
Georgescu et al. EURASIP Journal on Audio, Speech, andMusic
Processing (2021) 2021:28
https://doi.org/10.1186/s13636-021-00217-4

REVIEW Open Access

Performance vs. hardware requirements
in state-of-the-art automatic speech
recognition
Alexandru-Lucian Georgescu1* , Alessandro Pappalardo2, Horia Cucu1 and Michaela Blott2

Abstract

The last decade brought significant advances in automatic speech recognition (ASR) thanks to the evolution of deep
learning methods. ASR systems evolved from pipeline-based systems, that modeled hand-crafted speech features
with probabilistic frameworks and generated phone posteriors, to end-to-end (E2E) systems, that translate the raw
waveform directly into words using one deep neural network (DNN). The transcription accuracy greatly increased,
leading to ASR technology being integrated into many commercial applications. However, few of the existing ASR
technologies are suitable for integration in embedded applications, due to their hard constrains related to computing
power and memory usage. This overview paper serves as a guided tour through the recent literature on speech
recognition and compares the most popular ASR implementations. The comparison emphasizes the trade-off
between ASR performance and hardware requirements, to further serve decision makers in choosing the system
which fits best their embedded application. To the best of our knowledge, this is the first study to provide this kind of
trade-off analysis for state-of-the-art ASR systems.

Keywords: Automatic speech recognition, Survey, End-to-end ASR systems, Deep learning, Performance analysis

1 Introduction
Speech is one of themost important forms of human com-
munication and, given this fact, it has always been desired
to extend the voice interaction with the technologies that
surround us, making it as naturally as possible. In this way,
the technology could be used on a larger scale, without the
need for additional knowledge and even by people with
disabilities or people whose activity requires hands-free
operation of the devices. Automatic speech recognition
(ASR) enables users to transcribe streams of speech into
the corresponding texts. The last few years have brought
a significant increase in this field, the voice-activated
devices being particularly successful. For instance, smart-
home assistants, such as Amazon Echo or virtual personal
assistants like Siri, have become well-known and they

*Correspondence: lucian.georgescu@speed.pub.ro
1Speech and Dialogue Research Laboratory, University Politehnica of
Bucharest, Bucharest, Romania
Full list of author information is available at the end of the article

are capable of performing complex speech to text tasks.
They successfully transcribe even if the environmental
conditions are challenging, like background noise or hes-
itations. Their input is represented by free speech with
a high degree of variability from one speaker to another.
The type of speech is usually free speech, the only con-
straint being the pronunciation of a keyword, which will
wake up the device. Because ASR systems are highly com-
putational and they require a large number of resources,
it is very difficult for this entire process to take place in
an embedded environment. Usually, hot-word detection is
performed on the device, while the rest of the speech is
transferred into the cloud for transcription.
However, there is an increased interest in develop-

ing speech recognition systems that can be deployed in
embedded systems [1–5]. These are usually integrated
in wearable devices or Internet of Things applications,
thus eliminating the need for cloud processing. Embedded
devices come with hard constrains related to computing

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-021-00217-4&domain=pdf
http://orcid.org/0000-0003-2122-4997
mailto: lucian.georgescu@speed.pub.ro
http://creativecommons.org/licenses/by/4.0/

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 2 of 30

power and memory usage. In this situation it is crucial to
use ASR systems that allow for real-time processing, along
with very low energy consumption and low memory foot-
print, but at the same time preserving as much as possible
the high accuracy of the neural network-based systems. In
order to meet the requirements of embedded systems, one
can resort to several optimization techniques: (i) archi-
tecture optimization, (ii) data quantization and format
optimization.
Architecture optimization involves reducing the num-

ber of layers and the sizes of the layers, etc. aiming to
eventually obtain a smaller neural network in terms of
total number of parameters. This, along with reducing
the number of activations that need to be kept in mem-
ory, leads to a system that can better fit into memory-
constrained systems. Moreover, by reducing the model
size one implicitly reduces the number of operations
performed during inference and thus obtains a better
real-time factor. Data quantization refers to the process
of reducing the bit precision of the weights and acti-
vations, while data format optimization concerns using
fixed-point or integer numbers instead of typical floating-
point values [6]. Data quantization and format optimiza-
tion help at obtaining a smaller footprint for the models
and activations (e.g. 8-bit values instead of 32-bit values)
and also for reducing the real-time factor by simplifying
the operations performed during inference (e.g. multiply
and accumulations with 8-bit integers instead of 32-bit
floating-point values).
In this context, it is important to pinpoint the ASR

systems which are suitable for deployment in embed-
ded applications. There are several surveys which present
some of the state of the art ASR systems, as follows. Zhang
et al. [7] present a review focused on deep learning aim-
ing to improve the environmental robustness of speech
recognition systems. They introduce technologies related
to the front-end of the systems, which is performing the
signal preprocessing, but also about the back-end, which
is performing the model training, for this particular sub-
task. The authors compare the traditional, probabilistic,
systems with those based on deep learning. They provide
a comparison in terms of the accuracy of some differ-
ent general approaches on 4 benchmark speech databases.
Park et al. [8] present real-time speech recognition sys-
tems for mobile and embedded devices. Several neural
network based acoustic models are compared by accuracy
versus model size. The authors create an acoustic model
by combining recurrent units and convolutional layers.
The main purpose is to solve the excessive memory con-
sumption due the parameters size in recurrent neural net-
works by using a parallelization approach. Purwins et al.
[9] present an overview of deep learning techniques used
for audio signal processing. The authors make a classifi-
cation of the main applications in the field of audio signal

processing, highlighting the types of acoustic features, the
types of neural networks used to train the model, the data
requirements and the computational complexity. Kim et
al. [10] describe in detail various components and algo-
rithms used in end-to-end speech recognition systems
and compare them from the architectural point of view
and also in terms of accuracy. Several methods of model
compression are discussed, considering the possibility of
using such systems in commercial on-device applications.
As opposed to the survey papers mentioned above,

which present overviews on text-to-speech systems and
focus on high-level architectures, this article analyzes
many concrete ASR implementations available in themost
popular ASR toolkits. The various component parts of
the ASR implementations are presented in detail, along
with graphical representations of the underlying neu-
ral networks. Finally, we offer insightful comparisons on
hardware performance versus transcription accuracy.
This survey provides an overview of the best and most

popular speech recognition architectures, including archi-
tectural insights that can be used to identify the sys-
tem which is most suitable for deployment in embedded
applications. Data quantization and format optimization,
which are not covered by this survey, can be potentially
applied regardless of the selected architecture, as they are
orthogonal optimizations, leading to a reduction in model
size and real-time factor along with a compromise related
to accuracy.
The aim of the survey is two-fold: (i) to serve as a guided

tour through the recent literature on automatic speech
recognition and (ii) to provide an analysis of the trade-off
between ASR performance and hardware requirements
for the most popular ASR implementations. The sur-
vey describes the various components and sub-systems
of generic ASR systems in Section 2 and then describe,
evaluates and compares eight specific ASR implementa-
tions in Sections 3 and 4. The comparison is structured
as a trade-off between transcription accuracy and sys-
tem complexity. We first compare the models in terms
of model size, number of activations and number of
operations required to process one frame of speech and
then translate these metrics into hardware requirements
regarding memory load and throughput. The aim is to
provide a complete picture of the trade-offs between com-
plexity and performance to further serve the decision
makers in choosing the system which is most suitable for
deployment in embedded applications.
The paper is organized as follows. Section 2 presents

the general characteristics of a speech recognition sys-
tem, offering details about its components. The dif-
ferences between a traditional pipeline system and an
end-to-end system are discussed. We describe the most
common types of speech features and we provide infor-
mation regarding different speech recognition system

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 3 of 30

architectures grouped into traditional, architectures based
on Hidden Markov Models (HMM) and end-to-end neu-
ral networks, along with themost common languagemod-
eling methods. Section 3 is concerned with the descrip-
tion from the architectural point of view of eight of the
best performing open-source speech recognition systems,
while the Section 4 deals with the comparison and evalua-
tion by considering the accuracy and the complexity of the
systems on a standard speech recognition task. Section 5
is reserved for conclusions. The paper organization is
presented in Table 1.

2 Introduction to ASR systems
This section introduces the basic concepts in automatic
speech recognition. Section 2.1 presents the road from
traditional ASR to end-to-end ASR. Section 2.2 describes
the most common speech features which are used in cur-
rent state-of-the-art implementations. Section 2.3 intro-
duces the main principles in traditional ASR, while

Section 2.4 presents different end-to-end approaches.
Section 2.5 summarizes the common language models
and their integration techniques in ASR systems.

2.1 The road from pipeline ASR to end-to-end ASR
Table 2 presents the main differences between these
two categories of ASR systems in terms of architecture,
decoding strategy, input and output data. A pipeline ASR
involves multiple models, each one created in the train-
ing stage: an acoustic model (AM) - usually implemented
as a neural network, a phonetic model (PD) and a lan-
guage model (LM) - usually implemented as a probabilis-
tic component. The decoding graph is a weighted finite
state transducer (WFST), obtained by composition oper-
ations applied on these elements. The acoustic modeling
element outputs posterior probabilities for context depen-
dent phones. The phonetic modeling element combines
these phones to form valid words, while the linguis-
tic modeling element combines words in sequences as

Table 1 Paper summary

Section Content

1. Introduction Paper context; paper goals; paper structure

2. Introduction to ASR systems Main concepts about the automatic speech recognition field

2.1 The road from pipeline ASR to end-to-end ASR Differences between those two categories of systems

2.2 Feature extraction Most popular speech features

2.3 Traditional, HMM-based acoustic modeling Acoustic modeling using Hidden Markov Models: concepts and systems

2.4 End-to-end ASR systems Most common end-to-end approaches

2.5 Language Modeling Most common language modeling approaches

3. State-of-the-art ASR implementations Detailed description of 8 speech recognition systems

3.1 Kaldi chain model TDNN Simple time-delay neural network system

3.2 Kaldi chain model CNN-TDNN Convolutional + time-delay neural network system

3.3 Paddle Paddle implementation of DeepSpeech2 Simple recurrent neural network system

3.4 RWTH RETURNN Attention-based encoder-decoder neural network system

3.5 Facebook CNN-ASG Fully convolutional with gated linear units neural network system

3.6 Facebook TDS-S2S Convolutional with time-depth separable blocks neural network system

3.7 Nvidia Jasper Convolutional neural network with residual connections system

3.8 Nvidia QuartzNet Lightweight convolutional neural network with time-channel separable residual

blocks system

4. ASR comparison and evaluation. Case study on LibriSpeech Accuracy and hardware requirements of those 8 implementations evaluated on

LibriSpeech task

4.1 Evaluation of model complexity Definition of the metrics used for model complexity

4.2 Comparison of ASR systems in terms of model complexity Complexity of the models computed as the number of parameters,

operations and activations

4.3 Comparison of ASR systems in terms of performance Transcription accuracy on LibriSpeech dataset

4.4 Trade-offs between ASR performance and hardware Accuracy vs. hardware requirements: trade-off analysis

5. Conclusion Paper summary; achieved goals

Main conclusions emerged from the analysis of those 8 systems

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 4 of 30

Table 2 Main differences between pipeline ASR and end-to-end ASR in terms of architecture, decoding strategy, input and output data

Pipeline ASR End-to-end ASR

System architecture multi-component: single component:

acoustic model (usually neural network) neural network for both acoustic and language modeling

language model (usually probabilistic) + optional more complex language model

phonetic dictionary

Decoding strategy Weighted Finite State Transducer (WFST) decoder Connectionist Temporal Classification (CTC) decoder

Sequence-to-sequence attention decoder

Input always hand-crafted features raw waveform or sometimes hand-crafted features

+ optional learned features

Output context dependent phones and then words characters or word-parts

likely to form sentences. On the other hand, end-to-end
ASR trains a single network to learn the speech repre-
sentations. A connectionist temporal classification (CTC)
decoder is usually used, this being a beam search based
mechanism. It provides a probability distribution over
the output labels set for each input time step. The CTC
decoding outputs characters separated by blanks, aligned
with the input sequence. Because in this way words and
word sequences are directly obtained, the language model
is optional in this approach. However, it ensures valid
outgoing words and more likely word sequences.

2.1.1 Pipeline ASR
This represents the traditional ASR system (see the top
of Fig. 1), made up of multiple components that work
together as in a pipeline system. The automatic speech
recognition task consists in identifying the most probable
words sequence W ∗, given the probability of the speech
signal X to be generated by the sequence of wordsW :

W ∗ = argmax p(W |X). (1)

Following the Bayes’ rule, this equation could be trans-
formed into an equivalent form:

W ∗ = argmax p(W |X) = argmax
P(X|W)P(W)

p(X)

= argmax P(X|W)P(W).
(2)

P(X) does not depend on the words sequenceW, there-
fore the denominator could be eliminated and the prob-
lem could be limited to the following aspects; (i) the com-
putation of the probability of the speech signal X, given
the corresponding words sequence W : P(X|W) and (ii)
the computation of the probability for the words sequence:
P(W).
The first probability can be determined using an acous-

tic model, while the second probability is obtained using
a language model. The link between these models is pro-
vided by the phonetic model, which consists in a dictio-
nary associating each word from the language model to a
sequence of phonemes, modeled by the acoustic model.
The acoustic model estimates the likelihood that a

speech signal has been generated by a sequence of words.
To achieve that, it is necessary tomake observations based
on an extended set of word pronunciations from as many
speakers as possible, then obtaining amathematical model
that estimates the probability of each word. This premise
leads to the choice of the word as the base speech mod-
eling unit, which, however, opposes a few principles. The
base unit must be precise and its representation should
include the manifestation in several acoustic contexts.
At the same time, it must be trainable, there must exist
enough data to be able to estimate the unit correctly. Last
but not least, the base unit must be generalizable, being

Fig. 1 Pipeline (top) vs. end-to-end (bottom) ASR. In pipeline ASR, the feature extraction is mandatory and during decoding are obtained different
output representations. In end-to-end ASR, the raw waveform is directly transformed into text. An additional language model can be used in both
cases for rescoring

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 5 of 30

possible to build every word from a sequence of units.
Words cannot be used as base units because they are
not generalizable and trainable as opposed to sub-lexical
units, such as phonemes or even sub-phonetic units.

2.1.2 End-to-end ASR

The concept of “end-to-end system” (see the bottom of
Fig. 1) has more interpretations. The most common def-
inition assumes that an end-to-end speech recognition
system is a single neural network that receives raw audio
signal at the input and provides a sequence of words at the
output, representing the appropriate transcript [11]. The
acoustic, phonetic and language components are jointly
trained into a single network [12], removing the need for
a hand-crafted pronunciation dictionary. Instead, a tradi-
tional system comprises some independent modules that
work together as a pipeline, each module performing a
specific task. As a summary, the features extractor aims
to obtain speech features from the acoustic signal. The
acoustic model provides the probabilities for each signal
sequence, represented by those speech features, given the
corresponding sequence of words. The language model
deals with the word sequences to match them in phrases
with a logical meaning.
The following aspects describe the differences between

end-to-end systems and traditional systems, although
they may not necessarily be considered as fundamen-
tal differences. Some end-to-end considered neural net-
works, as the one in Section 3.5, which is introduced in
[13], are capable of processing raw audio signal, the fea-
ture extraction being integrated into the network [14],
but also some hand-crafted features which have been
already extracted in a previous step. From the acoustic
model point of view, while the traditional systems are
modeling phonemes, the end-to-end systems are trained
on graphemes (characters) [15], word-pieces [16] or even
entire words [17]. The output in traditional systems con-
sists in probability distributions over the phonetic units,
while the end-to-end systems can do more than that,
their output consisting directly in characters. The lan-
guage model is a standalone component in traditional
systems, while in end-to-end systems it is possible to be
the same, plugged-in as an external component, but also
embedded in the network, as a part of the network per-
forming the task of language modeling. There are also
lexicon-free approaches in end-to-end networks, which
remove the constraints imposed by a finite lexicon, being
possible to handle out-of-vocabulary (OOV) words. This
feature must be balanced with another aspect, the risk of
obtaining meaningless or misspelled words.
Besides the unitary, homogeneous architecture of the

end-to-end systems, fundamental to them is that the
training is done from scratch, without using pre-aligned
data. In this way, the possibility of using potentially

incorrect alignments as training targets is eliminated [18].
End-to-end systems are fully discriminative, everything
is learned from data. Standard approaches use an addi-
tional generative component, most often this being rep-
resented by a Hidden Markov Model (HMM). The hybrid
HMM-DNN approaches based on Lattice-Free Maximum
Mutual Information (LF-MMI) objective function are also
considered end-to-end [19], in the sense that there are not
required initial forced-alignments to start training.

2.2 Feature extraction

This subsection describes the most popular speech fea-
tures used in ASR: spectrograms, Mel-filterbanks, Mel-
frequency cepstral coefficients and i-vectors. Feature
extraction is a pre-processing technique which transforms
the speech waveform in a more compact parametric rep-
resentation, focusing on some key-properties of the signal,
relevant for speech recognition. Regardless the features
type, most of them share some main principles, being
computed by applying some specific operations. In gen-
eral, they are biologically-inspired, imitating the human
sound perception system. The main operations that are
applied in the feature extraction process will be explained
below.

2.2.1 Type of features

The speech signal is not stationary, its statistics change
over the temporal dimension. Therefore, the analysis is
performed on short time frames, in order to respect the
quasi-stationary property of speech signal. The first oper-
ation is represented by framing, which consists of splitting
the signal in short frames, usually 25 ms with 10 ms over-
lap. The second operation is called windowing and it is
done during framing. A signal convolution with a Ham-
ming [20] or Hanning [21] filter is performed, aiming to
smooth the frame border discontinuities, in order to avoid
the occurrence of frequency artifacts. Because it deam-
plifies the frame ends, some parts of the signal would
matter less. This is why overlapping is essential: it retrieves
the information which may be discarded at the border of
two consecutive frames. The third most common opera-
tion in this pipeline consists in applying the Fast Fourier
Transform (FFT) to pass the signal from time domain to
frequency domain. As the Eq. 3 shows, the speech signal is
composed through the time domain convolution between
the base signal, represented by the air exhaled from the
lungs, and the time response of the vocal tract. The latter
is conclusive for the speech recognition task and the FFT
is used to separate it. Therefore, the convolution oper-
ation in time domain becomes a multiply operation in
frequency domain and the Eq. 4 presents how the loga-
rithm is applied to convert the multiplication operation
into a summation operation, which is a linear one and

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 6 of 30

whose terms can be separated.

S(n) = E(n) ∗ h(n)
FFT→ S(w) = E(w)H(w) (3)

S(w) = E(w)H(w)
log→ log(S(w))

= log(E(w)) + log(H(w))
(4)

As could be observed in Fig. 2, although the first oper-
ations are common to most types of features, there are
more or less processed features, depending on the stage
at which they were created. The spectrograms represent
a very common type of features. They are defined as the
power of the frequency bins at a specific time and they
are obtained by applying framing, windowing and FFT
operations.
The Mel-filterbanks features, named also Mel-

Frequency Spectral Coefficients (MFSC), follow the same
main steps as spectrograms, being characterized by an
additional step that involves applying a bank of triangular
Mel filters [22]. Typically, a number of 40 filters is used.
They translate the frequencies from a wider initial range
to a narrower range. The vocal parameters are grouped
around the lower frequencies, where the human auditory
system can achieve a much better distinction. Conse-
quently, the lower part of the spectrum contains much
more crucial information for speech recognition. In the
frequency range 0-1000 Hz the perception is linear, while
over this threshold, it becomes logarithmic.
TheMel-Frequency Cepstral Coefficients (MFCCs) [23]

are the most commonly used features in speech recog-
nition. Obtaining them involves an additional operation
compared to Mel-filterbanks: a final step consisting in
the backward transition in the time domain by applying
the discrete cosine transform (DCT). Its role is to reduce
the dimensionality of the parameters and to achieve
their decorrelation, because the filterbanks parameters are
highly correlated. From the each frame signal are usually
retained the first 13 MFCCs. This value is traditionally
used. Because the MFCCs approximate the initial signal,
more values make a more accurate, but more compu-
tationally complex approach, while fewer values make a

thicker approximation. The MFCCs only provide infor-
mation about the current frame and sometimes context
data is needed. To fill this gap, the 1st and 2nd deriva-
tives are computed, known also as delta and delta-delta
or differential and acceleration coefficients. They capture
information about the signal trends, the variation over the
neighboring frames.
I-vectors (identity vectors) [24] are a kind of feature

predominantly used for the speaker recognition task, but
they have also applicability in speech recognition. They
are derived from the Joint Factor Analysis [25] (JFA),
where the supervectors have been defined. They con-
sist in the mean components of the Gaussian Mixture
Model (GMM) that models the speaker-specific acoustic
features. Because i-vectors contain speaker characteristic
information, they have a role in improving the system’s
adaptation to the specific speech of a speaker.

2.3 Traditional, HMM-based acoustic modeling

This subsection presents the key concepts of the HMM-
based acoustic modeling, a widespread approach, now
considered traditional, with the advent of end-to-end net-
works. The phoneme is the shortest unit of sound and
it usually corresponds to the acoustic manifestation of
a letter. Each word can be decomposed into a phoneme
sequence. Given the way the words are articulated, the
phonemes are context dependent: two identical phonemes
will manifest differently if they occur in different con-
texts with different neighboring phonemes. Consequently,
phonemes are usually modelled with three states: the first
state models the transition from the previous phoneme,
the second state models the central, stationary part of the
current phoneme, while the third state models the tran-
sition to the next phoneme. A phoneme modelled this
way is referred to in the literature [26] with the term tri-
phoneme, and each of its states is referred to with the term
senone. The number of different triphonemes is very large
(three to the power of number of phonemes), thus the
training process is difficult and intensely computational.
However the various senones composing the triphonemes
are not totally distinct and, consequently, they can be
clustered based on similarity and modeled together.

Fig. 2 Different speech features obtained at different processing stages

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 7 of 30

Traditionally, the feature vectors representing the
senones were modeled using Gaussian Mixture Models
(GMMs) [27], while the transitions between senones (the
actual triphonemes) were modelled using HMMs [28].
Provided the properties of speech, HMMs used in ASR
are constrained to have forward-only transitions. HMM-
GMM systems for ASR are trained using the Baum-Welch
algorithm [29], while the Viterbi algorithm [30] is used for
speech decoding.
Taking into account that these states are context-

dependent and speech is possible due to transitions
between states, it was found that speech can be modeled
using the Hidden Markov Models (HMMs). An HMM is
a finite state automata where the sequence of states is
not known, but we know only the acoustic vectors corre-
sponding to each state, generated by a probability density
function. An HMM is characterized by a set of states,
emissive or non-emissive, together with a set of transition
and loop probabilities. Generally, the HMM transitions
have no constraints, except for the ASR systems. Due to
the speech sequential characteristic, back off transitions
or states skipping transitions are not allowed. Each state
may have transitions to itself or to the next state. Each
state emits vectors of values based on a probability den-
sity function, given by a GaussianMixture Model (GMM).
The normal probability density function models a range
of values, being centered in the highest probability point,
corresponding to the mean of the values. It provides the
probability that a value belongs to a class. Thus, by choos-
ing an arbitrary point in the value space, we can determine
how likely it is to belong to one of the classes. Gaussian
Mixtures (GMMs) are weighted sums of Gaussian densi-
ties, which try to approximate the probability of acoustic
feature vectors, extracted from the signal.
Training a GMM aims to estimate its parameters. This

operation is done by using the Expectation-Maximization
(EM) algorithm. The first step of the training (E) com-
putes the class belonging probabilities for the input data.
The second phase (M) computes the model parameters
using the current class belonging probabilities of the input
data. The algorithm runs iteratively until convergence to
the local maxim of the plausibility function is reached.
HMM decoding uses the Viterbi algorithm and it repre-
sents the speech recognition task itself. It determines the
most likely sequence of acoustic states that has generated
a set of speech features.
The first step towards employing deep learning for

speech recognition was represented by the replacement
of GMMs with DNNs for modeling senones [31]. In this
case, the DNN’s role was to predict the senone class.
While the first attempts used speech corpora annotated at
phoneme-level and required no HMM-GMM alignments,
the usage of speech corpora annotated at utterance-level

was restricted by having phoneme-level alignments pro-
duced by intermediary HMM-GMM systems.
The hybrid approach is similar to the traditional HMM-

GMM, given that the GMM is substituted by a neural
network, using the posterior probabilities output by the
last layer. Moreover, the neural network is not trained
from scratch, but on top of the alignments provided by
an already trained HMM-GMM system. This is because
usually the speech corpora are not annotated at phoneme-
level. Consequently, the neural network in HMM-DNN
approaches is used to predicts the senone class based on
the input represented by several frames of feature vectors.

2.3.1 TDNN

Time-Delay Neural Network (TDNN) [32] is a convolu-
tional network which operates on time domain, modeling
the temporal dependencies. This is easier to be paral-
lelized than a recurrent network and it is comparable with
feed-forward DNN in terms of required training time. The
input of each unit in TDNN layers is expanded out spa-
tially in a couple of sequential units from the previous
layer. Thus, the lower layers learn a narrow context, while
the higher layers process activations for a wider temporal
context. The hyper-parameters for a TDNN are repre-
sented by the lengths of the input context of each layer.
In [33] it is proposed a TDNN which uses a subsampling
technique, computing the hidden activations only at some
specific time steps. This method avoids redundancy due
the fact that the large contexts overlap leads to highly cor-
related neighboring activations. It was concluded that a
larger context on the left side is optimal for online decod-
ing. Themodel size and the training time are also reduced.
Therefore, this subsampling mechanism in TDNN net-
works is similar to a convolutional operation which allows
gaps in the convolutional filter.
Because it was desired to compress the network layers, a

factored form of TDNN (TDNN-F) which is derived from
Single Value Decomposition (SVD), was introduced in
[34] as an improvement over TDNN. It supposes training
from a random start and each learned matrix is decom-
posed as a product of two smaller factors, one of them
constrained to be semi-orthogonal. This decomposition is
obtained by a linear bottleneck operation. Thus, weights
compression is achieved, the smaller singular values are
discarded. A matrixM is semi-orthogonal ifMMT = I or
MTM = I.

2.3.2 Convolutional + time-delay neural network
(CNN-TDNN)

This is another variation of network, based on the purely
TDNN approach, before which are added a couple of
stacked convolutional layers. Their main purpose is to
perform a further processing of the acoustic features, act-
ing as a feature processing front-end. These extra layers

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 8 of 30

perform temporal convolutions on the speech features,
reducing their spectral and temporal variability. The con-
volutional layers, by their structure given by local connec-
tivity, weight sharing and pooling, have the property to
annihilate the small variations that appear in the spectral
domain. These variations are induced by both the speaker
and the acoustic environment in which the speech takes
place [35]. There are some reports [36–39] stating that
better results are obtained using CNN-TDNN instead of
simple TDNN networks, but the CNN-TDNN requires a
little more computing power.

2.4 End-to-end ASR systems

This subsection aims to summarize the most common
approaches in end-to-end systems. We provide a brief
overview of the neural networks used for acoustic model-
ing, presenting their main characteristics.

2.4.1 Architectures

End-to-end systems refer to a unitary architecture, capa-
ble to receive raw audio or speech features as input and
it outputs words. Despite a traditional, pipeline system,
all the components as feature extractor, acoustic model
and even sometimes the language model are integrated in
one single network. Specifically, the loss function of the
neural network is set directly at the character level. The
following paragraphs include a review of the most popular
end-to-end architectures, along with some specific details
for each.
Some state-of-the-art acoustic modeling approaches

using neural networks are based on simple stacked con-
volutions [13, 40]. The speech features are received as
network input and they are passed over a series of con-
volutional layers, each one being characterized by the
number of filters and their dimensionality. The loss func-
tion is directly set at the character level facilitating the
output of the networks to be represented by words. Some
well-known architectures based on stacked convolutions
are those presented in [13, 40].
In [41, 42] are presented convolutional architectures

characterized by dense residual connections. The residual
connections work as a bypass, connecting early layers to
later layers. The term dense denotes connections between
each layer to every other layer, similar to a fully-connected
network. In the dense residual networks, all the outputs
from the preceding layers are concatenated in order to
provide the input for the subsequent layers. The total
number of connections is L(L + 1)/2, where L repre-
sents the number of layers, unlike a regular network where
the number of connections is just L, one between each
two consecutive layers. Among the advantages of this
approach are the avoidance of vanishing gradient in very
deep networks, better feature propagation and network
parameters reduction.

The recurrent approaches succeed in modeling long-
range dependencies over temporal sequences. In [43] are
described some variations of recurrent architectures used
for acoustic modeling. The recurrent neural networks
(RNN) are characterized by cyclic connections, the output
from the previous step feeds the input at the current time
step. The Long Short Term Memory (LSTM) networks
are more complex RNN networks. They contain memory
blocks, that in turn contains cells with self-connections,
aiming to conserve the temporal state. Besides the cells,
there are some gating mechanisms, like the input, output
and forget gates, which control the dataflow. Some LSTMs
also have peephole connections [44] between the internal
cells and gates. One of the advantages is that the inter-
nal state of a cell could be inspected even if the output
gate is closed. Another one is represented by the ability to
learn precise and robust timing intervals between relevant
signal events. The bidirectional LSTMs (BLTSMs) are net-
works that process the input in both directions: from the
past to the future and vice versa. It was shown that a two
layer LSTM outperforms a DNN with an order of magni-
tude more parameters. The DNN drawback consists into
the limited temporal modeling. DeepSpeech [45] is a well-
known recurrent-based ASR framework which obtains
competitive results with just few bidirectional layers.
The encoder-decoder architecture [46–48] is a neural

network specialized in sequence to sequence mapping.
Besides its application in speech recognition, is was ini-
tially applied in machine translation and language mod-
eling. Usually, the encoder and the decoder are imple-
mented by recurrent networks, thanks to their ability to
work with time-dependent sequences of data. Both of
them are jointly trained. Basically, as it is described in
[46], the main idea revolves around a sequence of input
data which is passed to the encoder where the fixed-
length context vector is composed. The decoder is auto-
regressive, it consumes the previously decoded symbols as
well as the context vector in order to predict the following
symbol.
Attention comes as an improvement of the encoder-

decoder architecture. It aims to bypass the limitation
of fixed-length encoding vector. Working with long
sequences could be an issue because the neural network
must be able to compress all the information in one vector.
In [49] it is shown that the performance of an encoder-
decoder network decreases as the length of the input
increases. The attention approach encodes the input into
a sequence of vectors and chooses a subset of them dur-
ing the decoding. The decoder performs two operations
simultaneously: aligning and decoding. Each time the net-
work tries to generate a new output symbol, it looks at a
set of positions in the source sequence where the relevant
information is concentrated. The prediction is computed
considering the encoding vectors for these positions as

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 9 of 30

well as the previous predicted symbols. Thus, instead of
having one single encoding for the whole sequence, there
is a corresponding context vector for each output sym-
bol. This is computed as a weighted sum of the encoder
hidden states, where each hidden state hi carries on infor-
mation about the whole sequence, but focusing on the
input frames around the i-th position.
Another encoder-decoder architecture is presented in

[50]. This is an attention-based encoder-decoder, where
the novelty is represented by the encoder, a fully convo-
lutional one, composed by time-depth separable (TDS)
blocks. A TDS block comprises two parts: a 2D con-
volution layer, both in time and features space domain,
followed by two convolutional layers with 1x1 filter,
which work as a fully-connected feed-forward layer. This
approach has the ability to generalize much better than
other convolutional networks, working with a reduced
number of parameters, while the receptive field is kept
large. The decoder is a conventional recurrent-based one,
but having a particularity regarding the training step: the
previous ground-truth is used instead of the real previ-
ous prediction. This technique is called teacher forcing.
The idea behind aims to discard recurrent dependency
mechanisms in order to facilitate parallel computing.

2.4.2 Loss functions
Conventional DNN acoustic models are using a frame-
level objective function to perform training based on
the alignments provided by a HMM-GMM system, com-
monly the cross-entropy (CE) function. The cross-entropy
objective function is described in Eq. 5, where t iterates
over THEAUDIO FILES in the training set, i over the time
frames in each audio file and ŷi represent the labels for
each frame provided by forced-alignment.

FCE(λ) = −
T∑

t=1

I∑

i=1
ŷi(t)log yi(t) (5)

Connectionist Temporal Classification (CTC) [51]
allows to train a network without being required a frame-
level alignment between the speech signal and the tran-
scripts from the training dataset. Standard ASR systems
use a statistic (e.g. GMM) or deep learning (e.g. DNN)
component to predict what is being uttered and a time
consistency component(e.g. HMM or CTC) to handle the
context, the previous and the future frames. The CTC
approach implies a softmax component as a final layer of
the network, in order to provide a distribution of probabil-
ity over all the possible output symbols. The output could
be visualized as a GCTC(θ ;T) graph for a given transcrip-
tion θ over T time frames. Each time frame is defined by
a set of nodes and each node representing a possible out-
put label, given by a probability distribution function ft().
A path π = π1, ...,πn ∈ GCTC(θ ;T) represents a potential

transcription through this graph. A sequence level objec-
tive function, derived frommaximum likelihood, operates
on this distribution aiming to maximize the probability of
the correct symbol:

CTC(θ ,T) = −logadd
T∑

t=1
fπt(x)), (6)

where logadd() is an exponential function applied on a
sum of logarithms, working as an improved version of
max(). Specific to the CTC is the use of an additional
blank symbol (-), which is required to model the non-
phoneme emissions. Given the usual terminology, the task
of determining the labels is called decoding. The triv-
ial approach is the max-decoding or greedy decoding,
which supposes to take the most probable phoneme at
each time step. Because the predicted sequences have
variable length, it is possible for a phoneme to be succes-
sively predicted. The blank label is used to separate the
legit repetitive characters by those that are repeated due
the variable speech rate or to mark the transition from
one character to another. In fact, to obtain the final tran-
script, repeating characters are collapsed and the blank
labels are discarded. A CTC drawback is represented by
the assumption that the output label at a given moment
of time is independent by the previous output labels. This
fact is imposed by the architecture, there is no feedback
loop from the CTC output layer to itself or to the net-
work. However, CTC decoding can be integrated with a
language model, so that the transcription of non-existent
words is avoided. Another approach presented in [52]
consists in a loss function as a joint between CTC and
attention mechanism.
Lattice-Free Maximum Mutual Information (LF-MMI)

objective function is used in chain models [53] to perform
sequence-discriminative training. The traditional MMI
aims to maximize the posterior probability and it is as
follows:

FMMI(λ) =
R∑

r=1
logPλ(Sr|Or)

=
R∑

r=1
log

Pλ(Or|Sr)k∑
(Or|S)kP(S)k

,

(7)

where Sr is the correct transcription of the rth speech
file Or , P(s) is the language model probability for sen-
tence s. The numerator provides the likelihood of data
given correct word sequence (reference alignment), while
the denominator provides the total likelihood of the data
given all possible word sequences, being equivalent to
summing all possible word sequences estimated by the full
acoustic and language models. The numerator encodes
the supervision information and it is specific for each
utterance, while the denominator encodes all possible

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 10 of 30

word sequences and it is identical for all the utterances.
This objective function is optimized by maximizing the
numerator and minimizing the denominator.
Therefore, the chain models are trained from scratch,

without any prealigned data, trying to offer an alternative
solution for CTC and attention mechanisms.The authors
in [53] reported that their efforts to get CTC to beat cross-
entropy were unsuccessful, but some ideas from CTC
could be used in the sequence-discriminative LF-MMI
criterion. CTC and MMI maximizes the conditional log-
likelihood of the correct transcript, but the probabilities
in CTC are locally normalized, while in MMI are globally
normalized. LF-MMI supposes to create the denominator
using a phone-level language model instead of word level
one. This language model is estimated from phone-level
alignments of the training data. Another characteristic of
the chain models is the 3-times smaller output frame rate,
allowing the HMM to be traversable in one transition,
instead of three. The real-time decoding becomes faster as
well.
The Auto Segmentation Criterion (ASG) [13] criterion

was developed as an improvement over CTC. It intro-
duces a dependency between the output symbols, by using
transition probabilities between them. Moreover, there
are a couple of new features of ASG. The output graph
is less complex because there are no blank labels. I was
empirically found that there is no advantage when blank
labels are used to model the garbage [13]. Instead of it,
the repetition of the output symbols is modeled by a rep-
etition character label. Another characteristic is given by
the un-normalized scores of the nodes. It facilitates exter-
nal LM plug-in, which would provide transition scores
between nodes. Also, specific to the ASG is global nor-
malization instead of per-frame normalization, leading to
low confidence for incorrect transcriptions. Therefore, the
score of a given sequence of wordsW is given by:

ASG(W) = logadd
T∑

t=1
f tπt + gπt−1 ,πt , (8)

where f () denotes the probability of an output symbol
at the t time step and g() is the transition probability
between two consecutive symbols.

2.5 Languagemodeling
In this subsection we describe the language modeling
approaches used in the systems we are going to analyze
later. As explained in Section 2.1, the language model is
one of the components of an ASR system, which can be
integrated as a distinct component, and in the end-to-end
systems its role can even be performed by a part of the
neural network.
The role of the language model is to estimate the like-

lihood of a word sequence W = w1, ...,wn to form a

valid sentence. A language model is useful to take deci-
sions when the acousticmodel output is composed by a set
of phonemes which could form multiple alternative sen-
tences. Even these alternatives are very similar from the
acoustic point of view, the LM will choose the one that
makes more sense.

2.5.1 N-gram/Probabilistical LM
The n-gram model provides a statistical view over how
words are combined to form valid sentences. It assumes
that a word depends only on a fixed number of previous
words. The probability of a sequence of words is consid-
ered as a set of probabilities, where the probability of a
given word depends by the preceding words:

p(w) = p(w1,w2, ...,wn)

= p(w1) ∗ p(w2|w1) ∗ p(wn|w1,w2, ...,wn−1).
(9)

Words occurrence or succession probabilities could be
computed by taking into account a large volume of text.
The most common n-gram models are 2-gram and 3-
gram, where a history of one or two words respectively is
required. For instance, the probability of a pair of words
for a 2-gram model is computed as:

p(wj|wi) = count(wi,wj)∑
count(wi,w)

. (10)

The occurrence probability of the words pair (wi,wj) is
given by the number of occurrences of the word wi fol-
lowed by the word wj, divided by the number of occur-
rences of the same word wi, followed by other words.

2.5.2 Neural network based languagemodels
Instead of n-gram models or a feed-forward DNN net-
work which learns from a fixed context, RNNs are capable
to learn also from all the previous words. The recurrent
neural network based language model presented in [54]
is a simple one. It comprises one input layer, one hidden
layer and one output layer. The input at current time step
consists in the current word, w, and the hidden state from
the previous time step. The output layer represents the
probability distribution of the next word given the pre-
vious word the context. Because these algorithms cannot
directly work on text and label encoding (using integers)
could be confusing for the network, inducing the idea of
order or hierarchy, they are using one-hot-encoding (1-
of-k) for words, where k is the number of words from
vocabulary. One-hot-encoding associates a binary vector
to each word in vocabulary.
RNNs are difficult to train using backpropagation due

the vanishing gradient problem. The gradient propagated
back through the network decays or grows exponentially
as context get longer. LSTMs provide an alternative to
avoid this issue, using a different memory cell, while the
rest of the algorithm remains unchanged, being similar

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 11 of 30

with the RNNs. The LSTMs take as input the previous
hidden state and the current input. The cells decide what
to preserve and what to remove from the memory. In [55]
is presented a topology which consists in an input layer,
two hidden layers, where the first one is a projection layer
and the second layer is a recurrent one, using LSTM cells.
The projection layer performs the projection of all words
in the context in a continuous space.
A new type of convolutional network [56], based on

gated linear units (GLU), is able to outperform LSTMs
for the language modeling task, both in terms of accuracy
and implementation, being easier to parallelize and less
complex. This approach performs a convolution operation
over the input aiming to remove the temporal dependen-
cies.
The Transformer-XL [57] network can learn dependen-

cies without constrains regarding the fixed-length con-
text. It captures longer dependencies than simple Trans-
formers or than RNNs, achieving better performances on
short and long sequences and a faster inference time. Its
particularity consists in reusing the hidden states from the
previous segments, instead of computing them each time
for each new segment. These reused states play the role of
a buffer memory for the current segment, linking the seg-
ments in this way and propagating the information over
longer contexts.

2.5.3 Languagemodel integration
In shallow fusion [58, 59], the AM proposes at each time
step a set of possible phones, which are scored by a
weighted sum of scores given by the AM and the LM. The
shallow fusion formula is given by:

ŷ = argmax log(y|x) + λpLM(y), (11)

where the first term is the AM probability and the second
one is the LM probability. This fusion takes place at the
inference time.
Deep fusion [58] is based on concatenation of acous-

tic model and language model hidden states next to each
other. Both models are trained separately and their fusion
is made using a gating mechanism. The output proba-
bility of the next word is given by this model which is
fine tuned to use both of the hidden states. The hidden
layer of the deep output takes as input the hidden state
of the LM in addition to that of the AM. The biggest dis-
advantage with deep fusion is that the AM and the LM
are trained independently. This fact could be an issue in
encoder-decoder models, because the decoder is learn-
ing a language model from the training data labels, which
can be poor compared to the large text corpora used for
LM training. The decoder must overcome this limitation,
being able to incorporate the new language information.

Another issue occurs if the AM and LM are trained on dif-
ferent domain corpora. If they are deep fused, the decoder
will tend to follow the linguistic style learned by the AM.
Cold fusion [60] concept is derived from the deep

fusion, the main difference lies in fact that the end-to-
end acoustic model is trained from scratch together with
a pre-trained LM. During the training process, the AM
learns to use the relevant information from the LM to cor-
rectly map the source sequence to the target sequence. If
there are uncertainties at the decoding step caused by the
AM (noisy speech, out-of-vocabulary words), the fusion
model learns to take advantage of the LM. Cold fusion
uses a different gate for each hidden node of the LM. This
improvement allows the decoder to choose which infor-
mation given by LM fits better at a specific time step.
In [60] was shown that a decoder using cold fusion out-
performs a pure end-to-end attention based system, even
if the last one is using 4x number of parameters. Also,
the training time is speed-up when cold fusion is used.
Domain transfer is easier when cold fusion is used. Only a
small amount of labeled data is required to close the gap
between domains.
In [61] is proposed a novel LM integration approach,

where a pretrained LM should represent a lower layer of
the decoder of an attention-based encoder decoder sys-
tem. Thus, more tight word embeddings to the context are
provided.

2.5.4 Rescoring

The output of an ASR is not a simple word sequence
hypothesis corresponding to the acoustic signal, being
more advantageous to keep more information. This fact
is done by generating a lattice, a graph G(N ,A), where
N represents the nodes and A represents the arches. The
output of the decoding could be structured as a lattice,
where each arch has a specific probability and a path
through the graph is an alternative transcription. The path
with the best probability leads to the best transcription
hypothesis. Lattice rescoring [62, 63] implies process-
ing all the probabilities and replacing them with new
ones provided by a better language model. The difference
between rescoring and shallow fusion is as follows: the
rescoring operation performs over the n-best hypotheses
produced after the beam search, while the shallow fusion
performs a log-linear interpolation between AM and LM
score after each beam search time step.

3 State-of-the-art ASR implementations
The various ASR system architectures presented in the
previous sections differ from many points of view. They
comprise various types of acoustic and language mod-
els, some are based on a multi-component pipeline
structure, while others are end-to-end neural networks,
etc. This leads to systems with fundamentally different

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 12 of 30

complexities, in terms of model size (or number of param-
eters) and activations, which influence directly the mem-
ory load, and in terms of number of operations performed
for transcribing speech, which influences directly the real-
time factor. These are crucial performance figures, which
one must take into account, along with the transcription
quality (measured in word error rate), when choosing the
architecture to be implemented and deployed in embed-
ded applications. Consequently, this section is dedicated
to the comparison of the most popular, modern ASR
implementations in terms of a trade-off between system
complexity and accuracy. To the best of our knowledge,
this is the first comparison of such scale created for
modern automatic speech recognition systems.
The various ASR systems evaluated and compared in

this section are the following:

• Kaldi’s pure-TDNN [64] - a lightweight,
multi-component ASR system that uses a time-delay
neural network for acoustic modeling and an HMM
for sequence modeling;

• Kaldi’s CNN-TDNN [65] - an extension of the
previous system that processes the input features
with 1-D convolutional layers;

• DeepSpeech2 implementation from PaddlePaddle
[66] - an end-to-end bi-directional RNN with
convolutional layers for speech feature processing;

• RETURNN from RWTH [67] - an attention-based
encoder-decoder that outputs word parts;

• Facebook CNN-ASG [68] - a fully convolutional
end-to-end network that uses a CTC-derived criteria,
ASG, being able to output characters;

• Facebook TDS-S2S [69] - an end-to-end
encoder-decoder with time-depth separable
convolutions, trained with sequence-to-sequence
(S2S) attention mechanism;

• Jasper from Nvidia [70] - an end-to-end deep neural
network based on time-delay convolutional
interleaved with fully connected layers and
characterized by residual connections;

• QuartzNet from Nvidia [71] - a Jasper derived
end-to-end deep neural network based on 1D
time-channel separable convolutions.

The systems mentioned above are analyzed and com-
pared from a structural point of view, providing infor-
mation regarding the network input and output type and
dimension or the type, number and size of the component
layers. Based on these values, we compare the networks
in terms of number of parameters, operations and acti-
vations, thus offering insights into how they could be
implemented and deployed in embedded applications and
with what costs.
A fair comparison of the system complexity vs. accu-

racy trade-off can only be made in the context of a
specific speech recognition task, because the ASR sys-
tems are usually adapted (number and size of layers,
size of vocabulary, etc.) to each task. The most popu-
lar speech recognition tasks/ corpora are presented in
Table 3. Benchmarking for English speech recognition is
usually performed on one of these tasks. The table shows
the ASR frameworks that are the subject of our compar-
ison, all providing adapted ASR systems for LibriSpeech
[72], while only three of them also provide adapted sys-
tems for Wall Street Journal (WSJ) [73]. In this context,
we decided to focus the analysis on the LibriSpeech case
study.
Librispeech [72] is one of the most popular freely avail-

able English dataset, presenting a great variety of data,
both through the large number of speakers and the num-
ber of hours composing this speech corpus. It contains
1000 hours of read speech from public domain audio
books, provided by approximately 2400 speakers. This is a
widespread task, most of the well-knownASR frameworks
contain adapted systems for it, being possible to compare
them in terms of WER.

3.1 Kaldi chain model TDNN
This model is part of an implementation for the Lib-
riSpeech task existing in the Kaldi toolkit [64]. It cor-
responds to a multi-component system, consisting of a
TDNN based acoustic model, a phonetic model and a lan-
guage model, all these being the core components of the
pipeline system. This system is a hybrid one, the acous-
tic model consists of a TDNN which jointly work with an
HMM, as presented in Section 2.3. The TDNN network

Table 3 Comparison of the most popular speech datasets used for ASR evaluation

ASR task Speech type Size [h] # of speakers
Framework

K P W R N

LibriSpeech [72] read speech 960 ∼2400 � � � � �
WSJ [73] 80 284 � � �
TED-LIUM2 [74] TED talks 207 1242 � �
Switchboard [75] conversational telephone speech 300 543 � �
Fisher [76] 2742 ∼12400 �
We compare the type of speech and dataset size, expressed in number of hours of speech and number of speakers. The recipes available in various ASR frameworks: K - Kaldi;
P - PaddlePaddle DeepSpeech; W - Wav2Letter; R - RWTH Returnn; N - Nvidia (OpenSeq2Seq & NeMo)

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 13 of 30

outputs the probability that an acoustic signal part corre-
sponds to a subphonetic unit. The HMM manages how
these units can be linked together. The phonetic model
functions as a lookup table that determines to which
word a sequence of phonemes corresponds, while the lan-
guage model estimates the likelihood of a sequence of
words. Optionally, a more complex language model for
rescoring can be used, which improves the initial tran-
scription. Typically, the language model used for decoding
is a probabilistic n-gram of order 2 or 3, while the rescor-
ing operation uses a more complex, higher-order n-gram
(Section 2.5.1) or a RNN-trained model (Section 2.5.2).
Two types of features are used as the input of the

TDNN network: 40-dimensional high-resolution MFCCs
extracted from frames of 25 ms length and 10 ms shift and
100-dimensional i-vectors computed from chunks of 150
consecutive frames, equivalent to 1.5 seconds of speech.
Three consecutive MFCC vectors and the i-vector corre-
sponding to a chunk are concatenated, obtaining a 220-
dimensional feature vector for a frame. The components
are decorrelated by applying Linear Discriminant Analysis
(LDA), without changing the dimensionality of the data.
Therefore, the network input is a 220-dimensional feature
vector (Feature type #1). More details about these features
are illustrated on the left side of Fig. 3.
The network trunk consists of a cascade of 16 fac-

tored time-delay blocks (TDNN-F), preceded by a simple
TDNN block. As it was explained in the last paragraph
from Section 2.3.1, there is a main difference between a
TDNN-F block and a TDNN block; the TDDN-F block
comprises a linear-affine sequence of operations that act
like a bottleneck transforming the 1536-dimensional input
vector into an 160-dimensional intermediary vector and
then back into an 1536-dimensional output vector. This
is based on the matrix decomposition technique and it
is useful for parameter compression. Particular to this
implementation, the TDDN-F block ends with a summa-
tion operation that adds the output of the current process-
ing block to the down-scaled (75%) output of the previous
block: this acts like a residual connection. Therefore, the
TDNN performs 1-D temporal convolution, applying the
operations on the current input vector as well as some
previous and some future input vectors. The contexts dif-
fer from one block to another. The TDNN Blocks 2-4
process the input vectors at time indexes t-1, t, t+1. The
TDNN Block 5 processes only the input vector at time
t. The TDNN Blocks 6-17 process the input vectors at
time indexes t-3, t, t+3. Those blocks are using the sub-
sampling technique: some time-frames are ignored during
the temporal convolutions, the network having in this way
a larger receptive field. An overview of the network is
depicted in the central part of Fig. 3.
It has been empirically proven [77] that the network per-

forms better if it has two output blocks. The first one is

based on cross-entropy, called xent in Kaldi. The other
one is based on the chain loss function, which uses the LF-
MMI criteria. Both of them are explained in Section 2.4.2.
Each one is composed by affine, Rectified Linear Unit
(ReLU), batch normalization and again the affine layers.
They differ by the log-softmax operation applied at the
end of the cross-entropy based block. The training pro-
cess is using both blocks, while the inference only uses the
chain based block, because chain models are trained with
sequence objective function. The output of the network
is 6016-dimensional and it consists in posterior probabil-
ities for the acoustic states, while the output at the entire
system level is given by the size of the vocabulary of the
language model, equal to 200k words in our case. The
output blocks are presented in the left bottom part of
Fig. 3.

3.2 Kaldi chain model CNN-TDNN
This model [65] represent a variation of the previous sim-
ple TDNN model, being also implemented in the Kaldi
toolkit as an approach for the LibriSpeech task. It is part of
a multi-component system, which comprises an acoustic
model, a hybrid one based on TDNN-HMM, a phonetic
model and an n-gram language model. In a similar way,
a more complex n-gram or neural based language model
can be optionally used for rescoring.
In terms of network input features, Mel-filterbanks are

used in this implementation instead of MFCCs. The final
features are organized as amatrix, unlike the previous case
of simple TDNN where the input features are represented
as a vector. Therefore, the input in the CNN-TDNN net-
work is composed of two types of features: 40-dimensional
Mel-filterbanks extracted from frames of 25ms length and
10ms shift and 200-dimensional i-vectors computed from
chunks of 150 consecutive frames. The 40 components of
the currentMel-filterbank vector and the 200 components
of the chunk’s i-vector are organized in a 40x6 matrix of
speech features (Feature type #2). The feature extraction
procedure and the way they are organized are illustrated
in the central part of the left column of Fig. 3.
The neural network component of the acoustic model

is very similar to the previous Kaldi TDNN network, the
main difference is represented by a few CNN layers placed
before the time-delay layers, which act like a front-end
block. Threematrices of speech features (Feature Type #2)
are provided as input for the Conv. Block 1: the features for
the current, previous and next acoustic frames, or, equiv-
alently, a feature volume of 6 x 40 x 3. It uses 64 filters of
size 3x3 to perform time and feature space convolutions
and outputs a 64 x 40 x 1 volume.
The CNN blocks with front-end role are followed by 12

blocks of factored TDNN (TDNN-F). The first TDNN-
F (TDNN-F Block 1) processes only the current time
frame, while the rest of them are performing temporal

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 14 of 30

Fig. 3 Feature types and architectures used in Kaldi-based ASR systems. Feature type #1 (upper left) is used in TDNN models (center) and feature
type #2 (middle left) is used in CNN-TDNNmodels (right). The output blocks (bottom left) that use cross-entropy and chain loss functions are used in
both architectures

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 15 of 30

convolution over the time index t-3, t and t+3. The input
vectors at time indexes t-3 and t are spliced together into
the linear layer, while the input vectors at time indexes
t and t+3 are spliced together into the affine layer. The
entire CNN-TDNN network is depicted on the central
column in Fig. 3.
The output blocks of the CNN-TDNN are identical to

those from the simple TDNN architecture. The neural
network output is represented by 6016-dimensional pos-
terior probabilities of the acoustic states, while the output
of the system is given by the 200k words language model.
The input of the Conv. Block 2 consists of three time-

consecutive volumes as the one output by Conv. Block 1,
which are spliced together to form the 64 x 40 x 3 feature
volume. The second convolutional block applies another
64 filters of size 3x3 to perform time and feature space
convolutions and outputs a 64 x 40 x 1 volume. More
filters are applied in Conv. Blocks 3 – 6, from 128 up
to 256, while the size of the feature volume is kept con-
stant by decreasing the height from 40 to 20 and finally
to 10. The convolutional blocks are providing a 2560-
dimensional output which is passed to the succeeding
time-delay blocks.

3.3 Paddle Paddle implementation of DeepSpeech2
This model [66] represents an implementation of the
DeepSpeech2 [45] algorithm created by PaddlePaddle
(PArallel Distributed Deep LEarning) to address the Lib-
riSpeech ASR task. This is an end-to-end (E2E) system
composed by a single neural network (see Fig. 4) which
processes audio features and provides words at the output,
as described in Section 2.4. There is no need of a phonetic
model and the language model is optional, but it brings
transcription improvements, limiting the occurrence of
non-existent words. This system allows the integration
with a probabilistic n-gram languagemodel by the shallow
fusion method, as explained in Section 2.5.3.
The feature extraction step takes place in a previous

step, outside of the neural network. The signal is win-
dowed and 160-dimensional spectrograms are computed
from a frame of 20 ms length and 10 ms overlap. The
processed chunk has the length equal to 160 frames, 1.6
seconds, corresponding to the time sequence processed at
once by the network.
The network is considered to be recurrent based as

described in Section 2.4.1, but the first layers are convo-
lutional layers, which have more of a preprocessing role
of the signal. Therefore, the first two layers perform both
time and features space convolution. The first layer applies
32 filters of size 41 x 11, with a stride equal to 3 and 2,
respectively a padding equal to 20 and 5, over the 160 x
160 input dimension. The second layer receives the 54 x
81 x 32 output of the previous layer and it performs also
a convolution operation using 32 filters of size 21 x 11. A

stride equal to 1 and 2, respectively a padding of 10 and 5
are used. This layer outputs a volume of 54 x 41 x 32.
The following 3 layers are all bidirectional recurrent

layers. The sequence length is 41, corresponding to the
feature dimensionality after the convolutional transforms.
The input size of the first recurrent layer is 3776, being
equal to the time length after the convolution, 54, by the
number of channels, 32, adding the RNN layer size, 2048.
The input for the other two recurrent layers in 4096, as the
sum of the size of the current RNN layer and the size of
the previous RNN layer. A batch normalization operation
is performed after each layer. The network is trained using
the CTC loss function, explained in detail in Section 2.4.2.
This is more than a regular loss function, because it con-
sists of a distribution probability over the output symbols,
but it also manages how the symbols succeed, from this
point of view having a similar role to HMM.
The output of the network is 30-dimensional, represent-

ing the characters set. If the language model is plugged-in,
the output size of the system becomes 200k and it consists
of the words existing in the model.

3.4 RWTH RETURNN
This model [67] is one of the RWTH RETURNN imple-
mentations for the LibriSpeech task. The system, pre-
sented in detail in [78], is an end-to-end one consisting
in an attention-based encoder-decoder neural network
architecture with recurrent layers. The network gets as
input hand-crafted features and outputs subword parts,
created via byte-pair encoding (BPE) [79]. The final output
is given by the language model, an n-gram or an LSTM-
based (Section 2.5.2), both of them can be integrated by
shallow fusion (Section 2.5.3).
The input is computed on-the-fly, 40-dimensional

MFCC features are extracted using a window of 25 ms
with 10 ms shift, over a sequence of 2 seconds.
The encoder is composed by 6 stacked bidirectional

LSTM layers, having the hidden size equal to 1024. The
input of the first layer is represented by the extracted
features, while for the other layers the input is 2048-
dimensional, as the concatenation of forward and back-
ward of the previous layer. After the forward and back-
ward sublayers, the dropout is applied. The sequence
length decreases due to the pooling operation. Therefore,
the initial sequence length is 200, halving after the layers
with the index 0, 1 and 2.
The output of the LSTM later serves as input for 3 enti-

ties: the encoder context, the inverse fertility factor and
the CTC mechanism. The encoder context represent the
encoder state, the concatenation of the forward and back-
ward hidden states from the 6th LSTM layer, on which was
applied a pooling operation to reduce their size to 1024.
The CTC is used as an additional loss function, in

order to help the convergence. Using some recurrent links,

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 16 of 30

Fig. 4 RWTH RETURNN (left) and PaddlePaddle DeepSpeech2 (right)

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 17 of 30

which take over the previous output embedding of the
decoder (yt), as well as its hidden states (St), the weight
feedback and the energy factors are computed. Based on
these, the attention feedback factor is obtained, which
controls the influence of each state of the encoder in
obtaining each state of the decoder. The readout_in ele-
ment takes as input the output embedding, the decoder
hidden states as well as the encoder context weighted
using the attention mechanism. The result is passed to the
output_prob element, which provides a probability over
the final network output, represented by 10026 subword
parts.
The probabilisticmodel we used is the 4-gramwith 200k

words. Another language model we tried is a two layer
LSTM network, integrated by shallow fusion as a subnet-
work at the inference time. A detailed overview of the
whole system is illustrated in the left side of Fig. 4.

3.5 Facebook CNN-ASG

This model [68] can be found in Wav2Letter toolkit from
Facebook, being specially created to address the Lib-
riSpeech task. The system around it is considered to be
end-to-end and depending on the recipe, it may vary from
the following points of view:

• it can get as input raw audio [80], power spectrum,
MFCCs or Mel-filterbanks;

• it can use a lexicon or it can be lexicon-free [81]; the
lexicon acts like a phonetic model, it consists of a
mapping from words to their representation as a
sequence of tokens, where the tokens are the acoustic
units;

• the system outputs a score over the acoustic units,
which consist in phonemes, graphemes or word
pieces;

• as the output is represented by characters, the system
may work without a language model, or it can be
plugged-in by shallow fusion an n-gram model or a
neural network language model [56], as presented in
Section 2.5.2.

We will refer to the fully convolutional recipe (Conv.
GLU) [68] where the neural network takes as input Mel-
filterbanks, called also Mel-Frequency Spectral Coeffi-
cients (MFSC), described in Section 2.2.1. The output of
the network consists in scores over the characters set.
The system uses a lexicon and an n-gram language model.
Another recipe that is a bit different from the system
point of view, but uses a similar neural network is the
lexicon-free one [82].
Regarding the input of the system, this framework com-

putes features on the fly, prior to running over the neural
network. The input of this network is represented by 40-
dimensionalMel-filterbank features, extracted from audio

frames of 25 ms length and 10 ms shift, processing at once
a sequence of 240 frames, which means 2.4 seconds.
The architecture of this network is fully convolutional,

as explained in Section 2.4.1. This is composed by 17 1D,
time-convolution blocks, each one being characterized
by a weight normalization operation [83], the convolu-
tion itself, whose output is passed to a Gated Linear Unit
(GLU) [56] and finally, the dropout technique is applied.
The filter size increases with a unit from one layer to
another, the first value being 13 and the last 29. The stride
value is always equal to 1. The padding value is also equal
to 1, excepting the first layer, which has a padding equal
to 170. The number of the output channels increases from
one layer to another, the first value is 400, while the last is
1816, where each value is with 10% greater than the pre-
vious. The number of input channels is equal to 40 for
the first block, the following input channels being equal to
half of the number of the previous block output channels,
due to the GLU dimensionality reduction. The GLU per-
forms a element-wise product of the first half of its input
and the other half, after it was passed through the sigmoid
function. After the convolutional blocks, the next layer is a
reorder layer, thus the number of input channels becomes
the number of output channels, being equal to 908.
The output layers are two final linear layers, on which

is applied weight normalization, as well the GLU and the
dropout mechanism for the second last. They transform
the number of input channels from 908 to 1816 output
channels, respectively from 908 to 30, which is the out-
put size of the network, the number of classes, where each
class correspond to a character. The final system’s output
is 200k words, as the number of unique words from the
n-gram language model. Therefore, the network is trained
to output letters, this thing being possible due the Auto-
Segmentation Criterion (ASG) training criteria, which is
an improvement over CTC, both being largely explained
in Section 2.4.2. Details of the whole architecture are
shown in the left side of Fig. 5.

3.6 Facebook TDS-S2S

This model [69] is another Facebook end-to-end approach
for the LibriSpeech task, implemented in Wav2Letter
framework. Similar to the Facebook CNN-ASG system,
the system is composed by a single neural network, a
lexicon and it supports a plugged-in language model of
the same types, convolutional [56] or n-gram, but in our
analysis we considered the second one.
The input of the system is identical with that from the

Facebook CNN-ASG approach: 80-dimensional filterbank
vectors extracted on-the-fly from audio frames of 25 ms
length and 10ms shift excepting the size of the filterbanks,
which is equal to 80 in this case. The sequence length is
240 frames, equivalent to 2.4 seconds processed at once.

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 18 of 30

Fig. 5 Facebook Wav2Letter networks: the fully convolutional architecture with ASG loss function (left) and the encoder-decoder with time-depth
separable (TDS) blocks (right)

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 19 of 30

The network is a sequence-to-sequence attention based
encoder-decoder. The encoder is represented by a time-
depth separable (TDS) convolutional neural network,
described in Section 2.4.1. The decoder is a simple recur-
rent layer, based on Gated Recurrent Units (GRU) [49].
This is a recurrent cell, similar to the LSTM, but with
only 3 gates, missing the output gate. The convolutional
encoder has an advantage over the recurrent approach,
because of the ease with it can be parallelized.
The encoder architecture comprises 11 TDS blocks and

3 interleaved, sub-sampling, 2D convolutional layers: one
before the 1st TDS block and the others before the 3rd,
respectively the 6th TDS block. The input and the output
of each 2D convolution have the shape T x w x c, where
T is the time length, w is the feature length and c is the
number of channels.
In the time domain, these convolutional layers are per-

forming a sub-sampling operation, halving the sequence
length after each of them, due the stride equal to 2. The
total sub-sampling factor is 8. The filter size is always 21,
while the padding has the value equal to 10. In the fea-
ture domain, the features size remains all the time equal
to 80, because the convolution uses a filter and a stride
both equal to 1, while the padding is 0. At the same time,
each sub-sampling brings an output channel increase, due
to the time compression. They have values equal to 10, 14
and 18.
Each TDS block is composed by a 2D convolution, over

time and features space, similar to the one previously
described, but without performing a sub-sampling in time
domain. It is followed by a ReLU layer as well as a layer
applying a normalization technique. The TDS block con-
tains also 2 convolutional layers with 1x1 kernel, acting
like a fully connected layer. These layers are separated
by a ReLU non-linearity in between. After the last one is
applied a layer normalization. They take an input of shape
T x 1 x wc, resulting a same size output. All the time the
number of input and output channels, the filters length
and the stride values are equal to 1, while the paddings are
0.
After the last TDS block, a reorder layer interchanges

the time and features dimensions. This is followed by a
linear layer, which takes an 1440-dimensional input and
provides an 1024-dimensional output. The output of the
encoder is represented by word embeddings.
The GRU decoder has the hidden size equal to 512 and

it takes the 1024-dimensional output of the encoder. It has
integrated the attention mechanism which performs the
alignment. The objective function is a simple log proba-
bility over the words sequence. Finally, the network is able
to classify over almost 10k word parts, representing the
output token set. As in the previous cases, the use of a
language model will constrain the output to its vocabulary

size, respectively 200k words. The architecture and its
component blocks are illustrated on the right side of Fig. 5.

3.7 Nvidia Jasper
Jasper [70] is an end-to-end implementation in
OpenSeq2Seq toolkit fromNvidia, created as an approach
for the LibriSpeech task. The system comprises a single
neural network, without the need of a phonetic model. It
takes preprocessed features as input and provides charac-
ter at the output. The framework provides the possibility
of integration with a probabilistic or a Transformer-XL
neural network language model [57], as mentioned in
Section 2.5.2.
The input of the network is represented by 64-

dimensional log-filterbanks, extracted using a 20 ms
frame length with 10 ms shift, while the sequence length
processed at a time is 160 frames, equivalent to 1.6 sec-
onds.
This network is based on a fully 1D convolutional

architecture, which uses deep residual connections. They
works as a bypass over the convolutional blocks, avoiding
the vanishing gradient problem. The convolutions are only
in the time-domain, being similar to a time-delay network.
The architecture is a 10x5 Jasper network, composed of

10 blocks, each one having 5 sub-blocks. Each sub-block
performs 1D convolution, batch normalization, ReLU and
dropout. The convolution is applied on time domain,
using a filter having the same value for two consecutive
blocks, but whose size increases, having in turn values of
11, 13, 17, 21, 25. The stride always has a value of 1, and
the padding is set so that the length of the output sequence
matches the length of the input sequence. All sub-blocks
in a block have the same number of the output channels,
this number being the same for two consecutive blocks,
but it grows with the depth of the network, having values
of 256, 384, 512, 640 and 768. The residual connections
are represented by 1x1 convolutions followed by batch
normalization. They link the input of each sub-block to
the output of the block. Therefore, there are 5 residual
connections in each block.
The network starts with a pure convolutional layer and

it ends with two others. The first one learns 256 chan-
nels from 1 input channel, while the last two learn 896
channels from 768 and 1024 from 896. The last layer, a
fully-connected layer, performs a 1x1 convolution, where
the number of the output channels is 28. This number cor-
responds to the characters set, over which is provided a
probability distribution. Therefore, the network is trained
using the CTC criteria, making possible a character based
output of the network. The final output of the system is
given by the language model, the same 4-gram with 200k
words was used in our experiments.
A new optimizer, called NovoGrad [84], is used in this

work. This is similar to Adam, but it computes the second

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 20 of 30

moments per layer, instead of per weight. It helps the net-
work to be more stable and the memory consumption is
halved, compared to Adam. The entire system is depicted
in the let side of Fig. 6.

3.8 Nvidia QuartzNet
QuartzNet [85] is an end-to-end implementation in the
NeMo toolkit from Nvidia, designed as a more efficient

variant of Jasper in terms number of parameters and
operations. As with Jasper, the system comprises a single
neural network that takes preprocessed features as input
and provides character as output, and integration with
either a probabilistic or a neural network language model
is supported.
The input of the network is represented by 64-

dimensional log-filterbanks, extracted using a 20 ms

Fig. 6 Nvidia time convolutional networks: Jasper with dense residual blocks (left) and QuartzNet with time-channel separable residual blocks (right)

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 21 of 30

frame length with 10 ms shift, while the sequence length
processed at a time is 160 frames, equivalent to 1.6 sec-
onds.
This network is based on a fully 1D convolutional archi-

tecture with residual connections. The main difference
with Jasper is the introduction of time-channel separable
convolutions, a variation of time-depth separable convo-
lution described earlier in Section 2.4.1.
The architecture we consider is the largest and most

accurate variant presented in [85], a 15x5 QuartzNet net-
work.

4 ASR comparison and evaluation. Case study on
LibriSpeech

In this section, the implementations presented above,
which are specific for the LibriSpeech ASR task, are now
evaluated and compared in terms of accuracy and hard-
ware requirements.
These were first analyzed at the system level, and then

especially at the neural network component level. Both
Kaldi based implementations are multi-component sys-
tems, while the other implementations are end-to-end
systems. In the first case, the acoustic model, the phonetic
dictionary the language model are different components
that work together as a system. The acoustic model is
a hybrid: time-delay neural network (TDNN) + Hidden
MarkovModel (HMM). In the second case, a single neural
network performs the phonetic and the linguistic mod-
eling, in addition to the acoustic modeling. While in the
multi-component systems, the decoding language model
is mandatory and only the rescoring language model
being optional, in the end-to-end systems also the decod-
ing language model is optional. All the implementations
analyzed and tested by us use different hand-crafted fea-
tures as input. The Kaldi based implementations are the
only ones using a combination of two kind of features,
MFCCs and i-vectors, while the others are using a single
type of features. From the point of view of the network
architectures, different variations of the convolution and
recurrent networks are used. Multi-component systems
use cross-entropy or chain loss objective functions, based
on the LF-MMI cost function, while end-to-end systems
use more complex mechanisms: sequence to sequence
attention, CTC or ASG. They work as loss functions,
but also as a HMM, performing the task of aligning the
sequences. In terms of output, the neural networks in
hybrid approaches are providing posterior probabilities of
phonetic units, while the other networks output charac-
ters or word parts. At the system level, all systems were
used in combination with a probabilistic, 4-gram language
model, with a vocabulary of 200k words, this value repre-
senting the final output size of the system. A summary of
the characteristics of each architecture can be found in the
Table 4.

4.1 Evaluation of model complexity
The purpose of the complexity assessment is to know
which of the studied architectures are suitable for embed-
ded systems. In an embedded system that is constrained
by computational power andmemory, an ASR that has few
operations, activations and parameters can be integrated.
We further describe how we performed the complexity
computation. Therefore, the worst case scenario is consid-
ered, when all the parameters of the network were kept in
memory throughout the inference.
To determine the complexity of each algorithm (model

size, number of operations and activations), several oper-
ations were performed: (i) the source code was analyzed,
(ii) the log files were inspected at the time of inference and
(iii) the inference was run step by step in debugger mode.
We summarized the information about each layer, such as
its type, the input and output dimension, as well as other
layer specific additional details. Based on these, we calcu-
lated the complexity corresponding to each layer. Table 5
presents the formulas used to perform these calculations.
The number of parameters represents the number of

weights learned by the network. In fully connected layers,
this is obtained as the product of the input size and the
output size of the layer. Time-delay layers are computed
similarly, whereby this product being further multiplied
by the context size, representing the number of howmany
vectors at different time frames are considered. In convo-
lutional layers, the number of parameters is given by the
multiplication between the filter size (which can be uni-
dimensional or bidimensional) and the number of input
and output filters. In the recurrent layers, we used a mul-
tiplication formula of four factors. The first factor is the
sum between the input size (the features size or the output
of the previous size) and the size of the actual recurrent
layer. The second factor is the output size of the layer,
usually being equal to the size of the recurrent layer. The
number of gates depends on the recurrent cell type: 1 for
RNN, 3 for GRU, 4 for LSTM. Finally, the fourth factor has
the value equal to 1 or 2, indicating whether the layer is
unidirectional or bidirectional.
The multiply-accumulate operation (MAC) is defined

as the product of two numbers, which is added to an
accumulator. In our context, this represents the matrix
multiplications that take place in neural networks. The
formula is similar to the one used in the calculation of
the parameters, in addition being multiplied by the fea-
ture vector size and the temporal length of the sequence
processed by the network.
The total number of operations (Ops) is equal to twice

the number of MACs, because each of them involves a
multiplication operation and a summation operation.
The number of activations represent the number of

outputs of each layer. In fully connected and time-delay
layers, this is obtained as the output size multiplied by

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 22 of 30

Ta
b
le

4
C
om

pa
ris
on

of
A
SR

sy
st
em

s

A
SR

sy
st
em

K
al
d
iT
D
N
N

K
al
d
i

C
N
N
-T
D
N
N

Pa
d
d
le
Pa

d
d
le

D
ee

p
-

Sp
ee

ch
2

Fa
ce
b
oo

k
C
N
N
-A
SG

Fa
ce
b
oo

k
TD

S-
S2

S
RW

TH
Re

tu
rn
n

N
vi
d
ia
Ja
sp

er
N
vi
d
ia

Q
ua

rt
zN

et

Sy
st
em

ty
pe

H
M
M
-b
as
ed

H
M
M
-b
as
ed

E2
E
N
N

E2
E
N
N

E2
E
N
N

E2
E
N
N

E2
E
N
N

E2
E
N
N

M
ul
ti-
co
m
po

ne
nt

vs
.s
in
gl
e
N
N

A
M
(N
N
)+

A
M
(N
N
)+

Si
ng

le
N
N

Si
ng

le
N
N

Si
ng

le
N
N

Si
ng

le
N
N
+

Si
ng

le
N
N

Si
ng

le
N
N

PD
+

PD
+

BP
E
en

co
di
ng

lis
t

LM
LM

+
[O
p.
LM

re
sc
r.]

+
[O
p.
LM

re
sc
r.]

+
[O
p.
LM

]
+
[O
p.
LM

]
+
[O
p.
LM

]
+
[O
p.
LM

]
+
[O
p.
LM

]
+
[O
p.
LM

]

Sp
ee
ch

fe
at
ur
es

3
fra

m
es

x
40

M
FC

C
s
+

10
0
i-v
ec
to
rs

1
fra

m
e
x

40
fb
an
ks

+
20
0
i-v
ec
to
rs

16
0
fra

m
es

x
16
0
lo
g-
sp
ec
tr
og

ra
m
s

24
0
fra

m
es

x
40

M
el
-f
ba

nk
s

24
0
fra

m
es

x
80

M
el
-f
ba

nk
s

20
0
fra

m
es

x
40

M
FC

C
16
0
fra

m
es

x
64

Lo
g-
fb
an
ks

16
0
fra

m
es

x
64

M
el
-

sp
ec
tr
og

ra
m
s

N
N
ar
ch
ite

ct
ur
e

Ti
m
e
de

la
y

C
on

v.
+

Ti
m
e
de

la
y

C
on

v.
+

Bi
-R
N
N

C
on

v.
+

G
LU

TD
S-
G
RU

En
c.
-D

ec
.

LS
TM

En
c.
-D

ec
.

+
A
tt
en

tio
n

Ti
m
e
de

la
y

Ti
m
e-
ch
an
ne

l
se
pa

ra
bl
e
co
nv
.

La
ye
rs

1
x
TD

N
N

16
x
TD

N
N
-F

6
x
C
N
N

12
x
TD

N
N
-F

2
x
C
N
N

2
x
Bi
-R
N
N

17
x
C
N
N

1
x
G
LU

1
x
C
N
N
+
2
x
TD

S
1
x
C
N
N
+
3
x
TD

S
1
x
C
N
N
+
6
x
TD

S
1
x
G
RU

6
x
LS
TM

1
x
A
tt
en

tio
n

1
x
C
N
N

10
x
D
en

se
re
si
d-

ua
l

3
*
C
N
N

1
x
C
N
N

15
x
TC

S
C
on

v.
2
x
C
N
N

1
x
1
co
nv
.

O
ut
pu

t
A
M
:6
k
po

st
er
io
rs

N
N
:3
0
ch
ar
s

N
N
:1
0k

w
or
d
pa

rt
s

N
N
:2
8
ch
ar
ac
te
rs

+
LM

:2
00
k
w
or
ds

N
N
:*

w
or
ds

N
N
:*

w
or
ds

N
N
:*

w
or
ds

+
LM

:2
00
k
w
or
ds

+
LM

:2
00
k
w
or
ds

+
LM

:2
00
k
w
or
ds

Lo
ss
fu
nc
tio

n
LF
-M

M
I+

C
E

C
TC

A
SG

S2
S
A
tt
en

tio
n

S2
S

A
tt
en

tio
n

+
C
TC

C
TC

M
od

el
si
ze
[∗1

06
]

20
18

49
20
8

38
18
7

33
3

18
.8

O
pe

ra
tio

ns
pe

rf
ra
m
e
[∗1

06
]

41
63

10
5

22
k

15
12
5

42
k

1.
8k

A
ct
iv
at
io
ns

pe
rf
ra
m
e
[∗1

03
]

44
51

13
1k

9
38
k

3k
3.
5k

Th
e
sy
st
em

s
ar
e
co
m
pa

re
d
in
te
rm

s
of

(i)
ty
pe

:h
yb
rid

,H
M
M
-b
as
ed

,v
er
su
s
en

d-
to
-e
nd

ne
ur
al
ne

tw
or
k
(E
2E

N
N
),
(ii
)c
om

po
ne

nt
ty
pe

s:
m
ul
ti-
co
m
po

ne
nt

ve
rs
us

si
ng

le
ne

ur
al
ne

tw
or
k
w
ith

ad
di
tio

na
l,
op

tio
na
ll
an
gu

ag
e
m
od

el
,(
iii
)

sp
ee
ch

fe
at
ur
es
,(
iv
)n

eu
ra
ln
et
w
or
k
ar
ch
ite

ct
ur
e,
in
cl
ud

in
g
th
e
lo
ss
fu
nc
tio

n,
(v
)o

ut
pu

ts
iz
e
an
d
ty
pe

,a
nd

(v
i)
m
od

el
co
m
pl
ex
ity
,e
xp
re
ss
ed

in
te
rm

s
of

m
od

el
si
ze
,n
um

be
ro

fa
ct
iv
at
io
ns

an
d
nu

m
be

ro
fo

pe
ra
tio

ns
re
qu

ire
d
to

pr
oc
es
s

on
e
fra

m
e
of

sp
ee
ch
.E
ac
h
sy
st
em

is
de

sc
rib

ed
in
te
rm

s
of

ar
ch
ite

ct
ur
e,
co
m
pl
ex
ity

an
d
ha
rd
w
ar
e
re
qu

ire
m
en

ts
A
bb

re
vi
at
io
ns

in
th
e
ta
bl
e
ar
e
th
e
fo
llo
w
in
g:
AM

A
co
us
tic

M
od

el
,A
SG

A
ut
o
Se
gm

en
ta
tio

n
C
rit
er
io
n,
AS
R
A
ut
om

at
ic
Sp

ee
ch

Re
co
gn

iti
on

,B
PE

By
te
-p
ai
re
nc
od

in
g,
CE

C
ro
ss
-e
nt
ro
py
,C
on

v.
C
on

vo
lu
tio

na
l,
CN

N
C
on

vo
lu
tio

na
lN

eu
ra
l

N
et
w
or
k,
CT
C
C
on

ne
ct
io
ni
st
Te
m
po

ra
lC

la
ss
ifi
ca
tio

n,
D
ec
.D

ec
od

er
,E
2E

En
d-
to
-E
nd

,E
nc
.E
nc
od

er
,G
LU

G
at
ed

Li
ne

ar
U
ni
t,
G
RU

G
at
ed

Re
cu
rr
en

tU
ni
t,
H
M
M
H
id
de

n
M
ar
ko
v
M
od

el
,L
F-
M
M
IL
at
tic
e-
Fr
ee

M
ax
im

um
M
ut
ua
lI
nf
or
m
at
io
n,
LM

La
ng

ua
ge

M
od

el
,L
ST
M
Lo
ng

-S
ho

rt
Te
rm

M
em

or
y,
M
FC
C
M
el
-F
re
qu

en
cy

C
ep

st
ra
lC

oe
ffi
ci
en

ts
,N

N
N
eu

ra
lN

et
w
or
k,
O
O
V
O
ut
-o
f-
vo
ca
bu

la
ry
,O

p.
O
pt
io
na
l,
PD

Ph
on

et
ic
M
od

el
,r
es
cr
.r
es
co
rin

g,
RN

N
Re
cu
rr
en

tN
eu

ra
lN

et
w
or
k,
RW

TH
Rh

ei
ni
sc
h-
W
es
tf
äl
is
ch
e
Te
ch
ni
sc
he

H
oc
hs
ch
ul
e
A
ac
he

n
(A
ac
he

n
U
ni
ve
rs
ity
),
S2
S
Se
qu

en
ce
-t
o-
Se
qu

en
ce
,T
D
N
N
Ti
m
e-
D
el
ay

N
eu

ra
lN

et
w
or
k,
TD

N
N
-F
Fa
ct
or
ed

Ti
m
e-
D
el
ay

N
eu

ra
lN

et
w
or
k,
TD

S
Ti
m
e-
D
ep

th
Se
pa

ra
bl
e

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 23 of 30

Table 5 Formulas used to calculate the complexity of the networks

Network complexity Formula

Parameters (model size) in fully connected layers input size ∗ output size + bias

Parameters (model size) in time-delay layers (input size ∗ output size + bias) ∗ context size

Parameters (model size) in convolutional layers (filter size ∗ number of input filters + bias) ∗ number of output filters

Parameters (model size) in recurrent layers (input size + recurrent layer size) ∗ output size ∗ number of gates ∗ directionality factor

Multiply-accumulate operations (MACs) parameters ∗ features vector length ∗ sequence length in time

Operations (Ops) MACs ∗ 2

Activations in fully connected layers and time-delay layers output size ∗ output sequence length

Activations in convolutional layers output size ∗ number of output filters ∗ output sequence length

Activations in recurrent layers recurrent layer size ∗ output sequence length ∗ directionality factor

the output sequence length in time. In the case of convo-
lutional layers, the formula is similar, with the difference
that the out size could be unidimensional of bidimen-
sional, multiplied also by the number of output filters. The
activations in the recurrent layers are obtained by multi-
plying the size of the recurrent layer, equal to the output
size, the temporal sequence length and the directionality
factor, being equal to 1 or 2.

4.2 Comparison of ASR systems in terms of model
complexity

The size of the various models described in the previ-
ous section varies between tens of millions (18 M for
Kaldi CNN-TNN and Nvidia QuartzNet) and hundreds of
millions (333 M for Nvidia Jasper) of parameters.
Kaldi TDNNs involve learning a smaller number of

weights. This is thanks to the medium number of lay-
ers (17 and 18), as well as the constant dimensions of the
inputs and outputs of the layers throughout the entire net-
work. The time-channel separable convolutions in Nvidia
QuartzNet are also leading to a small number of parame-
ters.
Although about double than Nvidia QuartzNet and

Kaldi-based systems, PaddlePaddle’s DeepSpeech2 imple-
mentation and the TDS-S2S from Facebook are econom-
ical in terms of learnable parameters. For DeepSpeech2,
the reduced number of layers in the encoder (2 con-
volutional and 3 recurrent), as well as the size (2048)
and type of the recurrent ones (without gating mecha-
nisms), directly influence the number of parameters. In
the case of the second one, the number of filters varies
between 10 and 18 during all the 11 TDS blocks from the
encoder, while the size of the filters remains constant. The
convolutions are interleaved with fully connected layers.
The recurrent encoder-decoder with attention in

RWTH RETURNN is among the models with a large
number of parameters (187 M). This is given by the 6
recurrent bidirectional layers in the encoder, each hav-
ing the size of 1024. More than that, the recurrent cells

are LSTMs and each of the 4 characteristic gates implies
additional parameters. Also, a contribution in this regard
is provided by all the dependencies between the compo-
nents of the attention mechanism, as well as the recurrent
structure of the decoder.
The Facebook CNN-ASG implementation has a large

number of parameters. Essential is the large number of fil-
ters, between 400 and 1816, which steadily grows along
the 17 time-convolutional blocks. The dimensions of the
filters have the same increasing character from layer to
layer, the smallest having length of 13, and the largest, 29.
The most expensive implementation in terms of model

size is, by far, Nvidia Jasper. Although this is also a time-
delay network, the large number of parameters is given
by the depth of the network. There are 10 dense resid-
ual blocks and 4 simple convolutional layers, resulting a
total of 54 layers and 50 residual connections. Each block
in turn consist of 5 repetitive convolutional sub-blocks.
Also, the number of filters used is very high, gradually
increasing from 256 to 1024.
From the point of view of the number of operations,

these were scaled at frame level and they are up to the
giga-order. This is somewhat correlated with the number
of parameters: a large number of parameters leads to a
large number of operations and vice versa. The computa-
tion of the number of operations is crucially influenced by
the temporal length of the sequence, taking into account
that the network does not process all the data at once,
but sequences with a certain length. Because the networks
process input sequences of different durations, the num-
ber of operations has been scaled, so that the data corre-
sponds to the processing of a single frame, and the results
are comparable. The fewest operations are required in the
Facebook TDS-S2S implementation: the sequence length
decreases with advancement towards the upper layers of
the network. The same thing happens in other convo-
lutional implementations, such as in the convolutional
layers of DeepSpeech2. The recurrent layers usually retain
the same temporal length of the sequence. An exception

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 24 of 30

occurs in the recurrent layers from RWTH RETURNN
implementation. A pooling operation with a factor of 2 is
applied, halving the size of the temporal sequence after
each one of the 3 recurrent layers at the beginning of
the network. QuartzNet performs operations that are one
order of magnitude larger than in the case of the previ-
ous architectures. The number of operations is quite high
in the Facebook CNN-ASG fully convolutional algorithm.
Although the temporal length of the sequence decreases
to the upper layers of the network, this is slightly higher in
comparison with the other algorithms.
By far most operations are involved in Jasper imple-

mentation from Nvidia. The difference is up to 3 orders
of magnitude compared to the other networks. The time
sequence is kept constant, with the help of padding. Also,
the depth of the network plays an important role.
From the point of view of the number of activations,

they represent the total dimension of the layers’ out-
puts of each network. These are of the order of millions,
the least activations are found in the Facebook TDS-S2S
implementation, followed closely by PaddlePaddle Deep-
Speech2 implementation, due to the small size of the
network, while the most activations are found in the
implementations from Nvidia.
To summarize this analysis, we can certainly conclude

that Nvidia Jasper is the most complex model: largest
number of parameters and largest number of operations
needed to process a frame of speech. Following closely are
the recurrent encoder-decoder from RWTH and the fully
convolutional CNN-ASG model from Facebook. With
similar model sizes (187M vs. 208M), the first requires
significantly more memory to store the 38M activations
per frame, while the latter requires significantly more pro-
cessing power to perform the 22M operations per frame.
QuartzNet has a small number of parameters, comparable

to Kaldi-based architectures, but in terms of memory it
has a medium load, due to the high number of activa-
tions. The number of operations is also high, but lower
than in the case of Nvidia Jasper or Facebook CNN-ASG
architectures.
On the other end, Kaldi’s implementations are the light-

est models, with only around 20M parameters to be stored
in memory, and fastest models, with around 40M - 60M
operations to be performed per each speech frame. Face-
book TDS-S2S model is also following closely, with a
slightly larger model size to put pressure on the sys-
tem’s memory, while requiring three to four times less
processing power to process one speech frame.

4.3 Comparison of ASR systems in terms of performance
The previous sections presented in detail the ASRmodels.
We described the work flow and the various compo-
nents of the systems, emphasizing the complexities of
the systems in terms of memory and processing power
requirements. The current section aims to analyze the
performance of the ASR systems.
The performance evaluation is conducted in terms of

word error rate (WER [%]) at system level for each imple-
mentation. This is calculated as the total number of tran-
scription errors (insertions, substitutions and deletions),
relative to the total number of words in the groundtruth.
The error rates presented in Table 6 are either reported
by the authors in scientific papers or provided in technical
reports on the frameworks repositories.
All the models presented in Table 6 were trained on the

training subsets in LibriSpeech, comprising a total of 960
hours of speech (see Table 7). Some ASR systems are able
to produce high-quality transcriptions without the need
for an additional language model. Therefore, we present
results in two scenarios:

Table 6 Comparison of ASR systems in term of performance

ASR system

WER[%]

without LM n-gram LM

test-clean test-other test-clean test-other

Kaldi TDNN [64] - - 3.85 9.57

Kaldi CNN-TDNN [65] - - 3.87 9.42

PaddlePaddle DeepSpeech2 [66] 10.70 30.00 6.03 20.29

RWTH Returnn [67] 4.71 15.17 4.67 15.16

Facebook CNN-ASG [68] - - 4.82 14.54

Facebook TDS-S2S [69] 5.36 15.64 4.21 11.87

Nvidia Jasper [70] 3.86 11.93 3.19 9.03

Nvidia QuartzNet [71] 3.90 11.28 2.98 8.38

Performance is expressed in terms of the word error rate (lower is better). The evaluation is performed on two LibriSpeech subsets: test-clean and test-other. For the
frameworks which allow this, the evaluation is performed in two scenarios: with or without an external language model

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 25 of 30

Table 7 Librispeech corpus: the various training and evaluation subsets and their size

Purpose Set Size [h]

Training train-clean-100 100

train-clean-360 360

train-other-500 500

Evaluation test-clean 5.4

test-other 5.1

• the end-to-end neural network used solely, without
an additional language model for rescoring (left side
of Table 6) and

• the full ASR system used in conjunction with an
external language model: a probabilistic non-pruned
4-gram (fglarge) [86] (right side of Table 6).

Note that Facebook implementations also work in the
absence of a language model, but the results for this
scenario were not reported so far.
The evaluation is performed on the two LibriSpeech

test datasets: test-clean, which comprises clean speech,
and test-other, which comprises speech recorded in more
challenging acoustic environments (see Table 7).
The first conclusion that can be drawn is that the

complex models (RWTH RETURNN and Nvidia Jasper)
obtain similar results regardless of whether an external
language model is used or not. By contrast, Facebook
TDS-S2S and PaddlePaddle DeepSpeech2, which also
have the ability to work without an external LM, perform
poorly in this situation.
The best results are obtained with Nvidia Quartznet,

2,98% WER on clean speech and 8.38% on non-clean
speech. They are closely followed by the Nvidia Jasper
and Kaldi based systems. The systems from Facebook
and RWTH RETURNN follow in this hierarchy, while
PaddlePaddle DeepSpeech2 is at the end of this ranking.

4.4 Trade-offs between ASR performance and hardware
requirements

This subsection concludes the evaluation section by dis-
cussing the various trade-offs between ASR system per-
formance and hardware requirements for the various sys-
tems analyzed. While in previous sections we compared
the ASR systems with respect to model complexity and
performance separately, we are now interested to see how
the model complexities translate to hardware require-
ments. Moreover, it is important to understand if stronger
hardware constraints lead to improved ASR accuracy or
not. Finally, this analysis should pinpoint the ASR sys-
tems that meet the requirements for embedded speech
applications.
Based on the data in Table 4, we estimated the memory

requirements for each ASR system, by making the follow-
ing assumptions: (i) the model parameters and activations

that need to be stored in the memory are 4B numbers and
(ii) all ASR system need to store in thememory themodels
and at least the network activations required to process 1
second of speech. The memory load results are presented
in Table 8.
In Table 8 we also present the required throughput of

the hardware system. The throughput is the number of
operations per second that the hardware should be able
to perform in order to process speech data in real time
(i.e. process one second of speech in one second). Finally,
for the sake of simplicity, we only express the ASR per-
formance in terms of the WER obtained on the most
popular LibriSpeech evaluation scenario: the ASR uses an
external LM for language rescoring and the evaluation
is performed on text-clean (i.e. the subset that contains
speech recorded in clean acoustic environments).
The data shows that RWTH RETURNN, Nvidia Jasper,

Nvidia QuartzNet and Facebook CNN-ASG are pro-
hibitive with respect to memory load. They require
between 14x and 235x more memory than the lightest
system (Kaldi CNN-TDNN). On the opposite side, Kaldi-
based systems, PaddlePaddle DeepSpeech2 and Facebook
TDS-S2S require similar amounts of memory: between
100 and 200 MB1.
The trade-off between ASR performance and memory

requirements is presented as a trade-off diagram in Fig. 7
(left). AlthoughNvidia QuartzNet requires a large amount
of memory, it rests on the Pareto front thanks to its low
WER (high performance). Kaldi-based systems are both
on the Pareto front because they dominate each other (i.e.
CNN-TDNN is better in terms performance, and TDNN
is better in terms of memory requirements).
With regard to computational power requirements, the

data clearly shows that Nvidia Jasper and Facebook CNN-
ASG are, again, prohibitive. They make between 1400x
and 2800x more operations than the fastest system (Face-
book TDS-S2S). Facebook TDS-S2S is also significantly
faster (2.7x) than its successor (i.e. Kaldi TDNN) and the
subsequent systems.
The trade-off between ASR performance and memory

requirements is presented as a trade-off diagram in Fig. 7

1This is only the amount of memory required to load the neural model and
store all the activations of the network for processing 1 second of speech.
More memory might be needed for other components, such as the language
model etc.

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 26 of 30

Table 8 ASR performance vs. hardware requirements trade-off

ASR system
Performance Hardware requirements

System on Pareto frontier
WER[%] Memory [MB] Throughput [GOPS]

Kaldi TDNN 3.85 106 4.1 �
Kaldi CNN-TDNN 3.87 103 6.3 �
Paddle Paddle DeepSpeech2 6.03 204 10.5 ✗

RWTH Returnn 4.67 23548 12.5 ✗

Facebook CNN-ASG 4.82 1432 2200 ✗

Facebook TDS-S2S 4.21 157 1.5 �
Nvidia Jasper 3.19 3132 4200 ✗

Nvidia QuartzNet 2.98 2169 180 �
Performance is expressed in terms of the word error rate obtained on LibriSpeech test-clean dataset (lower is better). Hardware requirements are expressed in terms of
memory load, in Mega bytes (MB), and minimum throughput, in Giga operations per second (GOPS). Note that for memory load we only took into account the amount
needed to load the neural model and store all the activations of the network for processing 1 second of speech. More memory might be needed for other components, such
as the language model etc. For throughput we only considered the operations required to pass the speech through the network. More operations might be needed for other
processes, such as language rescoring etc

(right). Nvidia QuartzNet and Facebook TDS-S2S are
extremes on the Pareto front: the first has the best per-
formance, while the latter requires the least amount of
operations to process on second of speech. As a trade-off
between the two, Kaldi TDNN is also on the Pareto front:
it is significantly faster than Nvidia QuartzNet and more
accurate than Facebook TDS-S2S.
Finally, we also analyzed the trade-off in a 3-dimensional

scenario: for an embedded application one would be inter-
ested in a simultaneous trade-off between ASR perfor-
mance, memory and computational power requirements.
The results are presented in Table 8 (see last column).
Among the eight systems that were analyzed, Nvidia
QuartzNet, Facebook TDS-S2S and Kaldi CNN-TDNN
are extremes on the Pareto front, being the best sys-
tems in terms of performance, throughput requirements
and respectively memory requirements. As a trade-off

between the three, Kaldi TDNN still provides Pareto opti-
mal design points, dominating each of the other three
systems in two measures.

5 Conclusion
This article presented an overview of the fundamentals of
automatic speech recognition systems and their evolution
over the last years. The general architecture of an ASR
system was presented, as well as the various approaches
for each component part. We summarized the most pop-
ular types of speech features and the way that they can
be extracted and improved. We passed over the acoustic
modeling algorithms, from traditional probabilistic mod-
els, which were replaced by neural networks in hybrid
approaches, to end-to-end models using pure neural net-
works without an alignment model. We also presented the
main approaches of language modeling for ASR. Based

Fig. 7 Trade-off between ASR performance and memory requirements (left) and between ASR performance and throughput requirements (right).
Memory load is expressed in Mega bytes (MB). Throughput is expressed in Gigaoperations per second (GOPS)

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 27 of 30

on this overview, several conclusions can be drawn with
respect to the current trends in the field of automatic
speech recognition.
Although pipeline ASR systems represented the state of

the art up to now, end-to-end systems are on an ascending
trend and will most likely replace them successfully in the
near future. Our analysis showed that only one end-to-end
system (Nvidia QuartzNet) has managed to surpass the
state of the art pipeline system (Kaldi TDNN) in terms of
accuracy, having a similar number of parameters, but with
a greater cost in terms of number of operations required
to process one frame of speech.
From the point of view of the acoustic features, many

implementations, including state of the art systems, still
use traditional features, such as MFCCs or i-vectors.
Kaldi, for example, combines MFCC and i-vector fea-

tures in various ways, depending on the neural layers that
process the features further. Moreover, in Kaldi several
feature transforms and data augmentation techniques (e.g.
speed and noise perturbations) are used. However, we
can clearly see the attempt to migrate from hand-crafted
features towards the raw waveform. Many networks use
special input layers that act like a feature extractor front-
end. Although the trend is clear and many attempts were
made to perform automatic speech recognition from the
raw waveform, current end-to-end ASR implementations
still use spectrograms or filterbanks as input.
Acoustic modeling is performed in all state of the

art ASR implementations using neural networks. Most
approaches use recurrent networks and convolutional
networks. The disadvantage of the recurrent networks
consists in the difficulty of parallelization. Moreover, the
bidirectional networks require special tricks if they are to
be used for online transcription, as the entire signal is not
available in this scenario. The use of residual connections
became a common practice, thus improving the propa-
gation of data over the network, sometimes working as a
shortcut over some layers.
While the acoustic units modelled in the state of the art

systems are phones or subphonetic units (e.g. senones),
the trend is to migrate away from these intermediate rep-
resentations and to model directly characters, word parts
or even words. As there are already effective implemen-
tations that output characters or word parts (6 of the 8
implementations analyzed) it is clear that the phonetic
dictionary in a traditional pipeline ASR system will soon
become obsolete.
In terms of language modeling, pipeline systems, as

those based on Kaldi, are compulsory depending on a lan-
guagemodel. End-to-end systems can optionally use a lan-
guage model as an add-on. Its use leads to better results,
but it is not crucial. All results can be further improved
by using a rescoring model, which takes over and corrects
the initial transcript. Regarding the type of the language

model, probabilistic models, n-grams, are still used and
they are very popular, but the neural approaches, with
convolutional or recurrent language models, are superior
in terms of accuracy, although more expensive in terms of
computation.
Apart from the overview on automatic speech recogni-

tion, we conducted an in-depth analysis of eight different
ASR implementations for LibriSpeech ASR task in order
to identify the frameworks which might be suitable for
integration in embedded applications with aminimal drop
in performance. We evaluated the TDNN and CNN-
TDNN architectures from Kaldi, RETURNN attention-
based encoder-decoder from RWTH, fully convolutional
CNN-ASG and TDS-S2S from Facebook, PaddlePaddle
DeepSpeech2 from PaddlePaddle, Jasper dense-residual
and QuartzNet from Nvidia. We described and com-
pared the various features used as input, the various types
and sizes of layers and blocks of layers, the loss func-
tions, the various output types and their link to output
words etc. The analysis aimed at offering an insight into
whether these models are suitable or not for integration in
embedded applications. To this end, we first expressed the
complexities of the models in terms of model size, num-
ber of activations and number of operations required to
process one frame of speech. Finally, we translated these
metrics into hardware requirements, such asmemory load
and minimum throughput, metrics that can be directly to
decide which ASR implementation suits certain hardware
constrains. To the best of our knowledge, this is the first
article that presented such an analysis.
The conclusions that aroused from this analysis are

very interesting. We showed that some end-to-end imple-
mentations (i.e. RWTH RETURNN, Nvidia Jasper, Nvidia
QuartzNet and Facebook CNN-ASG) are prohibitive for
embedded applications due to their memory require-
ments. They require between 14x and 235x more memory
than the lightest system (i.e. Kaldi CNN-TDNN). On the
opposite side, Kaldi-based systems, PaddlePaddle Deep-
Speech2 and Facebook TDS-S2S require similar amounts
of memory.
With regard to computational power requirements, we

conclude that Nvidia Jasper and Facebook CNN-ASG
are, again, not suitable for embedded applications. They
make between 1400x and 2800x more operations than the
fastest system (i.e. Facebook TDS-S2S). Facebook TDS-
S2S is also significantly faster (2.7x) than its successor (i.e.
Kaldi TDNN) and the subsequent systems.
For an embedded application one would be interested

in a simultaneous trade-off between ASR performance,
memory and computational power requirements. With
respect to this, our trade-off analysis showed that Nvidia
QuartzNet, Facebook TDS-S2S and Kaldi CNN-TDNN
are extremes on the Pareto front, being the best sys-
tems in terms of performance, throughput requirements

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 28 of 30

and respectively memory requirements. As a trade-off
between the three, Kaldi TDNN still provides Pareto opti-
mal design points, dominating each of the other systems
in two out of the three measures.
Abbreviations
AM: Acoustic Model; ASG: Auto Segmentation Criterion; ASR: Automatic
Speech Recognition; BLSTM: Bidirectional Long-Short Term Memory; BPE:
Byte-pair encoding; CE: Cross-Entropy; CNN: Convolutional Neural Network;
CTC: Connectionist Temporal Classification; DNN: Deep Neural Network; DCT:
Discrete Cosine Transform; E2E: End-to-End; EM: Expectation-Maximization;
FFT: Fast Fourier Transform; GLU: Gated Linear Unit; GMM: Gaussian Mixture
Model; GOPS: Giga Operations per Second; GRU: Gated Recurrent Unit; HMM:
Hidden Markov Model; JFA: Joint Factor Analysis; LDA: Linear Discriminant
Analysis; LF-MMI: Lattice-Free Maximum Mutual Information; LM: Language
Model; LSTM: Long-Short Term Memory; MAC: Multiply-Accumulate
Operation; MB: Mega bytes; MFCC: Mel-Frequency Cepstral Coefficients; MFSC:
Mel-Frequency Spectral Coefficients; MMI: Maximum Mutual Information; NN:
Neural Network; OOV: Out-of-vocabulary; Ops: Operations; PD: Phonetic
Model; ReLU: Rectified Linear Unit; RNN: Recurrent Neural Network; RWTH:
Rheinisch-Westfälische Technische Hochschule Aachen (Aachen University);
S2S: Sequence-to-Sequence; SVD: Single Value Decomposition; TDNN:
Time-Delay Neural Network; TDNN-F: Factored Time-Delay Neural Network;
TDS: Time-Depth Separable; WER: Word Error Rate; WSJ: Wall Street Journal

Acknowledgements
Not applicable.

Authors’ contributions
ALG was responsible for summarizing the methods and writing the
manuscript. AP provided guidance for ALG in order to perform the
experiments and the subsequent analyzes. ALG and HC organized the
manuscript structure and content. MB supevised the entire project and
provided suggestions on the writing. All authors have read and approved the
final manuscript. The contributions of all authors are considered to be equal.

Authors’ information
ALG graduated with a Master’s degree from the University Politehnica of
Bucharest, Romania, where he currently follows his Ph.D. studies as a member
of the Speech and Dialogue research laboratory. The main direction of interest
is artificial intelligence applied in speech technology, including speech
recognition and speaker recognition. In 2019, he did this work during an
internship at Xilinx Research Labs, Dublin.
AP is a Senior Engineer at Xilinx Research in Dublin, Ireland, where he works at
the intersection of hardware and software for machine learning acceleration.
He earned his Bachelor’s degree from Politecnico di Milano, Italy, and his
Master’s degree from the University of Illinois at Chicago, USA.
HC received the Ph.D. degree in electronics and telecommunications from
University Politehnica of Bucharest (2011), where he has served as Associate
Professor since 2017. His research interests include machine learning and
artificial intelligence, with a special focus on automatic speech and speaker
recognition methods. He authored over 75 scientific papers in international
conferences and journals. He was awarded the Romanian Academy prize
“Mihail Drăgănescu” (2016) for outstanding research contributions in Spoken
Language Technology, after developing the first automatic speech
recognition system for the Romanian language.
MB is a Distinguished Engineer at Xilinx Research in Dublin, Ireland, where she
heads a team of international scientists driving exciting research to define new
application domains for Xilinx devices, such as machine learning. She earned
her Master’s degree from the University of Kaiserslautern in Germany and
brings over 25 years of computer architecture, FPGA and board design, in
research institutions (ETH Zurich and Bell Labs) and development
organizations. She is heavily involved with the international research
community serving as the technical co-chair of FPL’2018, workshop organizer
(H2RC, ITEM’2020), and member of numerous technical program committees
(FPL, ISFPGA, DATE, etc.).

Funding
This work was partly supported by a grant of the Romanian Ministry of
Research and Innovation, CCCDI – UEFISCDI, project number
PN-III-P1-1.2-PCCDI-2017-0818 / 73PCCDI, within PNCDI III.

Availability of data andmaterials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Speech and Dialogue Research Laboratory, University Politehnica of
Bucharest, Bucharest, Romania. 2Research Labs, Xilinx, Dublin, Ireland.

Received: 11 February 2021 Accepted: 23 June 2021

References
1. M. Price, J. Glass, A. P. Chandrakasan, A low-power speech recognizer and

voice activity detector using deep neural networks. IEEE J. Solid-State Circ.
53(1), 66–75 (2017)

2. M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, W. Sung, in 2016 IEEE
International Workshop on Signal Processing Systems (SiPS). Fpga-based
low-power speech recognition with recurrent neural networks (IEEE,
Dallas, 2016), pp. 230–235. https://doi.org/10.1109/SiPS.2016.48

3. S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, et
al., in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. Ese: Efficient speech recognition engine
with sparse lstm on fpga, (2017), pp. 75–84. https://doi.org/10.1145/
3020078.3021745

4. B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia, L. Shi, Eera-asr: An energy-efficient
reconfigurable architecture for automatic speech recognition with hybrid
dnn and approximate computing. IEEE Access. 6, 52227–52237 (2018)

5. R. Yazdani, A. Segura, J.-M. Arnau, A. Gonzalez, in 49th Annual IEEE/ACM
International Symposium onMicroarchitecture (MICRO). An ultra low-power
hardware accelerator for automatic speech recognition (IEEE, Taipei,
2016), pp. 1–12. https://doi.org/10.1109/MICRO.2016.7783750

6. S. Migacz, in GPU Technology Conference, vol. 2. 8-bit inference with
tensorrt, (2017), p. 5. https://on-demand.gputechconf.com/gtc/2017/
presentation/s7310-8-bit-inference-withtensorrt.pdf

7. Z. Zhang, J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. Jin, B. Schuller, Deep
learning for environmentally robust speech recognition: An overview of
recent developments. ACM Trans. Intell. Syst. Technol. (TIST). 9(5), 1–28
(2018)

8. J. Park, Y. Boo, I. Choi, S. Shin, W. Sung, in Advances in Neural Information
Processing Systems. Fully neural network based speech recognition on
mobile and embedded devices, (2018), pp. 10620–10630. https://dl.acm.
org/doi/10.5555/3327546.3327722

9. H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, T. Sainath, Deep
learning for audio signal processing. IEEE J. Sel. Top. Signal Process. 13(2),
206–219 (2019)

10. C. Kim, D. Gowda, D. Lee, J. Kim, A. Kumar, S. Kim, A. Garg, C. Han, A review
of on-device fully neural end-to-end automatic speech recognition
algorithms. arXiv preprint arXiv:2012.07974 (2020)

11. D. Wang, X. Wang, S. Lv, An overview of end-to-end automatic speech
recognition. Symmetry. 11(8), 1018 (2019)

12. C. Shan, J. Zhang, Y. Wang, L. Xie, in ICASSP. Attention-based end-to-end
speech recognition on voice search (IEEE, 2018), pp. 4764–4768. https://
doi.org/10.1109/ICASSP.2018.8462492

13. R. Collobert, C. Puhrsch, G. Synnaeve, Wav2letter: an end-to-end
convnet-based speech recognition system. arXiv preprint
arXiv:1609.03193 (2016)

14. M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, K. M. Iftekharuddin,
Survey on deep neural networks in speech and vision systems.
Neurocomputing. 417, 302–321 (2020)

15. T. N. Sainath, R. Prabhavalkar, S. Kumar, S. Lee, A. Kannan, D. Rybach, V.
Schogol, P. Nguyen, B. Li, Y. Wu, et al., in ICASSP. No need for a lexicon?
evaluating the value of the pronunciation lexica in end-to-end models
(IEEE, 2018), pp. 5859–5863. https://doi.org/10.1109/icassp.2018.8462380

16. C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A.
Kannan, R. J. Weiss, K. Rao, E. Gonina, et al., in ICASSP. State-of-the-art
speech recognition with sequence-to-sequence models (IEEE, 2018),
pp. 4774–4778. https://doi.org/10.1109/ICASSP.2018.8462105

https://doi.org/10.1109/SiPS.2016.48
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1109/MICRO.2016.7783750
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-withtensorrt.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-withtensorrt.pdf
https://dl.acm.org/doi/10.5555/3327546.3327722
https://dl.acm.org/doi/10.5555/3327546.3327722
https://doi.org/10.1109/ICASSP.2018.8462492
https://doi.org/10.1109/ICASSP.2018.8462492
https://doi.org/10.1109/icassp.2018.8462380
https://doi.org/10.1109/ICASSP.2018.8462105

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 29 of 30

17. R. Collobert, A. Hannun, G. Synnaeve, Word-level speech recognition with
a dynamic lexicon. arXiv preprint arXiv:1906.04323 (2019)

18. A. Graves, A.-r. Mohamed, G. Hinton, in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. Speech recognition with deep
recurrent neural networks (IEEE, 2013), pp. 6645–6649. https://doi.org/10.
1109/ICASSP.2013.6638947

19. H. Hadian, H. Sameti, D. Povey, S. Khudanpur, in Interspeech. End-to-end
speech recognition using lattice-free mmi, (2018), pp. 12–16. https://doi.
org/10.21437/Interspeech.2018-1423

20. R. W. Hamming, Digital Filters. (Courier Corporation, 1998)
21. A. V. Oppenheim, Discrete-time Signal Processing. (Pearson Education

India, 1999)
22. S. S. Stevens, J. Volkmann, E. B. Newman, A scale for the measurement of

the psychological magnitude pitch. J. Acoust. Soc. Am. 8(3), 185–190
(1937)

23. S. Davis, P. Mermelstein, Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE
Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)

24. N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process.
19(4), 788–798 (2010)

25. P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel, Joint factor analysis
versus eigenchannels in speaker recognition. IEEE Trans. Audio Speech
Lang. Process. 15(4), 1435–1447 (2007)

26. R. D. Lopez-Cozar, M. Araki, Spoken, Multilingual andMultimodal Dialogue
Systems: Development and Assessment. (Wiley, 2005). https://doi.org/10.
1002/0470021578

27. Y. Zhang, M. Alder, R. Togneri, in ICASSP, vol. 1. Using gaussian mixture
modeling in speech recognition (IEEE, 1994), p. 613. https://doi.org/10.
1109/ICASSP.1994.389219

28. S. J. Young, J. J. Odell, P. C. Woodland, in Proceedings of theWorkshop on
Human Language Technology. Tree-based state tying for high accuracy
acoustic modelling (Association for Computational Linguistics, 1994),
pp. 307–312. https://doi.org/10.3115/1075812.1075885

29. L. E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique
occurring in the statistical analysis of probabilistic functions of markov
chains. Ann. Math. Stat. 41(1), 164–171 (1970)

30. A. Viterbi, Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inf. Theory. 13(2), 260–269
(1967)

31. G. Hinton, et al., Deep Neural Networks for Acoustic Modeling in Speech
Recognition. IEEE Signal Proc. Mag. 29(6), 82–97 (2012)

32. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. J. Lang, Phoneme
recognition using time-delay neural networks. IEEE Trans. Acoust. Speech
Signal Process. 37(3), 328–339 (1989)

33. V. Peddinti, D. Povey, S. Khudanpur, in Interspeech. A time delay neural
network architecture for efficient modeling of long temporal contexts,
(2015), pp. 3214–3218. https://academic.microsoft.com/paper/
2402146185/reference

34. D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, S.
Khudanpur, in Interspeech. Semi-orthogonal low-rank matrix factorization
for deep neural networks, (2018), pp. 3743–3747. https://doi.org/10.
21437/Interspeech.2018-1417

35. O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu,
Convolutional neural networks for speech recognition. IEEE/ACM Trans.
Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

36. Kaldi Help Google Group: CNN-TDNN vs. TDNN (2020). https://groups.
google.com/d/msg/kaldi-help/jsg1Oo4bNGQ/uwvFw5PtBwAJ. Accessed
23 Mar 2020

37. F. L. Kreyssig, C. Zhang, P. C. Woodland, in ICASSP. Improved tdnns using
deep kernels and frequency dependent grid-rnns (IEEE, 2018),
pp. 4864–4868. https://doi.org/10.1109/ICASSP.2018.8462523

38. A. Biswas, E. Yılmaz, F. de Wet, E. van der Westhuizen, T. Niesler, in
Interspeech. Semi-Supervised Acoustic Model Training for Five-Lingual
Code-Switched ASR, (2019), pp. 3745–3749. https://doi.org/10.21437/
interspeech.2019-1325

39. C. Zorilă, C. Boeddeker, R. Doddipatla, R. Haeb-Umbach, in 2019 IEEE
Automatic Speech Recognition and UnderstandingWorkshop (ASRU). An
investigation into the effectiveness of enhancement in asr training and
test for chime-5 dinner party transcription (IEEE, 2019), pp. 47–53. https://
doi.org/10.1109/ASRU46091.2019.9003785

40. N. Zeghidour, Q. Xu, V. Liptchinsky, N. Usunier, G. Synnaeve, R. Collobert,
Fully convolutional speech recognition. arXiv preprint arXiv:1812.06864
(2018)

41. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Densely
connected convolutional networks, (2017), pp. 4700–4708. https://doi.
org/10.1109/cvpr.2017.243

42. J. Li, V. Lavrukhin, B. Ginsburg, R. Leary, O. Kuchaiev, J. M. Cohen, H.
Nguyen, R. T. Gadde, in Interspeech. Jasper: An End-to-End Convolutional
Neural Acoustic Model, (2019), pp. 71–75. https://doi.org/10.21437/
interspeech.2019-1819

43. H. Sak, A. Senior, F. Beaufays, in Interspeech. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling,
(2014), pp. 338–342. https://research.google/pubs/pub43905.pdf

44. F. A. Gers, N. N. Schraudolph, J. Schmidhuber, Learning precise timing
with lstm recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

45. D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., in 2016 International
Conference onMachine Learning. Deep speech 2: End-to-end speech
recognition in english and mandarin, (2016), pp. 173–182. https://
academic.microsoft.com/paper/2193413348/reference

46. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

47. W. Chan, N. Jaitly, Q. Le, O. Vinyals, in ICASSP. Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition
(IEEE, 2016), pp. 4960–4964. https://doi.org/10.1109/ICASSP.2016.7472621

48. I. Sutskever, et al., Q. Le, Sequence to Sequence Learning with Neural
Networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

49. K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, in Proceedings of
SSST-8, EighthWorkshop on Syntax, Semantics and Structure in Statistical
Translation. On the properties of neural machine translation:
Encoder–decoder approaches, (2014), pp. 103–111. https://doi.org/10.
3115/v1/w14-4012

50. A. Hannun, A. Lee, Q. Xu, R. Collobert, in Interspeech. Sequence-to-
Sequence Speech Recognition with Time-Depth Separable Convolutions,
(2019), pp. 3785–3789. https://doi.org/10.21437/interspeech.2019-2460

51. A. Graves, S. Fernández, F. Gomez, J. Schmidhuber, in Proceedings of the
23rd International Conference onMachine Learning. Connectionist
temporal classification: labelling unsegmented sequence data with
recurrent neural networks (ACM, 2006), pp. 369–376. https://doi.org/10.
1145/1143844.1143891

52. T. Hori, S. Watanabe, Y. Zhang, W. Chan, in Interspeech. Advances in joint
ctc-attention based end-to-end speech recognition with a deep cnn
encoder and rnn-lm, (2017). https://doi.org/10.21437/INTERSPEECH.2017-
1296

53. D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y.
Wang, S. Khudanpur, in Interspeech. Purely sequence-trained neural
networks for asr based on lattice-free mmi, (2016), pp. 2751–2755. https://
doi.org/10.21437/Interspeech.2016-595

54. T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khudanpur, in 2010
Conference of the International Speech Communication Association.
Recurrent neural network based language model, (2010). https://
academic.microsoft.com/paper/179875071/reference

55. M. Sundermeyer, R. Schlüter, H. Ney, in 2012 Conference of the International
Speech Communication Association. Lstm neural networks for language
modeling, (2012). https://academic.microsoft.com/paper/2402268235/
reference

56. Y. N. Dauphin, A. Fan, M. Auli, D. Grangier, in Proceedings of the 34th
International Conference onMachine Learning-Volume 70. Language
modeling with gated convolutional networks (JMLR. org, 2017), pp. 933–
941. https://academic.microsoft.com/paper/2963970792/reference

57. Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, R. Salakhutdinov, in Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics.
Transformer-XL: Attentive language models beyond a fixed-length
context (Association for Computational Linguistics, Florence, 2019),
pp. 2978–2988

58. C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares, H.
Schwenk, Y. Bengio, On using monolingual corpora in neural machine
translation. arXiv preprint arXiv:1503.03535 (2015)

59. A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, R. Prabhavalkar, in
ICASSP. An analysis of incorporating an external language model into a

https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.21437/Interspeech.2018-1423
https://doi.org/10.21437/Interspeech.2018-1423
https://doi.org/10.1002/0470021578
https://doi.org/10.1002/0470021578
https://doi.org/10.1109/ICASSP.1994.389219
https://doi.org/10.1109/ICASSP.1994.389219
https://doi.org/10.3115/1075812.1075885
https://academic.microsoft.com/paper/2402146185/reference
https://academic.microsoft.com/paper/2402146185/reference
https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.21437/Interspeech.2018-1417
https://groups.google.com/d/msg/kaldi-help/jsg1Oo4bNGQ/uwvFw5PtBwAJ
https://groups.google.com/d/msg/kaldi-help/jsg1Oo4bNGQ/uwvFw5PtBwAJ
https://doi.org/10.1109/ICASSP.2018.8462523
https://doi.org/10.21437/interspeech.2019-1325
https://doi.org/10.21437/interspeech.2019-1325
https://doi.org/10.1109/ASRU46091.2019.9003785
https://doi.org/10.1109/ASRU46091.2019.9003785
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.21437/interspeech.2019-1819
https://doi.org/10.21437/interspeech.2019-1819
https://research.google/pubs/pub43905.pdf
https://academic.microsoft.com/paper/2193413348/reference
https://academic.microsoft.com/paper/2193413348/reference
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.21437/interspeech.2019-2460
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.21437/INTERSPEECH.2017-1296
https://doi.org/10.21437/INTERSPEECH.2017-1296
https://doi.org/10.21437/Interspeech.2016-595
https://doi.org/10.21437/Interspeech.2016-595
https://academic.microsoft.com/paper/179875071/reference
https://academic.microsoft.com/paper/179875071/reference
https://academic.microsoft.com/paper/2402268235/reference
https://academic.microsoft.com/paper/2402268235/reference
https://academic.microsoft.com/paper/2963970792/reference

Georgescu et al. EURASIP Journal on Audio, Speech, andMusic Processing (2021) 2021:28 Page 30 of 30

sequence-to-sequence model (IEEE, 2018), pp. 1–5828. https://doi.org/10.
1109/icassp.2018.8462682

60. A. Sriram, H. Jun, S. Satheesh, A. Coates, in Interspeech. Cold fusion:
Training seq2seq models together with language models, (2018),
pp. 387–391. https://doi.org/10.21437/interspeech.2018-1392

61. S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, K. Livescu, in 2018
IEEE Spoken Language TechnologyWorkshop (SLT). A comparison of
techniques for language model integration in encoder-decoder speech
recognition (IEEE, 2018), pp. 369–375. https://doi.org/10.1109/SLT.2018.
8639038

62. T. Mikolov, S. Kombrink, A. Deoras, L. Burget, J. Cernocky, in Proc. of the
2011 ASRUWorkshop. Rnnlm-recurrent neural network language
modeling toolkit, (2011), pp. 196–201. https://academic.microsoft.com/
paper/2474824677/reference

63. H. Xu, et al., in ICASSP. A pruned rnnlm lattice-rescoring algorithm for
automatic speech recognition (IEEE, 2018), pp. 5929–5933. https://doi.
org/10.1109/ICASSP.2018.8461974

64. Kaldi TDNN LibriSpeech implementation (2020). https://github.com/
kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/
run_tdnn_1d.sh. Accessed 23 Mar 2020

65. Kaldi CNN-TDNN LibriSpeech implementation (2020). https://github.
com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/
run_cnn_tdnn_1a.sh. Accessed 23 Mar 2020

66. PaddlePaddle DeepSpeech2 LibriSpeech implementation (2020). https://
github.com/PaddlePaddle/DeepSpeech/blob/develop/model_utils/
network.py. Accessed 23 Mar 2020

67. RWTH Returnn LibriSpeech implementation (2020). https://github.com/
rwth-i6/returnn-experiments/blob/master/2018-asr-attention/
librispeech/full-setup-attention/returnn.config. Accessed 23 Mar 2020

68. Wav2Letter CNN-GLU fully convolutional LibriSpeech implementation
(2020). https://github.com/facebookresearch/wav2letter/blob/master/
recipes/models/conv_glu/librispeech/network.arch. Accessed 23 Mar
2020

69. Wav2Letter time-domain separable LibriSpeech implementation (2020).
https://github.com/facebookresearch/wav2letter/blob/master/recipes/
models/seq2seq_tds/librispeech/network.arch. Accessed 23 Mar 2020

70. Nividia OpenSeq2Seq Jasper LibriSpeech implementation (2020). https://
github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/
speech2text/jasper10x5_LibriSpeech_nvgrad.py. Accessed 23 Mar 2020

71. Nvidia QuartzNet implementation (2020). https://github.com/NVIDIA/
NeMo/blob/master/examples/asr/configs/quartznet15x5.yaml. Accessed
23 Mar 2020

72. V. Panayotov, G. Chen, D. Povey, S. Khudanpur, in ICASSP. Librispeech: an
asr corpus based on public domain audio books (IEEE, 2015),
pp. 5206–5210. https://doi.org/10.1109/ICASSP.2015.7178964

73. D. B. Paul, J. M. Baker, in Proceedings of theWorkshop on Speech and Natural
Language. The design for the wall street journal-based csr corpus
(Association for Computational Linguistics, 1992), pp. 357–362. https://
doi.org/10.3115/1075527.1075614

74. A. Rousseau, P. Deléglise, Y. Esteve, in 2014 Language Resources and
Evaluation. Enhancing the ted-lium corpus with selected data for
language modeling and more ted talks, (2014), pp. 3935–3939. https://
academic.microsoft.com/paper/2251321385/reference

75. J. J. Godfrey, E. C. Holliman, J. McDaniel, in ICASSP, vol. 1. Switchboard:
Telephone speech corpus for research and development (IEEE, 1992),
pp. 517–520. https://doi.org/10.1109/ICASSP.1992.225858

76. C. Cieri, D. Miller, K. Walker, in 2004 Language Resources and Evaluation, vol.
4. The fisher corpus: a resource for the next generations of speech-to-text,
(2004), pp. 69–71. https://academic.microsoft.com/paper/97072897/
reference

77. Kaldi Help Google Group: Multiple output heads in chain network (2020).
https://groups.google.com/d/msg/kaldi-help/WC8hYgL2o3I/
WccCc0ucAgAJ. Accessed 23 Mar 2020

78. A. Zeyer, K. Irie, R. Schlüter, H. Ney, in Interspeech. Improved training of
end-to-end attention models for speech recognition, (2018), pp. 7–11.
https://doi.org/10.21437/Interspeech.2018-1616

79. R. Sennrich, B. Haddow, A. Birch, in 2016Meeting of the Association for
Computational Linguistics. Neural machine translation of rare words with
subword units, (2016), pp. 1715–1725. https://doi.org/10.18653/v1/p16-
1162

80. N. Zeghidour, N. Usunier, G. Synnaeve, R. Collobert, E. Dupoux, in
Interspeech. End-to-end speech recognition from the raw waveform,
(2018), pp. 781–785. https://doi.org/10.21437/Interspeech.2018-2414

81. T. Likhomanenko, G. Synnaeve, R. Collobert, in Interspeech. Who needs
words? lexicon-free speech recognition, (2019), pp. 3915–3919. https://
doi.org/10.21437/Interspeech.2019-3107

82. Wav2Letter lexicon-free LibriSpeech implementation (2020). https://
github.com/facebookresearch/wav2letter/blob/master/recipes/models/
lexicon_free/librispeech/am.arch. Accessed 23 Mar 2020

83. T. Salimans, D. P. Kingma, in 2016 Neural Information Processing Systems.
Weight normalization: A simple reparameterization to accelerate training
of deep neural networks, (2016), pp. 901–909. https://academic.microsoft.
com/paper/2963685250/reference

84. B. Ginsburg, P. Castonguay, O. Hrinchuk, O. Kuchaiev, V. Lavrukhin, R.
Leary, J. Li, H. Nguyen, J. M. Cohen, Stochastic gradient methods with
layer-wise adaptive moments for training of deep networks. arXiv
preprint arXiv:1905.11286 (2019)

85. S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin, R.
Leary, J. Li, Y. Zhang, in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Quartznet: Deep
automatic speech recognition with 1d time-channel separable
convolutions, (2020), pp. 6124–6128. https://doi.org/10.1109/
icassp40776.2020.9053889

86. Open Speech and Language Resources (2020). http://www.openslr.org/
resources/11/4-gram.arpa.gz. Accessed 23 Mar 2020

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/icassp.2018.8462682
https://doi.org/10.1109/icassp.2018.8462682
https://doi.org/10.21437/interspeech.2018-1392
https://doi.org/10.1109/SLT.2018.8639038
https://doi.org/10.1109/SLT.2018.8639038
https://academic.microsoft.com/paper/2474824677/reference
https://academic.microsoft.com/paper/2474824677/reference
https://doi.org/10.1109/ICASSP.2018.8461974
https://doi.org/10.1109/ICASSP.2018.8461974
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_cnn_tdnn_1a.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_cnn_tdnn_1a.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_cnn_tdnn_1a.sh
https://github.com/PaddlePaddle/DeepSpeech/blob/develop/model_utils/network.py
https://github.com/PaddlePaddle/DeepSpeech/blob/develop/model_utils/network.py
https://github.com/PaddlePaddle/DeepSpeech/blob/develop/model_utils/network.py
https://github.com/rwth-i6/returnn-experiments/blob/master/2018-asr-attention/librispeech/full-setup-attention/returnn.config
https://github.com/rwth-i6/returnn-experiments/blob/master/2018-asr-attention/librispeech/full-setup-attention/returnn.config
https://github.com/rwth-i6/returnn-experiments/blob/master/2018-asr-attention/librispeech/full-setup-attention/returnn.config
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/conv_glu/librispeech/network.arch
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/conv_glu/librispeech/network.arch
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/seq2seq_tds/librispeech/network.arch
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/seq2seq_tds/librispeech/network.arch
https://github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/speech2text/jasper10x5_LibriSpeech_nvgrad.py
https://github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/speech2text/jasper10x5_LibriSpeech_nvgrad.py
https://github.com/NVIDIA/OpenSeq2Seq/blob/master/example_configs/speech2text/jasper10x5_LibriSpeech_nvgrad.py
https://github.com/NVIDIA/NeMo/blob/master/examples/asr/configs/quartznet15x5.yaml
https://github.com/NVIDIA/NeMo/blob/master/examples/asr/configs/quartznet15x5.yaml
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.3115/1075527.1075614
https://academic.microsoft.com/paper/2251321385/reference
https://academic.microsoft.com/paper/2251321385/reference
https://doi.org/10.1109/ICASSP.1992.225858
https://academic.microsoft.com/paper/97072897/reference
https://academic.microsoft.com/paper/97072897/reference
https://groups.google.com/d/msg/kaldi-help/WC8hYgL2o3I/WccCc0ucAgAJ
https://groups.google.com/d/msg/kaldi-help/WC8hYgL2o3I/WccCc0ucAgAJ
https://doi.org/10.21437/Interspeech.2018-1616
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.21437/Interspeech.2018-2414
https://doi.org/10.21437/Interspeech.2019-3107
https://doi.org/10.21437/Interspeech.2019-3107
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/lexicon_free/librispeech/am.arch
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/lexicon_free/librispeech/am.arch
https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/lexicon_free/librispeech/am.arch
https://academic.microsoft.com/paper/2963685250/reference
https://academic.microsoft.com/paper/2963685250/reference
https://doi.org/10.1109/icassp40776.2020.9053889
https://doi.org/10.1109/icassp40776.2020.9053889
http://www.openslr.org/resources/11/4-gram.arpa.gz
http://www.openslr.org/resources/11/4-gram.arpa.gz

	Abstract
	Keywords

	Introduction
	Introduction to ASR systems
	The road from pipeline ASR to end-to-end ASR
	Pipeline ASR
	End-to-end ASR

	Feature extraction
	Type of features

	Traditional, HMM-based acoustic modeling
	TDNN
	Convolutional + time-delay neural network (CNN-TDNN)

	End-to-end ASR systems
	Architectures
	Loss functions

	Language modeling
	N-gram/Probabilistical LM
	Neural network based language models
	Language model integration
	Rescoring

	State-of-the-art ASR implementations
	Kaldi chain model TDNN
	Kaldi chain model CNN-TDNN
	Paddle Paddle implementation of DeepSpeech2
	RWTH RETURNN
	Facebook CNN-ASG
	Facebook TDS-S2S
	Nvidia Jasper
	Nvidia QuartzNet

	ASR comparison and evaluation. Case study on LibriSpeech
	Evaluation of model complexity
	Comparison of ASR systems in terms of model complexity
	Comparison of ASR systems in terms of performance
	Trade-offs between ASR performance and hardware requirements

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

