library [35]. Before annotating
the isolated note recordings and generating the semi-
synthetic music excerpts, all files in the MUMS library
were checked for compatibility with the NOD problem.
The files were manually checked and retained only when
containing just one instance of the respective note. In
summary, the harp was excluded as its recordings were
mostly composed of many notes, e.g., a glissando record-
ing, in one file. All the percussions’ rolling recordings
and the library folder “Percussions patterns and dance”
were excluded for the same reason. Moreover, the skins
and metals percussions folders were each divided into 3
folders—respecting the alphabetical order of file names—
as these contain many more note recordings than other
instruments. This resulted in 138 folders containing dif-
ferent instruments with different playing styles. For a
more structured performance evaluation, the folders were

2Code and metadata available at
https://gitlab.esat.kuleuven.be/dsp- public/mix-notes- mina- mounir
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grouped using a similar grouping as used in the MIREX
NOD dataset [19]. The grouping scheme is shown in
Table 1 using similar naming as the MUMS folder names.
The bowed vibraphone instrument is excluded from the
grouping as it does not fit in any of the groups.

The proposed and baseline non-data-driven NOD
methods are evaluated on these 138 folders covering a
large number of instruments (electric, acoustic, wind,
brass, strings,percussions, etc.) and playing styles (notes,
chords, pizzicato, sul ponticello, bowed, screams, flutter,
etc.). For each instrument and playing style, i.e., each sep-
arate folder, three test melodies are generated, each con-
sisting of a sequence of 50 randomly selected notes. The
first melody is used for tuning the NOD algorithm param-
eters whereas the other two are used for performance
evaluation. The time spacing between two notes in each
generated melody is randomly chosen from a uniform

Table 1 Instrument grouping

Pianos
Harpsichord 8 Stop, 8_4 Stops, Buff Stop.
Piano Concert Hall Steinway Soft, Hamburg Steinway Loud,
Harmonics, Mpp Loud, Mpp Medium, Mpp Soft, Right
Pedal Vol9, Steinway Plucked.
Bars and bells
Marimba Grand Symphonic, Soft Mallet.
Steel drum Loud, Soft.
Vibraphone Hard Mallet, Soft Mallet.
Others Celesta, Crotales, Tubular Bells, Xylophone.
Brass

French horn Normal, Muted.

Trombone Pedal Notes, Tenor, Tenor Muted, Alto, Bass .
Trumpet In C, In C_Harmon Mute, Bach, Bucket_Loud,
Bucket_Soft, Cup_Loud, Hard Attack.
Others Accordion Treble Notes, Cornet, Tuba.
Winds
Sax Alto, Alto Growls, Alto Screams, Baritone , Bass,
Soprano , Tenor, Tenor Growls, Tenor Subtones.
Clarinet Bflat, Bass, Contrabass, Eflat.
Flute Alto_Non Vib, Alto_Vib, Bass_Flutter, Bass_Non Vib,
Bass_Vib, Flutter, Non Vib, Vibrato.
Pan flute High, Low, Medium.
Piccolo Flutter, Non Vib, Vibrato.
Others Bassoon, Contrabassoon, English Horn, Oboe.
Plucked strings

Acoustic bass Amplified, Pizz, Plucked, Slides.

Acoustic guitar ~ Normal, Normal(2), Pizzicato, Sul Ponticello, Sul Tasto.

Electric guitar Normal, Harmonics, Stereo Chorus.

Others Archluteoud, Cello Pizzicato, Renaissance 8 Course
Lute, Viola Pizzicato, Violin Pizzicato, VIn

Ensemble_Pizzicato-Wet.
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Table 1 Instrument grouping (continued)

Sustained strings

Acoustic bass Bowed_Vibrato, Harmonics, Martele, Muted.

Viol Bass, Tenor, Treble.

Cello Normal, Artificial Harmonics, Martele, Muted_Vibrato,
Natural Harmonics, Non-Vibrato.

Viola Artificial Harmonics, Martele, Muted, Natural Harmon-
ics, Non-Vibrato, Vibrato.

Violin 1 Non Vibrato, 2 Non Vibrato, 3 Non Vibrato, Har-
monics_Artificial, Harmonics_Natural, Martele,
Muted_Vibrato, Vibrato.

VIn Ensemble Dry-Bright, Harmonics-Wet, Martele-Wet, Soft Attack-

Wet.

Percussions

Acoustic guitar tapping, metals-1/2/3, skins-1/2/3, tympani.

Polypitched

Dominant Ninths, Dominant Sevenths, Elevenths, Flat
7 Sharp 9, Major Seventh, Major Seventh Stopped,
Major Sixths,

Minor Sevenths, Ninths, Fifths.
Accordion Chords.

Electric guitar

Others

distribution on the interval [ 5250,44100] samples which,
at a sampling frequency f; = 44.1 kHz, corresponds to
[0.12,1] s. These values were chosen to limit the onsets
per minute to 500, which is slightly above the maximum
onsets per minute of an average pop song with a tempo of
120 beats per minute and 4 notes per beat, i.e., 16th notes.

The above dataset generation procedure is repeated four
times to produce four datasets with distinct properties
relevant to NOD performance evaluation:

M dataset: monophonic mixing.

MR8 dataset: monophonic mixing with forced
repeated notes where every note is repeated 8 times.
P dataset: polyphonic mixing.

PR8 dataset: polyphonic mixing with forced repeated
notes where every note is repeated 8 times.

The M and P datasets (and equivalently the MR8 and PR8
datasets) are composed of the same note sequences with
the same onset times and time spacings. However, in the
M and MRS datasets, an exponential amplitude decay is
applied to the sustain part of the notes, such that each
note has faded out before the next note starts, effectively
forcing a monophonic music excerpt. In the P and PR8
datasets, successive notes are allowed to overlap in time.
The use of repeated notes in MR8 and PR8 is mainly to
assess the algorithms’ performance in detecting onsets of
successive notes that are sharing a considerable number of
harmonics with insufficient increase in magnitude at their
onset. These latter datasets are expected to be challenging
for the baseline algorithm based on spectral differences.
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4.2 Performance measures

An important issue when assessing detection perfor-
mance is to decide how true positives and negatives are
counted. Here, we adopt the same approach as used in the
evaluation of the state-of-the-art method [22], where two
onsets detected within one detection window are counted
as one true and one false positive, and a detected onset
can count only for one detection window.

The most common way to compare NOD methods is by
evaluating their relative F1-scores. The F1-score is defined
as the harmonic mean of the precision (P) and the recall
(R) given by:

2PR

F1=—"—, (20)
P+R

with the precision being the ratio of correctly detected
onsets (“true positives”) to the total number of onsets
under test, and the recall comparing the number of cor-
rectly detected onsets to the total number of points
detected as onsets.

Since a true positive could occur anywhere within the
detection window, a new measure is developed to deter-
mine how large the detection window should be in order
to achieve the reported F1l-score. For each true positive
in the music excerpt under test, the time difference of the
ground-truth onset frame to the first frame that is covered
by the detection window is saved, and then the Detections
standard deviation 0, i.e., the standard deviation of the
time difference of the ground-truth onset to the start of
the detection window, is computed for each music excerpt
used in the evaluation. When 0y is small, the algorithm
will be detecting onsets in the same relative position to
the start of the detection window. This is an important
measure that reflects how well the algorithm detects the
different onset times relative to each other.

4.3 Computational complexity and memory usage

The running time of a non-data-driven NOD method
is comparable when using the LSF or NINOS? ODFs
and considerably shorter when using the INOS? (¢;)
ODE. Whereas the computation of the NINOS? feature is
slightly more expensive than the LSF feature, mainly due
to the required pre-processing, the opposite is true for the
memory usage as the NINOS? feature does not require
any information from the previous frame. Here, we com-
pare the type and number of operations and the amount
of memory needed for the computation of the three fea-
tures, omitting the calculation of the STFT log-magnitude
coefficients and the peak picking which are shared by all
methods. Note that for all features we only use half minus
one, i.e., % — 1, of the FFT coefficients.
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The number of operations and memory positions
needed for the LSF feature calculation is

N N
CisE = < — 1) Sub + < — 2) Add
2 2
N
+ (2 - 1) Comp

Misp =N-—2

with Sub, Add, and Comp representing scalar subtrac-
tions, additions, and comparisons respectively. Here, the
comparisons are needed for the half-wave rectification.
The number of operations and memory positions needed
for the (N)INOS? feature calculation is (with J < % -1,
see (6)),

CNINOSZ(£2£4) = (2] + DMult + 2(J — 1)Add + 3 Sqrt
+ 1 Sub + 1 Div

(X 1) g (Y -1)c
5 gl ~ omp

Cinvosteyy = U — DAdd

N N
+ (2 — 1) log (2 — 1) Comp

N
Mpmos: = 5 —1
with Mult, Sqrt, and Div representing scalar multipli-
cations, square roots, and divisions, respectively. Here,
the comparisons are needed for the frequency-bin sort-
ing in the pre-processing. Note that the computation of
the £;-norm in (14) does not require the calculation of
absolute values since the elements of y(#) are positive by
construction, see (4).

4.4 Parameter tuning

The non-data-driven NOD methods presented here are
dependent on a number of parameters: input preparation,
pre-processing, reduction, and peak picking parameters.
Finding the optimal combination of parameter values is
not an easy task. In this paper, the different parame-
ters are tuned in a sequential manner; in other words,
the parameters are selected one after another. We will
now summarize how the different parameters have been
tuned, making use of the tuning dataset introduced in
Section 4.1.

The input test melodies are sampled with a sampling
frequency f; = 44.1 kHz. Each melody is divided into
overlapping frames of N = 2048 samples (46.4 ms). This
frame size value was chosen by looking at the result-
ing spectrograms for three different frame sizes: 1024,
2048, and 4096. These are all powers of 2 to benefit from
using the fast Fourier transform algorithm. By repeating
this for various instruments, N = 2048 was found the
best trade-off between frequency and time resolution in
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(visually) emphasizing onsets in the spectrogram. By max-
imizing the F1-score over the tuning dataset, we found the
Hanning window offering a better performance than the
Hamming window, and the Discrete Fourier Transform
outperformed the Discrete Cosine Transform in comput-
ing the STFT coefficients. The compression parameter
A was set to 1 as in the Madmom implementation [36].
A frame overlap of 90%, i.e., g = 0.9, is used similarly
to the baseline method, resulting in a frame rate of r =
215 frames per second or a 4.6 ms detection resolution
which is better than the temporal hearing resolution (~ 10
ms). The evaluation window is set to 25 ms around the
ground-truth onset.

Due to the fact that the NINOS? feature satisfies the
cloning property (D4 in [31]), using only 50% of the STFT
coefficients will give the same results. Note that this does
not hold for the non-normalized INOS? feature. The per-
centage y of STFT frequency bins used to compute the
(N)INOS? feature is set to value y = 95.5 %, which was
found to maximize the F1l-score over the tuning dataset
for y values lying between 90 and 99.

The peak-picking parameters « = 30 ms and a = 100
ms are kept as in [21] as these values resulted in better F1-
scores for all the algorithms compared to the values found
in [36]. The parameters 8 and b are set to zero to allow
the NOD methods to operate online. The parameter O is
set equal to the detection window length as stated earlier.
Finally, the amplitude offset §—sometimes referred to as
the detection threshold—is tuned per feature to maximize
their performance on the tuning dataset.
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Fig. 6 Comparison of ODFs and peak-picking results for electric guitar
(major seventh stopped) excerpt. Vertical lines represent onset
detection windows indicating ground-truth onsets. Circles are used

to mark true positives in the peak-picking results, while false positives

are marked with crosses
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Fig. 7 Comparison of ODFs and peak-picking results for cello
(non-vibrato) excerpt. Vertical lines represent onset detection
windows indicating ground-truth onsets. Circles are used to mark
true positives in the peak-picking results, while false positives are
marked with crosses

4.5 Results and discussion

In this section, the performance of three non-data-driven
NOD methods, using the proposed NINOS? (£5£,) ODF
in (13), the proposed INOS? (¢£1) ODF in (14), and the
state-of-the art LSF ODF in (5), is compared. The pre-
processing introduced in Section 3.2 is only applied for
the proposed methods NINOS? and INOS?, but not to
LSE. Before considering more quantitative results, we first
look at a few examples of the different ODFs and the
onset detections resulting from the peak picking. This
is illustrated in Figs. 6-8 for three different instruments
belonging to different instrument groups: the electric gui-
tar (Fig. 6), the cello (Fig. 7), and the trumpet (Fig. 8).
The examples chosen here are excerpts taken from the P
dataset.

Onset detection windows indicating ground-truth
onsets are marked with vertical black lines. While cir-
cles are used to mark true positives in the peak-picking
results, false positives are marked with crosses. Finally,
the false negatives are easily noted by unmarked detec-
tion windows. By visually analyzing these figures, it can be
observed that the (N)INOS? ODF is remarkably smoother
than the LSF ODF and presents higher amplitudes at onset
times for the different instruments. The lack of smooth-
ness in the LSF ODF as compared to the (N)INOS? ODF
illustrates the sensitivity of the LSF ODF to nonstationary
additive noise, which is partly due to the log-magnitude
operation in (4). Indeed, despite the studio recording qual-
ity of the MUMS library, very-low-level nonstationary
background noise can be observed in the signal spectro-
grams shown in Figs. 6-8, exhibiting the same temporal
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Fig. 8 Comparison of ODFs and peak-picking results for trumpet
(Bach) excerpt. Vertical lines represent onset detection windows
indicating ground-truth onsets. Circles are used to mark true positives
in the peak-picking results, while false positives are marked with
crosses

variation pattern seen in the LSF ODE. When moving
from the easier percussive instrument in Fig. 6 to the
more complicated non-percussive instruments in Figs. 7
and 8, it can be seen that the LSF ODF fails to show a
clear amplitude rise at onset times. Both a high amplitude
and a fast-rising amplitude at onset times are two benefi-
cial ODF properties to have onsets successfully detected
in the peak-picking step. As a consequence, the LSF ODF
in Figs. 6-8 yields a higher number of false positives
and false negatives after peak picking, compared to the

Table 2 NOD performance measures for M dataset
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(N)INOS? ODE. A final remark that clearly stands out in
the guitar example is that true positives are detected in
the (N)INOS? ODF on the rising edge of an ODF ampli-
tude peak rather than at the maximum of the amplitude
peak. This is a consequence of the smoothness of the ODF,
resulting in an earlier onset detection which is a useful
property for online NOD algorithms.

After this qualitative comparison, let us take a
more quantitative approach by evaluating the previously
described performance measures F1-score and detections
standard deviation 0,;. The values of these measures are
shown in Tables 2, 3, 4 and 5, summarizing the results
obtained for the different datasets introduced earlier (M,
P, MR8, PR8). In each table, while the upper rows show the
results for the different instruments organized by instru-
ment groups, the lower rows show the results for a subset
of the instruments organized into two groups depending
on whether they are played with or without vibrato. The
instruments included in this subset are cello, viola, violin,
flute, flute alto, flute bass, and piccolo. Each table is ver-
tically split into two parts. While the first part compares
the F1-scores for the different methods, the second part
compares the detections standard deviation 0. Finally,
the Total row shows the weighted average of the results for
all instrument groups where the weights are determined
as the relative number of instruments per group.

Considering both the F1-score and the detections stan-
dard deviation 0, results, a few trends can be observed.
The baseline LSF ODF generally performs better on
monophonic music excerpts, whereas the (N)INOS?
ODF is more suited for polyphonic music excerpts.
Performance varies strongly across instrument groups,
and for the most challenging group of sustained-strings

F1-score

(oFF]

NINOS? (£244) INOS? (¢4) LSF NINOS? (£244) INOS2 (¢4) LSF

Instrument grouping
Pianos 09115 0.9344 0.9662 16842 16525 15148
BarsAndBells 0.9871 0.9923 0.9766 1.2426 11936 0.8662
Brass 05331 05212 0.6518 28180 26832 27831
Winds 0.5053 04902 0.6236 34137 33547 3.1496
PluckedStrings 0.9362 0.9508 0.9607 1.5969 15633 1.3865
SustainedStrings 0.5289 05026 05083 24713 25047 28176
Percussions 08111 0.8303 0.9351 16992 15812 0.9619
Polypitched 06756 06487 0.7419 2.8399 27064 2.8293
Total 0.6700 06623 0.7263 24443 23937 23459

Vibrato grouping
Vibrato 0.3984 0.3851 0.4065 30771 29681 39253
Non vibrato 04821 04627 0.6184 34342 34319 29572
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Table 3 NOD performance measures for P dataset
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F1-score (L
NINOS? (£244) INOS2 (¢4) LSF NINOS? (£344) INOS? (¢7) LSF
Instruments grouping
Pianos 08736 0.8981 0.9111 18126 1.7993 1.7189
BarsAndBells 0.9886 0.9907 09719 12774 1.2232 1.0028
Brass 0.4365 04360 03612 39106 3.9905 41966
Winds 04328 0.4365 03652 42315 41217 45686
PluckedStrings 09372 0.9482 0.9491 1.5887 1.5871 1.5686
SustainedsStrings 04433 0.4447 0.3845 36015 36368 42535
Percussions 0.8021 0.8304 0.9256 1.8838 1.7340 1.0332
Polypitched 0.7148 0.6836 05113 2.8322 25303 3.6377
Total 06221 0.6259 0.5784 3.0426 2.9975 3.2867
Vibrato grouping
Vibrato 0.3240 03125 0.2670 49782 48557 52357
Non vibrato 0.4394 04229 0.3305 43878 4.2892 47833

instruments, which exhibit non-percussive and slow-
attack onsets, the (N)INOS? ODF outperforms the LSF
ODF in all datasets. For datasets involving repeated
notes, the performance gap between the different meth-
ods is slightly reduced, but the same observations can
be made regarding monophonic vs. polyphonic perfor-
mance for the Fl-score. The detections standard devia-
tion o, for repeated notes is however smaller with the
(N)INOS? ODF for both monophonic and polyphonic
excerpts. For the most challenging dataset in which

Table 4 NOD performance measures for MR8 dataset

polyphonic excerpts with repeated notes are considered
(PR8), the (N)INOS? ODF outperforms the LSF ODF
for all instrument groups except percussions. Moreover,
the (N)INOS? ODF seems more robust to vibrato than
the LSF ODEF, which can be observed in particular in
the monophonic datasets (M and MRS8), where the per-
formance improvement of the (N)INOS? ODF over the
LSF ODF is clearly larger for the vibrato group than for
the non-vibrato group. Finally, the performance of the
NINOS? (¢3¢4) ODF and the INOS? (¢;) ODE is fairly

F1-score Oy
NINOS? (£244) INOS? (¢4) LSF NINOS? (£244) INOS? (¢7) LSF
Instrument grouping
Pianos 0.8968 09175 0.9229 1.7070 1.6610 1.4504
BarsAndBells 0.9943 0.9953 0.9765 1.2073 1.1742 0.9470
Brass 0.5459 0.5453 0.6257 2.8460 2.8731 34872
Winds 0.5323 0.5294 0.5970 34198 33137 34385
PluckedStrings 0.9520 0.9655 0.9628 1.5984 15710 14760
SustainedStrings 0.5762 0.5612 0.5344 2.6696 2.7099 3.0523
Percussions 0.8157 0.8379 0.9256 1.7448 1.6519 1.0948
Polypitched 0.6931 0.6770 0.7042 2.9939 2.9402 2.7570
Total 0.6915 0.6909 0.7161 25085 24775 25662
Vibrato grouping
Vibrato 0.4555 04533 0.4055 2.7296 26760 3.7082
Non vibrato 0.4908 04781 04849 3.7505 3.6386 41155
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F1-score

(oFF]

NINOS? (£244) INOS? (¢7) LSF NINOS? (£244) INOS? (£7) LSF

Instrument grouping
Pianos 0.8864 0.9127 0.8831 1.8040 1.7966 1.7402
BarsAndBells 0.9889 0.9937 0.9743 1.2381 1.1880 0.9634
Brass 04798 0.4825 04455 40768 40931 45098
Winds 0.4694 04677 04415 43367 42574 44708
PluckedStrings 0.9503 0.9617 09518 1.5997 15798 1.5501
SustainedStrings 0.5219 0.5203 0.4660 3.8391 38170 44102
Percussions 0.8303 0.8534 0.9184 1.8487 1.7305 1.0665
Polypitched 0.7318 0.7167 06210 2.9600 2.8119 34602
Total 0.6593 0.6630 06312 3.1469 3.1003 33230

Vibrato grouping
Vibrato 0.3901 0.4014 03535 48887 48500 52842
Non vibrato 0.4555 04458 03628 41196 43297 47532

similar, with a consistent trend of the NINOS? (¢5¢4) ODF
to perform slightly better for non-percussive instruments
and the INOS? (£1) ODF for percussive instruments.

In order to widen the scope of the evaluation pre-
sented in this paper, the NOD performance obtained
with the proposed and baseline non-data-driven ODFs is
also assessed using three publicly available and differently
annotated datasets, and a performance comparison with
a state-of-the-art data-driven NOD method is included.
The results are shown in Table 6. The MAPS CL and
MAPS AM datasets are part of the MAPS? dataset [33],
and more specifically correspond to the music pieces por-
tion of ENSTDkCl and ENSTDkAm. The suffixes “CL"
and “AM” refer to a close-miked and ambient record-
ing technique. Both MAPS datasets were recorded using
a Yamaha Disklavier piano in which annotations are
obtained directly from the instrument’s MIDI output. The
MDS dataset [18] is a manually annotated dataset contain-
ing audio excerpts from various sources. It was used to
train and evaluate the state-of-the-art data-driven NOD
method based on a convolutional neural network (CNN)
[18], which is also included in the performance compari-
son shown in Table 6. A 20% portion of this dataset is used
for training the network and the remaining 80% is used for

3Midi Aligned Piano Sounds dataset - freely available under Creative
Commons license

Table 6 NOD performance measures for publicly available datasets

testing®. In addition, the same CNN is also tested on the
two other (MAPS CL and MAPS AM) datasets. From the
results in Table 6, we first observe that the variation of the
F1-score across the compared methods is larger for the
MDS dataset than for the two MAPS datasets. This could
either be attributed to the difficulty of the NOD prob-
lem in the MDS dataset or to the higher variability of the
manual annotations in the MDS dataset, or both. We also
observe that while the NOD performance with the pro-
posed (N)INOS? ODF falls behind that of the other ODFs
for the MDS dataset, the (N)INOS? ODF outperforms
both the LSF ODF and CNN for the MAPS datasets. Note
that, as shown in [32], the poor performance of the CNN
when evaluated on the MAPS datasets can be mitigated by
aligning the training and evaluation dataset annotations
by means of annotations time shifting.

5 Conclusion and future work

In this paper, we have proposed two new variants as well
as a thorough analysis of the (N)INOS? spectral-sparsity-
based NOD feature introduced earlier in [26]. Instead
of focusing on the fundamental frequency and harmonic
components of a musical note, as traditional non-data-
driven NOD methods do, the (N)INOS? feature uses the

4MDS excerpts partition in Train/Test folds can be retrieved from: https://
gitlab.esat.kuleuven.be/dsp- public/mix- notes- mina- mounir/-/tree/master/
Datasets_meta

NINOS? (£244) INOS? (¢4) LSF CNN
MAPS_CL 0.762 0.778 0728 0759
MAPS_AM 0458 0.488 0366 0.39
MDS_TEST 0702 0.708 0784 0.867
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subset of low-energy frequency components which are
found to contain valuable information on note onsets. By
investigating how measures for energy and sparsity can
be combined and normalized, two new spectral-sparsity-
based NOD features are introduced, as well as their
related ODFs describing the feature variation over time.
These can be combined with a baseline peak-picking pro-
cedure to obtain a novel non-data-driven NOD method.

Simulation results for a newly developed automati-
cally annotated semi-synthetic dataset include a large and
diverse set of instruments, playing styles, and melody mix-
ing options which are reported in terms of the F1-score
and a newly introduced measure, the detections standard
deviation 0,. In terms of the Fl-score, the NOD per-
formance using the LSF ODF is better for monophonic
music excerpts, whereas the (N)INOS? ODF performs
better for polyphonic music excerpts. In terms of the
detections standard deviation 0, the benefit of the LSF
ODF over the (N)INOS? ODF for monophonic excerpts
disappears for scenarios with repeated notes. Both per-
formance measures illustrate that the (N)INOS? ODF is
more suitable than the LSF ODF for the most challeng-
ing instruments group, i.e., sustained-strings instruments,
and playing style, i.e., vibrato performance.

As the proposed INOS? (¢;) ODF is considerably
cheaper to implement than the proposed NINOS? (£3£4)
ODF and the baseline LSF ODF, both in terms of compu-
tational complexity and memory usage, it seems to be the
preferred feature to use for non-data-driven NOD.

Future work could include a deeper performance com-
parison on publicly available manually annotated NOD
datasets, showing results per instrument groups. Also, in
future experiments, datasets should preferably be equili-
brated in terms of instruments, i.e., the different instru-
ment groups should be populated similarly, which was not
the case for the results presented in this paper. Finally, an
instrument-dependent parameter tuning of the different
methods and its impact on the resulting performance is
worth investigating.
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