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Abstract

Code-switching (CS) refers to the phenomenon of using more than one language in an utterance, and it presents
great challenge to automatic speech recognition (ASR) due to the code-switching property in one utterance, the
pronunciation variation phenomenon of the embedding language words and the heavy training data sparse
problem. This paper focuses on the Mandarin-English CS ASR task. We aim at dealing with the pronunciation variation
and alleviating the sparse problem of code-switches by using pronunciation augmentation methods. An
English-to-Mandarin mix-language phone mapping approach is first proposed to obtain a language-universal CS
lexicon. Based on this lexicon, an acoustic data-driven lexicon learning framework is further proposed to learn new
pronunciations to cover the accents, mis-pronunciations, or pronunciation variations of those embedding English
words. Experiments are performed on real CS ASR tasks. Effectiveness of the proposed methods are examined on all of
the conventional, hybrid, and the recent end-to-end speech recognition systems. Experimental results show that both
the learned phone mapping and augmented pronunciations can significantly improve the performance of
code-switching speech recognition.
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1 Introduction
Code-switching (CS) phenomenon is prevalent in many
multilingual communities. It is defined as the switching
of two or more languages at the conversation, utterance,
and sometimes even word level [1–3]. There are two dif-
ferent forms of code-switching, one is the inter-sentential
switching with the alternation is between sentences, and
the other is the intra-sentential with the switching is
within one sentence or word [3].
The code-switching phenomenon is quite common

around the world. For example, in India, it is very com-
mon to see the Bengali-English or Bengali-Hindi-English
in most people’s daily speech [4]; in USA and Switzerland,
people can often hear Spanish-English and French-Italian
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code-switching speech [3]; and in Hong-Kong, the com-
bination of English and the native Cantonese is also very
common [5]. Particularly, in East Asia, the Mandarin-
English code-switching is extremely popular, such as in
Singapore, Malaysia, Mainland China, and Taiwan [6, 7].
In addition, the code-switching is also now frequently
found in our daily life, such as in some professional activi-
ties, social media, consumer goods, or entertainment, it is
fairly common to hear people borrowing words from one
language to use them in another [8, 9]. In recent years, the
research of code-switching automatic speech recognition
(ASR) has received increasingly attention. This is because
with the rapid development of speech technology, variety
speech-driven interfaces to smart devices, and other real
AI applications become mainstream, most state-of-the-
art monolingual ASR systems fail when they encounter
code-switched speech.
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Compared with the recent significant success achieved
in monolingual speech recognition [10, 11], the ASR sys-
tems still have problem to deal with the code-switching
speech, especially the intra-sentential switching. To build
a good code-switching ASR system, several challenges
need to be handled, either in acoustic or language model-
ing. One of themajor challenge is the pronunciation varia-
tion phenomenon of the embedding language at the code-
switches. Unlike the matrix language for native speak-
ers, in many CS scenarios, most code-switching speakers
may not be familiar with the embedding language, the
words borrowed from the embedding language may be
pronounced with a spectrum of accents and may be sys-
tematically or randomly mispronounced [8]. For example,
in the Mandarin-English code-switching utterances that
collected from Mainland of China, most of those embed-
ded English words may be Chinglish (Chinese English).
There is a significant pronunciation variation between the
Chinglish and the standard British or American English.
Although there were many previous works have been pro-
posed to deal with the discrepancy and co-articulation
effects between different CS mixed languages, such as
the units merging [8, 12–14], language-universal acoustic
modeling targets, or framework [15–17]. Works related to
handle the pronunciation variation of embedding words
are very limited.
In this study, we concentrate on exploring pronun-

ciation augmentation techniques for acoustic modeling.
These techniques are applied and examined to improve
a Mandarin-English intra-sentential code-switching ASR
system. We aim at dealing with the pronunciation varia-
tion and alleviating the sparse problem of code-switches
by using pronunciation augmentation methods. Our con-
tributions are as follows: (1) an English-to-Mandarin mix-
language phone mapping is proposed. We first validate
the effectiveness of conventional data-driven phoneme
sharing. However, the direct one-to-one unit mapping
only helps to alleviate the embedding language training
data sparsity at some extent. The acoustic discrimina-
tion between different languages is ignored. Therefore, we
propose a new English-to-Mandarin phone mapping to
enhance the pronunciations of universal code-switching
lexicon. (2) An acoustic data-driven lexicon learning
framework is proposed to learn new pronunciations to
cover the accents, mis-pronunciations, or pronunciation
variations of those embedding English words. Only using
the phone mapping still can not well handle the pronunci-
ation variation with the mispronounced, accented embed-
ding words or phrases. Because the standard pronunci-
ations in the monolingual lexicon can not cover these
variation cases, these words would typically need to be
expressed with another new pronunciation or phone set.
Therefore, motivated by the acoustic data-driven lexicon

learning in [18], we propose a novel pronunciation aug-
mentation approach to produce the possible new pronun-
ciations for those embedding words at the code-switches.
Based on the merged universal code-switching phone set,
this approach integrates both of the information from the
expert knowledge, and acoustic evidences in training cor-
pus. Effectiveness of these proposed techniques are not
only examined to improve the conventional, hybrid ASR
system, but also validated to enhance the state-of-the-
art end-to-end ASR systems. Our experiments on real
code-switching ASR task show that the proposed meth-
ods are very effective to improve the performance of CS
speech recognition, and without any performance degra-
dation of the matrix language recognition (Mandarin test
set), this is very important for the real ASR applications.
Because in real ASR scenarios, a CS ASR system may
be used not only for recognizing the Mandarin-English
code-switching speech, but also used for monolingual
Mandarin speech recognition simultaneously.
The rest of the paper is organized as follows. A review

of previous works is presented in Section 2. Section 3
presents the framework of the proposed pronunciation
augmentation method. Section 4 describes the details of
three speech recognition systems. Experimental config-
urations are presented in Section 5. Results and perfor-
mance analysis are presented in Section 6. Finally, we
conclude and present future works in Section 7.

2 Review of previous works
The code-switching phenomenon is very natural for peo-
ple’s communication; however, it throws several inter-
esting challenges to the speech recognition community.
Three major challenges have been focused in the litera-
ture: (i) the heavy sparsity of code-switching training data,
especially for the data of intra-sentential code-switched
points in both the acoustic and language modeling; (ii)
the significant language discrepancy and co-articulation
effects in code-mixed utterances, it imposes a big gap
between acoustic modeling units of different languages;
and (iii) the above mentioned pronunciation variation
of embedding language at the code-switches. All of the
stages in an ASR system could be significantly affected by
any of these challenges, including the acoustic modeling,
language modeling, and decoding.
To handle the code-switching data sparsity problem,

the most straight forward way is to create code-switching
speech corpus. However, for the Mandarin-English CS
ASR, only a few small publicly available code-switching
corpus can be found, such as the 80 h OC16-CE80 cor-
pus that provided for the Chinese-English mixlingual
speech recognition challenge (MixASR-CHEN) [19] and
the SEAME corpus [20, 21] with 63 h spontaneous intra-
sentential and inter-sentential code-switch speech. The
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matrix language in both OC16-CE80 and SEAME is Man-
darin; the data amount of code-switch speech events in
both corpus is extremely sparse. In addition, with the mix-
language property and high cost of time and money, it is
arduous to create large-scale CS corpus with golden stan-
dard manual transcription [22]. Therefore, some works
start to focus on developing automatic CS event detec-
tion system to extract speech utterances with language
switches. For example, in [23], a latent language space
model and delta-Bayesian information criterion were pro-
posed to detect the code-switching event. Rallabandi
et al. [24] proposed to use an ASR system to detect
code-switching style utterance from acoustics. In [25],
the authors used frame-level language posteriors gener-
ated from a CS ASR system to detect the code-switches.
Most of these works were highly dependent on the per-
formances of ASR systems. They may not practical for
extracting CS utterances from large real audio archives;
therefore, some recent works start to focus on building
CS event classifiers based on the deep neural networks
directly [26]. In addition, we know that traditional data
augmentation techniques, such as the speed or volume
perturbation [27, 28], the SpecAugment [29] or audio syn-
thetic [30] have shown their effectiveness to alleviate the
data sparsity at some extent in various speech and sound
processing tasks, however, these techniques can not han-
dle the pronunciation variation problem of the embedding
language in a CS ASR scenario.
Towards the code-switched text data augmentation for

language modeling, there are also many works in the lit-
erature. Works in [14] used machine translated text to
augment the available code-switched text and found that
those synthesized CS texts achieved significant reduc-
tions in perplexity. And in [31], the authors increased the
CS texts by integrating both the syntactic and semantic
features into the language modeling process. The recent
generative adversarial networks with reinforcement learn-
ing was proposed in [32] to create CS text from mono-
lingual sentences. Pratapa et al. [33] proposed to gener-
ate grammatically valid artificial CS data using parallel
monolingual sentences with linguistic equivalence con-
straint. In [4], a simple transliteration-based data augmen-
tation approach was proposed to augment the Bengali-
English code-switched transcripts. The results showed
that transliterating the code-mixed textual corpus to the
matrix language and adding it to training data significantly
improved the CS ASR performance. All of these previ-
ous works showed that the artificial generated CS texts
were very effective for alleviating the data sparsity prob-
lem in language modeling at some extent. However, from
our previous observation of acoustic data augmentation
presented in [26], it seems that it is more difficult to gen-
erate effective synthesized CS speech than CS text; this

may due to the fact that effective real speech are nor-
mally with complicated acoustic environment and intra
and inter speaker variabilities. These variabilities are very
challenging to speech synthesize community.
To alleviate the data sparsity and co-articulation effect

problem in code-switching acoustic modeling, previ-
ous works mainly focused on (1) exploring an univer-
sal acoustic modeling units, (2) developing new acoustic
modeling strategies with multi-task or transfer learn-
ing, and (3) unsupervised or semi-supervised learning.
For improving the CS ASR systems with conventional
architectures, such as the Gaussian Mixture Model-
HiddenMarkovModel (GMM-HMM) or the DeepNeural
Network-HMM (DNN-HMM)-based hybrid framework,
these works mainly focused on mix-language phone map-
ping and unit merging, such as, in [34–36], the unit merg-
ing on state, senone, and Gaussian Levels was proposed
for Mandarin-English ASR tasks. In [8, 12, 14], differ-
ent data-driven and knowledge-based phone merging and
clustering algorithms were investigated to get a compact
bilingual phone set. For the recent popular end-to-end
(E2E) acoustic modeling, new universal acoustic modeling
units for CS ASR were proposed to minimize the co-
articulation and discrepancy between different languages,
such as, in [7, 15], the Character-Subword units with
Chinese characters for Mandarin and Byte-pair Encoding
(BPE) [37] subword for English were constructed. Shan
et al. [38] adopted the Mandarin characters plus English
letters and wordpieces as its E2E modeling units. For the
new strategies of CS ASR, most works aimed at inte-
grating the individual language information to improve
the final CS models. For example, two language-specific
DFSMN subnets with a shared output layer was proposed
to model the CS acoustic information in [15]. And in
[7, 16, 38], multi-task joint training of language identi-
fication and CS E2E ASR tasks were investigated, and
in some works, the transfer learning was also used to
provide a good initialization of the E2E encoders using
large-scale monolingual corpus. In addition, to exploit
the large-scale untranscribed code-switching data, many
other efforts have been paid on using the unsupervised
and semi-supervised learning for improving the CS acous-
tic model, such as in [26, 39, 40], etc. All of these pre-
vious works have been proved to be effective, either for
alleviating the data sparsity or co-articulation effects at
some extent. However, they still can not solve the embed-
ding language pronunciation variation problem, because
most current hybrid acoustic modeling approaches still
highly rely on the monolingual lexicons with standard
pronunciations. And moreover, in E2E Mandarin-English
ASR scenarios, most sub-words or wordpiece extraction
approaches only consider character sequence frequencies
instead of acoustics, which at times produce inferior sub-
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word segmentation that might lead to erroneous speech
recognition output [41].
Therefore, in few latest works, people start to focus

on dealing with the pronunciation variation prob-
lem in acoustic modeling. For example, to handle the
accented pronunciation problem in conventional DNN-
based hybrid Mandarin-English code-switching ASR sys-
tem, [17] proposed to generate native pronunciations rep-
resentation of embedding language words in the matrix
language phoneme set, using a combination of existing
acoustic phone decoders and a LSTM-based grapheme-
to-phoneme (G2P) model. However, for the popular E2E
architectures in CS ASR, we have not found any approach
focusing on the pronunciation variation issue in the litera-
ture, although in some recent works for monolingual E2E
ASR, they have found that the high quality pronunciation
lexicons developed by linguists can potentially improve
the performance of E2E systems, such as the detail inves-
tigations on evaluating the value of pronunciation lexicon
in E2E models in [42] and the pronunciation-assisted
sub-word modeling method in [41].
In this study, we also focus on dealing with the pro-

nunciation variation problem in theMandarin-English CS
ASR tasks. We aim at achieving better recognition accu-
racy of the embedding languages phrases without any
performance scarify of the matrix language speech, by
using pronunciation augmentation techniques. Unlike the
work in [17], we not only consider merging the acous-
tic similarity between mixed languages, but also consider
enhancing the discriminative information between dif-
ferent languages. New possible pronunciations for those
embedding words at code-switches will be automatically
generated. Combined with the expert information and
G2P, effectiveness of these new pronunciations are exam-
ined in both hybrid and E2E CS ASR systems.

3 The proposed pronunciation augmentation
approach

In this section, we present the details of the proposed
pronunciation augmentation approach. An English-to-
Mandarin (E2M) mix-language phone mapping approach
is first proposed to obtain an universal code-switching
phone set. Based on this phone set, we further investigate

a pronunciation augmentation strategy for embed-
ding language words using acoustic data-driven lexicon
learning.

3.1 E2M phonemapping
It is well known that there is big language difference
between Mandarin and English; however, the existence of
the co-articulation and CS data sparsity problem make
it important to use an universal phone set for building
a success DNN-HMM based hybrid ASR system. Instead
of mapping all the embedding language phones to the
matrix language phones as in previous works [8, 17],
here we choose to cast light on the balance between the
similarities and differences of the two mixed Mandarin
and English languages. Only part of phones with high
similarity measure are merged together.
Figure 1 illustrates the proposed framework of E2M

mix-language phone mapping. In this framework, we
combine two effective conventional data-driven phone
clustering methods with an expert correction to gener-
ate the final universal phone set for Mandarin-English
code-switching ASR. Specifically, given two monolingual
lexicons and speech corpus, we first obtain a set of English
to Mandarin phone mapping pairs �Tag , using the Tag
model-based phone mapping method that has been pro-
posed in [8]. Then, we perform the TCM phone clustering
to obtain another set of phone mapping pairs �TCM as
proposed in [43]. These two sets of pairs are further
combined and merged using following rule:

�Com = {(PE ,PM)|(PE ,PM) ∈ {�Tag ∩ �TCM}} (1)

where PE is the English phone, PM is Mandarin phone,
and (PE ,PM) is the E2M phone mapping pair, �Com con-
tains those E2M pairs that lie in both the �Tag and �TCM
sets. These pairs are taken as the high confidence similar-
ity phone mapping pairs, because they derived from two
different phone clustering methods.
The principle of the Tag model-based method aims at

sharing individual Gaussians across languages. All the
Gaussians in the Tag model are clustered in a single,
phone-independent, language-independent, Kullback-
Leibler divergence-based, Vector Quantization (VQ)
code-book. If any two phones in the Tag model have the

Fig. 1 The proposed E2M mix-language phone mapping framework
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majority of their Gaussians lying in common VQ clusters,
then these phones are assumed to be similar [8]. On the
other side, the TCM-based method in [43] is a two-pass
phone clustering method that is based on a co-occurrence
confusion matrix. In each pass, Mandarin and English
take turns as the source and the target language. The
counts of co-occurrence between force-aligned target
phone strings and the corresponding source phonetic
transcriptions are then arranged to calculate the con-
fusion probability between phone pairs. That is to say,
these two methods merged the characteristics of two
languages in totally different aspects. Therefore, we
hope that comparing and integrating the outputs of two
different methods can not only assure the confidence of
data-driven phone mapping but also can provide some
potential guidance for our further expert correction.
Besides the �Com, as shown in Fig. 1, we also add an

expert correction stage to improve the overall quality of
E2M phone projection. The motivation of this stage is
that, in our extensive experiments, we find the �Com con-
tains most of non-vowel phone mappings, but with only
few vowel phone-mappings, most vowel phone-mappings
produced by the TCM and Tag-model based methods
are very different. Therefore, we invite three linguistic
experts from Shanghai Normal University to perform the
vowel phone mapping correction. In this stage, all pairs
in �Com are directly fed into the final phone mapping set
�Final; only other vowel phone mapping pairs in �Tag and
�TCM are then checked and corrected by linguists. The
majority voting rule (2/3) is used to measure the relia-
bility of experts’ correction. This correction process not
only dependent on the linguistic knowledge of experts,
but also guided by the statistics of confusion matrices
achieved from the TCM and Tagmodel-based phone clus-
tering processes. It worth noting that we do not perform
any mapping for those pairs with low similarity measure-
ments (e.g., the DH, ZH in CMU English lexicon); keeping
these language-dependent phones may help to integrate
the large acoustic and language discriminative informa-
tion during acoustic modeling. Finally, all of the corrected
phone mapping pairs, the pairs in �Com, and the few
language-dependent English phones are combined to pro-
duce the final universal CS phone set, perform the English
lexiconmapping, and obtain the final universal CS lexicon.

In addition, according to the experts’ knowledge and
different outputs of the above two phone clustering
methods, we speculate that it may be useful to perform
a one-to-two or one-to-many mapping for those English
vowels with a similarity measure larger than a threshold.
This may help to efficiently handle the Mandarin accents
in English words because all the mappings from both
phone clustering methods are data-driven results. A
mapping pair has a very high confusion probability may
still indicates a similar acoustic characteristics, even it is
not lie in �Com set. Therefore, in this study, besides the
one-to-one mapping, the one-to-two mapping cases with
a further expert correction are also investigated. Two
one-to-two mapping examples for English phones AA and
IY are illustrated in Fig. 2.

3.2 Pronunciation augmentation using Lexicon learning
The idea of our pronunciation augmentation approach
is motivated by the algorithm of acoustic data-driven
lexicon learning in [18]. In [18], this algorithm was pro-
posed to automatic generate pronunciations for the OOV
words in monolingual English ASR task. However, in
this study, we borrow the lexicon learning idea to han-
dle the pronunciation variation problem in Mandarin-
English code-switching ASR. It is developed to generate
informative new pronunciations only for the embedding
language (English) words. These new pronunciations are
then appended to the universal CS lexicon for ASR acous-
tic modeling.
In fact, it is also possible for the system to produce new

pronunciations for Mandarin words using lexicon learn-
ing. However, in our Mandarin-English code-switching
tasks, the Mandarin is the matrix language, while English
is the embedding language, all the Mandarin words are
spoken by the native speakers, and there is no pronunci-
ation variation for a native speaker to say native speech.
Therefore, we only considering the new pronunciations
of English words and ignore those ones produced for the
Mandarin words.
Figure 3 presents the whole framework of the proposed

pronunciation augmentation using lexicon learning. It
includes three main modules: (a) the CS lexicon prepa-
ration for all the words in acoustic training data, (b)
the new pronunciation candidates collection, and (c) the

Fig. 2 One-to-two phone mapping cases
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Fig. 3 The proposed pronunciation augmentation framework of embedding language words in CS ASR using lexicon learning

pronunciation pruning and selection. This framework is
very similar to the one proposed in [18], however, there is
many implementation details that are specially designed
for the focused code-switching speech recognition task.
In module (a), we first create a Mandarin-English CS

lexicon by mapping the standard monolingual English lex-
icon using those phone mappings obtained in Section 3.1.
Then, unlike the small seed lexicon in [18], here we
extend the whole CS lexicon by training a Sequitur G2P
[44] model on it to produce initial pronunciation only
for OOV words in the training data. Based on the G2P
extended lexicon, in module (b), we train an acoustic
model using all of the monolingual Mandarin, English,
and code-switching speech data to perform the training
data forced-alignment, build the phone language model,
and further construct a phonetic decoder. This decoder is
then used to generate the phonetic transcription for each
specific word w exist in the training data. Finally, for each
individual word, we can obtain many new pronunciations
candidates (PD) generated from the phonetic decoding,
by aligning the phone sequence of forced-alignment
and phonetic transcription using a normalized relative
frequency measurement. These PDs can be combined
with the G2P extended lexicon into a large CS lexicon
(Combined Lexicon) for the next acoustic evidence col-
lection in module (c). The “acoustic evidence” is defined
as τ � p(Ou|w, b); it is the acoustic conditional data like-
lihood of utterance Ou, given the pronunciation of word
w being b. This “acoustic evidence” is derived from the
per-utterance lattice pronunciation-posterior statistics,
and these statistics are computed using lattices of training
utterances that are produced based on the Combined
Lexicon and existing acoustic model in module (b).
Given a set of pronunciation candidates for a specific
word w, and the acoustic evidence τ per utterance, the
pronunciation pruning and selection are performed

using an iterative greedy pronunciation selection (IGPS)
procedure with a per-utterance likelihood reduction cri-
terion. Finally, with this procedure, all the least important
pronunciation candidates will be iteratively removed in
an efficient greedy fashion. All the details about lexicon
learning algorithm and other implementation tricks,
please refer to the work [18].
Furthermore, unlike the motivation to generate pronun-

ciations for OOV words in [18], the lexicon learning idea
in this study just plays a pronunciation augmentation role.
Therefore, based on the greedy pronunciation selection,
we added an additional PD selection constraint to assure
a higher quality of new pronunciations as below:

PD(w)τ � ρ Avg.R(w)τ (2)

where PD(w)τ is the “acoustic evidence” soft counts of
pronunciation for wordw derived from phonetic decoding
after the last iteration of IGPS. Avg.R(w)τ is the average
soft counts of word pronunciations in the reference source
lexicon (G2P Extended CS Lexicon), and ρ ∈[ 0, 1] is the
statistical pruning factor.
It worth noting that only the training utterances contain

English words are taken into account during the acoustic
evidence collection and PD pruning stages, because in our
CS task, we only expect to augment the pronunciations
of English words for the heavy pronunciation variation
issue. After the greedy process of PD pruning, only the
informative subset of PDs for each word with acoustic evi-
dence is selected. These informative pronunciations are
then used to augment the source CS lexicon for acoustic
modeling. For those words in target vocabulary that are
not seen in the acoustic training data, or no pronunciation
produced during lexicon learning, we choose to generate
their pronunciations by re-training a CS G2P model using
the already augmented lexicon, instead of the initial G2P
pronunciation candidates in module (a).
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4 Speech recognition systems
Three types of ASR system are used to evaluate the pro-
posed method. They are the conventional GMM-HMM
system, the state-of-the-art lattice-free maximum mutual
information (LF-MMI)-based hybrid system and the latest
Transformer-based E2E system.

4.1 GMM-HMM system
Our GMM-HMM systems are built using the open source
Kaldi speech recognition toolkit [45]. The 13-dimensional
mel-frequency cepstral coefficients (MFCC) plus one-
dimensional pitch with their first- and second-order dif-
ferential coefficients are used as the input acoustic fea-
tures to train the initial GMM-HMM acoustic models.
Based on the initial model, all of the acoustic features
are then spliced over 9 frames and projected to 40-
dimensional subspace using the linear discriminant analy-
sis (LDA). A further maximum likelihood linear transform
(MLLT) is applied to transform the projected features
for a better orthogonality. These transformed features are
then used to refine the GMM-HMM parameters. After
the decision tree clustering, the final models have around
6000 context-dependent tied states with around 32 Gaus-
sians per state (different lexicon leads to different number
of states). Based on this LDA+MLLT model, we further
perform the speaker adaptive training (SAT) with con-
strained maximum likelihood linear regression to adapt
the Gaussian mixture model parameters. After adapting
the parameters, a re-alignment is performed to improve
the LDA+MLLT+SAT system. The framework and imple-
mentation details of our GMM-HMM system training are
followed the example recipe egs/swbd/s5c in Kaldi
main branch.

4.2 LF-MMI based hybrid system
The LF-MMI based ASR hybrid framework was first pro-
posed in [46]. Because of its good performances and excel-
lent generalization ability, it has been becoming a main-
stream technology for speech recognition, either in indus-
try or in academic community. The LF-MMI based hybrid
acoustic model is a time-delay neural network (TDNN)
with multi-splice sub-sampling topology. Povey et al. [46]
proposed to train it in a purely sequence-discriminative
way using the lattice-free version of the MMI criterion.
Compared with the classical TDNN training with cross-
entropy criterion, three major modifications have been
introduced to the LF-MMI TDNN training:

• Training from scratch without initialization from a
cross entropy system.

• The use of a threefold reduced frame rate and a
simpler HMM topology.

• Limiting the range of time frames where supervision
labels can appear by using finite state acceptors (FSA).

In addition, unlike the denominator lattices in classi-
cal MMI, the lattices in the LF-MMI architecture are first
generated from a phone-level n-gram language model,
and then compiled into utterance-specific FSA graphs for
TDNN training. Furthermore, to avoid over-fitting dur-
ing training, the cross-entropy objective function as well
as the leaky HMM are also applied as extra regularization
techniques in this architecture. In this study, we choose to
use a TDNN-LSTM hybrid structure presented in [47] as
our acoustic model because of its better performances.

4.3 Transformer-based E2E system
With the great success of no-recurrence sequence-to-
sequence model-Transformer proposed in machine trans-
lation [48], more and more research works in speech
community start to focus on it. Recently, a Speech-
Transformer [49] was successfully proposed by introduc-
ing the Transformer to ASR task. With the encoder-
decoder architecture and multi-head self-attention mech-
anism to learn the context and positional dependen-
cies, the Transformer has proven to be very successful
to achieve competitive speech recognition performances,
and it has already become the state-of-the-art E2E ASR
system.
Compared to the above LF-MMI based hybrid system

that consist of separate pronunciation, acoustic, and lan-
guage models, the Transformer-based ASR system is a
single neural-network which implicitly models all three.
Due to lack of pronunciation lexicon, most E2E sys-
tems choose to model the output text sequence in finer
units instead of the whole words, such as the charac-
ters, BPE subwords, and wordpieces. Therefore, in this
study, we also investigate how to improve a Transformer-
based E2E system for Mandarin-English code-switching
ASR, by introducing the augmented CS pronunciations to
assist the BPE subwordmodeling. This is motivated by the
recent work of pronunciation-assisted subword modeling
(PASM) proposed in [41]. We hope the PASM can gener-
ate linguistically meaningful subwords for the embedding
language English by analyzing the training text corpus and
our augmented CS lexicon.
The recipe of PASM word segmentation1 was used in

our experiments. All the experiments of E2E ASR system
building were performed using the open-source end-to-
end speech recognition toolkit ESPnet [50].

5 Experimental configurations
5.1 Datasets
The corpus used to build our code-switching ASR sys-
tems is provided by Unisound Corporation2, including
186 hours (hrs) Mandarin-English code-switching speech,

1https://github.com/hainan-xv/PASM.git
2https://www.unisound.com/

https://github.com/hainan-xv/PASM.git
https://www.unisound.com/
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500 hrs Mandarin, and 100 hrs English (with Chinese
accent) monolingual speech. We use “Chilish” to term this
accented English set. All of the utterances are conversa-
tional speech or speech collected from voice search, and
the speakers are all from the mainland of China. In our
training set, there is a heavy imbalance between the data
amount of Mandarin and Chilish, because in real appli-
cations, it is much harder to collect Chilish speech than
Mandarin.
As our goal is to improve the ASR performance of the

embedding language without any performance scarify of
the matrix language, we designed three test sets for per-
formance evaluation, one is a 3 hrs pure Mandarin speech
test set (Mandarin), one is 3.6 hrsMandarin-English code-
switching test set (1.6 hrs are from voice search, 2.0 hrs
are general conversational speech), and the third one is a
pure 1.6 hrs Chilish test set.

5.2 Neural network structures and acoustic features
The experimental configurations of GMM-HMM systems
have been already presented in Section 4.1. Unlike the
typical TDNN, the LF-MMI based TDNN-LSTM hybrid
system is a mixture architecture of LSTMPs and sub-
sampled TDNNs, using 3 fast-LSTMP layers interleaved
with 7 spliced TDNN layers. More details of this archi-
tecture can refer to the TDNN-LSTMP structure used
for SWBD corpus in [47]. The frame-level alignments
and lattices in TDNN-LSTMmodel training were directly
generated from the GMM-HMM system. The recipe of
swbd/s5c/local/chain/run_tdnn_lstm.sh in
Kaldi repository is used for our hybrid model training, but
without any i-vectors or other speaker adaptation tech-
niques. The language model used in both GMM-HMM
and hybrid system is the same trigram LM that built on
all of the training data texts.
As most ASR example recipes in ESPnet, for the

Transformer-based E2E systems, we use 12 Encoder and 6
Decoder blocks with 2048 feed-forward inner dimension.
The model dimension dmodel is set to 256 and the atten-
tion head number h was set to 4. Both the hybrid and E2E
acoustic models use the same 80-dimensional filter-bank
features, plus 3-dimensional pitch (pitch and its first and
second derivatives). All of the input acoustic features are
extracted using a 25-ms Hamming window with a 10-ms
frame shift. In addition, to enhance the model robust-
ness, we perform both the SpecAugument and speed
perturbation acoustic data augmentation during all
the hybrid and E2E system training.

5.3 Lexicon and performance measure
The monolingual Mandarin lexicon (MLex) used in
this study is an ARPAbet-based tonal lexicon provided
by Unisound Corporation. It has 109 phoneme/toneme
phone set, covering more than 200k Mandarin words.

Table 1 TER% results on pure Chilish test set of GMM-HMM
systems

Training data Chilish

LibriSpeech (460hrs) 57.3

Chilish (100hrs) 25.9

The monolingual English lexicon is the CMU open source
English dictionary with 39 phonemes3. In the experi-
ments, these two monolingual lexicons are first combined
andmapped into an universal CS lexicon, and then further
augmented using the proposed E2M mix-lingual phone
mapping and lexicon learning approaches to handle pro-
nunciation variation problem in the code-switching ASR
tasks. For the system performance measure, we use token
error rate (TER), where the “token” refers to the unit of
Mandarin character and English word respectively.

6 Results and discussions
6.1 Acoustic difference between native and non-native

English speech
It is well known that there is big acoustic difference
between native English and non-native English speech.
In Table 1, we also performed an experiment to validate
this difference. In this experiment, the 1.6 hrs Chilish test
set is taken for evaluation. The 100 hrs Chilish training
data is used to train the GMM-HMM model for non-
native monolingual English. The native English model is
directly taken from the Kaldi LibriSpeech repository on
LibriSpeech.
Both systems in Table 1 are trained using the CMU lexi-

con. From the big TER gap on Chilish test set, it is clear to
observe the significant acoustic difference between native
English and Chilish, even the native acoustic model is
trained on a larger corpus. However, in the literature, most
ASR systems related to English are still using the CMU
pronunciations which are specially designed for the native
English. This indicates that there might be chance to
improve the ASR performance by integrating the acoustic
variations in the lexicon pronunciations.

6.2 Evaluating E2M phonemapping in conventional ASR
systems

Table 2 compares the effectiveness of the proposed E2M
mix-lingual phone mapping with different conventional
phone mapping methods. The first two systems with
only MLex and CMU lexicon are monolingual Man-
darin and English system respectively; they are only sep-
arately trained using the 500 hrs Mandarin and 100 hrs
Chilish training data. Other systems in this table are all
coder-switching GMM-HMM systems and trained on the
total 786 hrs training data. The “CMU+MLex” repre-
sents directly concatenating the phone sets and lexicons
3CMU lexicon:http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict

http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict
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Table 2 Performance comparison(TER%) on and code-switching
test sets from GMM-HMM systems with different phone mapping
methods

Phonemappingmethod Mandarin Code-switching Chilish

Only MLex 18.2 – –

Only CMU – – 25.9

CMU+MLex(baseline) 17.6 32.3 26.7

TCM [43] 17.9 25.6 27.2

Tag model-based [8] 17.5 25.2 27.0

E2M-po2o 17.5 23.7 27.0

of CMU and MLex without any phone sharing or map-
ping. The “TCM” and “Tag model-based” are the con-
ventional data-driven phone clusteringmethods proposed
in [43] and [8] respectively. The “E2M-po2o” is our pro-
posed E2M phone mapping, in which only part of English
phonemes are involved in the English to Mandarin phone
mapping, and in this case, they are just an one-to-one
mapping.
From TERs in Table 2, three observations can be

found: (a) phone-mapping is very effective to improve
the code-switching ASR performances, either by using
the TCM, Tag model-based phone clustering or the pro-
posed E2M. Both conventional phone clustering meth-
ods achieved more than a relative 20% TER reductions
over baseline, a further 6% TER reduction is obtained
by the proposed E2M. In the proposed E2M framework,
this further gain may benefit from the tradeoff mecha-
nism between language-independent acoustic common-
ness and language-dependent characteristics. (b) More

Chilish words are mis-recognized by the universal code-
switching acoustic model than the pure English model;
it indicates that phone mapping brings acoustic confu-
sion between Chilish and Mandarin than monolingual
ASR. (c) On the Mandarin test set, all of the CS mod-
els achieve better performances than the system trained
on pureMandarin data. Relative 1.6–3.8% TER reductions
has been obtained. This is due to the increased Man-
darin data included in the CS training set. In addition,
we can see that there is almost no performance degrada-
tion on the Mandarin test set, by using phone mapping or
clustering methods over the baseline.
Figure 4 demonstrates the TERs calculated separately

on the Mandarin and English part of the code-switching
test set. “CS” is the whole code-switching test set as shown
in Table 2, “CS-Mandarin” and “CS-English” represent
the Mandarin part and English part of CS. Compared
with the CMU+MLex baseline, both the performances of
Mandarin and English speech are improved by the pro-
posed E2M. And moreover, it is clear to see that the
performance gain on English part is much larger than the
one on Mandarin part. This indicates that the Chinese
accent characteristics of embedding English words are
well learned and the acoustic events of code-switches are
heavily increased by the proposed E2M; the recognition
error within code-switches are significantly reduced.
Table 3 shows the performance comparison of the state-

of-the-art LF-MMI based hybrid systems with different
E2M phone mapping strategies. From the TER numbers
in Tables 2 and 3, we can see that these hybrid systems
achieve significant ASR performance gains (more than

Fig. 4 TER% between Mandarin and English part of code-switching test set with different phone mapping methods
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Table 3 Performance (TER%) comparison of the proposed E2M
in LF-MMI based hybrid systems

Phonemappingmethod Mandarin Code-switching Chilish

CMU+MLex (baseline) 5.5 12.9 14.9

E2M-po2o 5.2 11.5 15.4

E2M-po2m 5.8 12.2 15.9

E2M-po2o-T, E2M-po2m-D 5.4 10.8 15.4

relative 45%) over the conventional GMM-HMM systems.
The “E2M-po2m” is the proposed E2M phone mapping
with part of English phones (∼ 38%) are mapped to two
or three Mandarin phones. “E2M-po2o-T, E2M-po2m-D”
means we use the “E2M-po2o” for acoustic model train-
ing, while “E2M-po2m” is used for decoding. Except for
the last line of Table 3, all other systems use the same
lexicon for both the acoustic model training and decoding.
Compared with the large gains obtained from phone

mapping in GMM-HMM systems, the E2M-po2o only
obtains relative 10.8% TER reduction on code-switching
test set over the CMU+MLex baseline. In addition, by
comparing the results on code-switching test set of last
two lines in Table 3, it is interesting to find that the
one-to-many mapping in E2M brings more mix-lingual
acoustic confusion than the one-to-one phone mapping.
And given the fixed universal phone set, only using proper
one-to-many phone mapping in the decoding stage can
bring further 6.1% TER reduction over the E2M-po2o
method. This may due to the fact that more pronunciation

entries provided more possible competitive candidates in
theWFST paths.Moreover, it is clear to see that the recog-
nition of pure Mandarin speech does not significantly
affected by different phone mapping methods, while on
the pure Chilish test set, a relative 6.7% performance
degradation is obtained. This indicates that the acoustic
model with a Mandarin dominant phone set and train-
ing data is not suitable for a pure English ASR task. In
addition, the TER gains on code-switching test set indi-
cates that the training data of acoustic modeling bi-phone
units for code-switches is also significantly increased in
the hybrid acoustic modeling through the phonemapping.

6.3 Examination of Lexicon learning-based
pronunciation augmentation

6.3.1 Performances in conventional ASR systems
After achieving the universal E2M-po2o mix-
lingual lexicon, we then augment the pronunciations
of English words in training data set using the
proposed lexicon learning-based framework in
Fig. 3. The recipe of wsj/s5/steps/dict/
learn_lexicon_greedy.sh in Kaldi main branch is
modified to perform our CS ASR lexicon learning. During
the iterative greedy pronunciation selection, we tune the
scaling factor α = 0.05, 0.01, 0.001 and smoothing factor
β = 10, 5, 10 to compute the likelihood reduction thresh-
old for controlling the pruning degree of pronunciations
from the phonetic decoding, G2P, and source lexicon
respectively. Figure 5 demonstrates new pronunciation

Fig. 5 Samples of learned pronunciations for embedding English words. “Ref” and “Learned” is the word-pronunciation pair in the source (“G2P
Extended CS Lexicon”) and learned lexicon in Fig. 3 respectively
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Table 4 Performance(TER%) comparison of the proposed lexicon learning-based pronunciation augmentation on conventional ASR
systems

System ρ Lexicon(avg.#prons) Mandarin Code-switching Chilish

GMM-HMM

– Source Lexicon 17.5 23.7 27.0

0.1 + LexLearn (3.65) 17.8 22.8 26.4

0.4 + LexLearn (3.07) 17.6 22.1 26.2

0.7 + LexLearn (2.41) 17.6 21.6 26.0

LF-MMI hybrid – Source Lexicon 5.2 11.5 15.4

LF-MMI hybrid-1 0.7 + LexLearn (2.41) 5.7 10.9 15.2

LF-MMI hybrid-2 0.7 + LexLearn (2.41) 5.5 10.4 14.8

“avg.#prons” means the average pronunciations per English word included in the training data. ρ is the pruning factor of acoustic soft counts in Eq.(2)

samples learned for five embedding English words. It is
clear to see that the learned pronunciations based on
the acoustic evidences tend to be more Chilish than the
ones from only one-to-one E2M mapping. It may provide
a chance for acoustic model to capture the accent and
mis-pronounced property of the embedding English
words by augmenting the lexicon with these learned
pronunciations.
Table 4 presents the performance comparison of the

proposed lexicon learning-based pronunciation augmen-
tation on conventional ASR systems. The “Source Lexi-
con” is the universal CS lexicon with E2M-po2o phone
mapping. “+ Lexlearn” means the “Source Lexicon” aug-
mented with the new pronunciations of English words
learned from the proposed CS lexicon learning frame-
work. The same acoustic modeling and decoding lexicon
is used for eachGMM-HMMand “LF-MMI hybrid-1” sys-
tem as shown in this table. However, the “LF-MMI hybrid-
2” system used different lexicons with E2M-po2o and
E2M-po2m phone mapping respectively for the acoustic
modeling and decoding, and both lexicons are also aug-
mented with the same new pronunciations as in “LF-MMI
hybrid-1” system. System “LF-MMI hybrid” is the same as
system with “E2M-po2o” in Table 3.
From the results of Table 4, we can see that by using

the augmented CS lexicon, the GMM-HMM systems can
obtain a relative 3.8 to 8.8%, and 2.2 to 3.7%TER reduction
on the code-switching and Chilish test set respectively. By
taking the source pronunciations as reference, introducing
the acoustic soft-count pruning factor can effectively help
to select better new pronunciations with enough acous-
tic evidences. Based on the outputs of standard iterative
greedy pronunciation selection, we find that the ρ = 0.7
achieves the best results. Furthermore, by comparing the
results of hybrid systems in Table 4 with their baselines
in Table 3, we still can obtain relative 5.2% (hybrid-1)
and 3.7% (hybrid-2) TER reduction on the code-switching
test set by using the augmented lexicon, and consistently,
the TER of Chilish is also reduced from 15.4 to 14.8%.
However, it is clear to see that the gains obtained on LF-

MMI based hybrid systems are much smaller than the
ones obtained on GMM-HMM systems; it indicates that
the hybrid system has a better acoustic modeling ability
to deal with the pronunciation variations of embedding
language than the traditional GMM-HMM system.

6.3.2 Performances in transformer-based ASR systems
Table 5 compares the results with different target acous-
tic modeling units in our E2E Transformer-based code-
switching ASR systems. The targets of our baseline sys-
tem are a set of Mandarin characters and English letters
plus blank symbol which leads to an output dimension
of 5257. In addition, we also tried to adopt the widely
used BPE subword segmentation to generate 2000 sub-
words as acoustic modeling units for English. Therefore,
in the systemwith “Character-BPE,” there is a total of 7230
acoustic modeling targets. The systems with “Character-
PASM(*)” modeling units are performed to examine the
effects of our augmented CS lexicon for a better English
subword generation. In these system, the Mandarin char-
acters units are the same as in the baseline, but the
English targets are produced from the universal CS lexi-
cons using the pronunciation-assisted subword modeling
(PASM) method. Three CS lexicons are investigated, the
basic “CMU+MLex,” the lexicon with E2M-po2m phone
mapping, and the final augmented CS lexicon with acous-
tic lexicon learning (“Source Lexicon+Lexlearn (2.41)” in

Table 5 Results (TER%) of Transformer-based E2E CS ASR
systems with different target acoustic modeling units

Modeling units Mandarin Code-switching Chilish

Baseline (character-letter) 5.2 11.6 15.9

Character-BPE 5.3 11.1 15.3

Character-PASM
(CMU+MLex)

5.2 10.7 15.3

Character-PASM
(E2M-po2m)

5.1 10.5 15.1

Character-PASM (Source
Lexicon+Lexlearn (2.41))

5.2 10.1 14.8
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Table 4). For a clear comparison, we keep the number of
subword units to be the same in BPE and PASMs.
By comparing the E2E results in Table 5 with the best

result of LF-MMI hybrid systems in Table 4, we can see
a little bit performance improving on pure Mandarin test
set while the performance of code-switching and Chilish
speech are significantly degraded, such as for CS test
set, the TER is degraded from 10.4 to 11.6%. However,
by using the BPE subwords instead of simple letters as
English E2E acoustic modeling targets, a relative 4.3%
and 3.8% TER gains are obtained on the code-switching
and Chilish test set respectively. This indicates that the
BPE subwords can provide a better acoustic represen-
tation than simple letters. When we use the PASM to
produce English targets instead of the BPE, the TER of CS
is reduced from 11.1 to 10.7% with only CMU pronunci-
ations for English. This observation is consistent with the
one achieved in [41]. And it indicates that unlike the BPE
only taking the spelling into consideration, leveraging the
pronunciation information of a word during the subword
segmentation can produce better E2E acoustic model-
ing units. Furthermore, when we use the phone mapped
universal CS lexicon, a further 1.8% relative TER reduc-
tion on CS is obtained. And in addition, by comparing
the results on both code-switching and Chilish test sets
between last two lines of Table 5, the E2E CS ASR sys-
tem can also benefit from the learned new pronunciations.
These observations indicate that the learned and phone
mapped new pronunciations provided more phonetically
meaningful subwords for the embedding English words.

7 Conclusion
This paper presents a pronunciation augmentation frame-
work based on the universal Mandarin-English code-
switching lexicon. This framework is proposed to handle
the accented pronunciations or randomly mispronounced
words of the embedding English in the code-switching
speech recognition task. We first examine the proposed
English-to-Mandarin phone mapping on both the con-
ventional GMM-HMM and the state-of-the-art LF-MMI-
based hybrid ASR systems. Experimental results show that
we obtain more than relative 10% TER reduction on the
code-switching test set, by using the universal CS lexicon
with the proposed phone mapping strategy. In addition,
from the comparison results on the GMM-HMM systems,
we can see that this strategy provided much more ASR
performance gains than two conventional phone mapping
methods in the literature, by considering the balance of
acoustic similarity and language discrimination between
Mandarin and English.
Furthermore, based on the universal CS lexicon, we

validate the proposed pronunciation augmentation frame-
work from two main aspects. One is directly using the
augmented pronunciations to train conventional GMM-

HMM and LF-MMI hybrid systems. The other is using
the augmented pronunciations to assist the subword seg-
mentation to generate better acoustic modeling targets for
end-to-end Transformer-based ASR system. The exten-
sive results in Section 6.3.2 show that both the proposed
phone mapping and pronunciation augmentation frame-
work can also be taken as effective solutions for improving
the E2E CS ASR performances.
More investigations about proposing new pronunciation-

assisted methods to fully exploit the phonetically mean-
ingful information for improving E2E CS ASR system and
validating the proposed methods on other CS corpus will
be our future works.
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