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Abstract

Voice conversion is to transform a source speaker to the target one, while keeping the linguistic content unchanged.
Recently, one-shot voice conversion gradually becomes a hot topic for its potentially wide range of applications,
where it has the capability to convert the voice from any source speaker to any other target speaker even when both
the source speaker and the target speaker are unseen during training. Although a great progress has been made in
one-shot voice conversion, the naturalness of the converted speech remains a challenging problem. To further
improve the naturalness of the converted speech, this paper proposes a two-level nested U-structure (U%-Net) voice

conversion algorithm called U?-VC. The U?-Net can extract both local feature and multi-scale feature of log-mel
spectrogram, which can help to learn the time-frequency structures of the source speech and the target speech.
Moreover, we adopt sandwich adaptive instance normalization (SaAdalN) in decoder for speaker identity
transformation to retain more content information of the source speech while maintaining the speaker similarity
between the converted speech and the target speech. Experiments on VCTK dataset show that U%-VC outperforms
many SOTA approaches including AGAIN-VC and AdalN-VC in terms of both objective and subjective measurements.

Keywords: Voice conversion, U2-Net, Sandwich adaptive instance normalization

1 Introduction

It is well-known that speech information is composed of
four components: timbre, rhythm, pitch, and content. As
stated in [1], the content represents the linguistic part of
the speech, and the timbre represents the speaker identity.
Voice conversion (VC) aims to convert the timbre while
maintaining the linguistic content unchanged. This tech-
nique can be applied in many fields, such as pronunciation
assistance [2, 3], personalized speech synthesis [4, 5], and
even dubbing.

The existing voice conversion systems can be roughly
divided into parallel voice conversion [6-9] and non-
parallel voice conversion [10-17], which depend on
whether the model of this system is trained on paired
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utterances of the same linguistic content spoken by source
and target speakers or not [18]. Due to the difficulty of col-
lecting parallel data in reality, non-parallel VC has gained
more attention, and many researchers have proposed
lots of effective methods, such as generative adversarial
network (GAN) [10-13], variational auto-encoder (VAE)
[14], and attention-mechanism [15]. However, many con-
ventional non-parallel VC algorithms cannot work well
when converting a voice of one unseen speaker in the
training data without being retrained.

Recently, one-shot voice conversion has been proposed
to solve the problem of the conventional non-parallel
voice conversion. For one-shot voice conversion, either or
both of the source speaker and the target speaker can be
unseen during training. Several works [19-22] have been
done for this challenging task, while the naturalness of the
converted speech still remains an unsolved problem.

In this paper, we propose a one-shot voice conversion
algorithm based on U2-Net [23] called U2-VC, where
U2-Net was first used in salient object detection (SOD).
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Different from U-Net [24], U2-Net is consisted of many
residual U-blocks (RSU) with different layers [23]. Each
residual U-block can extract both local feature and multi-
scale feature from input image to preserve more detailed
information about salient object. For voice conversion,
if one regards the log-mel spectrogram as a 2D image,
the speech spectrogram can be regarded as the salient
object of this “2D image,” and the residual U-block can
be adopted to extract local feature and multi-scale fea-
ture from the input speech to preserve more detailed
information, which can be expected to improve the nat-
uralness of the converted speech. This motivates us to
design a voice conversion algorithm based on U2-Net to
improve the naturalness of the converted speech. Inspired
by AGAIN-VC [22], the sigmoid function is adopted as
the activation guidance at the last of encoder to guide
the content embedding, so that we can learn more con-
tent information. Moreover, sandwich adaptive instance
normalization (SaAdaIN) [25], which is first proposed for
neural style transformation to reduce content loss during
transformation process, is also adopted for speaker iden-
tity transformation in decoder to maintain more content
information of the source speech and keep the speaker
similarity between the converted speech and the target
speech simultaneously. To the best of our knowledge, it is
the first one-shot voice conversion algorithm with U2-Net
and SaAdalIN. Objective evaluation results such as mel-
cepstral distortion (MCD) [26], NISQA model [27], and
subjective listening tests with mean opinion score (MOS)
showed that the proposed approach outperforms many
state-of-the-art (SOTA) approaches such as AdaIN-VC
[21] and AGAIN-VC [22]. To validate the robustness of
the proposed approach, we also perform experiments in
cross-lingual scenarios, where the results also verify the
better performance of the proposed approach.

2 Related work

2.1 One-shot voice conversion

One-shot voice conversion can be achieved by decou-
pling content and speaker identity with a content encoder
and a speaker encoder, respectively. AUTOVC [19] uses
a pre-trained speaker encoder with a generalized end-to-
end loss [28] and a content encoder with a well-designed
information bottleneck to limit the leakage of speaker
information of the source speaker. However, the pre-
trained speaker encoder might affect the robustness of
the system because it is just trained for speaker verifica-
tion and the structure of information bottleneck with hard
sampling may cause the content information loss, which
makes the converted speech sound unnatural. VQVC+
[20] jointly uses vector quantization (VQ) [29] and U-
Net [24] for extracting content information and improv-
ing the reconstruction simultaneously. Although VQVC+
performs well on speaker conversion, the naturalness
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still cannot meet the specification because of the con-
tent information loss. AdaIN-VC [21] is the first one-
shot voice conversion to perform speaker transformation
through adaptive instance normalization (AdaIN) [30].
Although AdaIN can separate the content information
and the speaker information very well, one can see that
the perceptual quality of the converted speech is still
unsatisfied, e.g., the naturalness. Very recently, AGAIN-
VC [22] was proposed with a single encoder for encoding
both content and speaker identity, where the sigmoid
function was added to the end of the encoder as an
information bottleneck to prevent the content embed-
ding from leaking speaker information. The quality of
the converted speech is better than many existing algo-
rithms, and the naturalness is still a big problem because
the harmonic distortion still often occurs in the converted
speech.

As mentioned above, both the content information
loss and the harmonic distortion lead to the degradation
of the converted speech. Recently, some methods have
been proposed to improve the naturalness of the con-
verted speech [13, 31-33]. Kwon et al. [31] use the atten-
tion mechanism to modify the information bottleneck
structure to preserve more linguistic information, which
can prevent the content loss of the converted speech.
CycleGAN-VC3 [13] uses time-frequency adaptive nor-
malization (TFAN) to reduce the harmonic distortion of
the converted speech in order to make it sound more nat-
ural. Text-to-speech (TTS) [32, 33] and automatic speech
recognition (ASR) [33] techniques also have been intro-
duced to overcome the problem of mispronunciation in
the converted speech. In this paper, the proposed U2-VC
is introduced to improve the naturalness of the con-
verted speech by extracting multi-scale features through
newly designed 1-2-1 residual U-blocks and the usage of
SaAdaIN to maintain more content information during
speaker identity transformation

2.2 U%-Net

U2-Net is a kind of two-level nested U-structure [23],
which is originally used for SOD. Residual U-blocks(RSU)
with different layer (L) are the main components of U?-
Net to extract different scale features. Each RSU has the
same structure: an input convolution layer to extract the
local features, a U-Net like encoder-decoder block with
layer of L to extract the multi-scale features from the
local features, and a residual connection to fuse the local
features and the multi-scale features by summation. The
characteristic of U2-Net makes it able to extract more
details from input features. As demonstrated in [23], U?-
Net can perform well on SOD. Due to the importance
of preserving more harmonic components for the con-
verted speech in improving speech quality, we introduce
the U?-Net to the one-shot VC task, where we verify that
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the naturalness of the converted speech can be improved
significantly by doing so.

3 Proposed approach

For voice conversion, the goal is to design a system that
can convert a source speaker to the target one, while keep-
ing the source linguistic content unchanged, which can be
represented as:

X1-2 = C (X1, X2) (1)

where X; denotes the log-mel spectrogram of the source
speech, and X, denotes that of the target speech. C repre-
sents the nonlinear mapping function. Xi_2 denotes the
log-mel spectrogram of the converted speech.

3.1 Structure overview

Figure 1 plots the overall structure of the proposed U?-
VC, where one can see that U2-VC is mainly consisted
of three parts: an encoder to disentangle content infor-
mation and speaker identity information through instance
normalization (IN), a decoder to achieve speaker iden-
tity transformation through sandwich adaptive instance
normalization (SaAdaIN), and an output module to gen-
erate the final converted log-mel spectrogram of the
converted speech. For encoder, the source log-mel spec-
trogram X is passed through IN layers following the 1-2-1
residual U-blocks and the sigmoid function to eliminate
its speaker information, which is for generating content
embedding. Meanwhile, the skip-connection structure
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passes the speaker embedding © and o, which are calcu-
lated from target log-mel spectrogram X», of each instance
normalization (IN) layer to the paired SaAdalN layer in
decoder for speaker identity transformation. The output
module has the same purpose as the saliency map fusion
module of U2-Net [23]. Firstly, side out log-mel spec-
trograms of the converted speech )?i_)z, with the index
i =1,---,6, are generated by the generation blocks fol-
lowing the 1-2-1 RSU blocks in decoder. The generation
block consists of two GRU layers and a linear layer, and
the output module reshapes the side out log-mel spec-
trograms from 2D to 1D and then fuses them with a
concatenation operation followed by a 1x1 convolution
layer. Finally, a reshaping operation is needed to gener-
ate the final log-mel spectrogram of the converted speech.
The 1-2-1 residual U-blocks and SaAdalN are the most
important components of U2-VC to improve the natural-
ness of the converted speech, and we will describe them in
the next two sections separately. The loss function of U2-
VC will also be introduced finally, and the configuration
of the proposed U2-VC is summarized in Table 1.

3.2 1-2-1residual U-block

RSU was first developed to extract the multi-scale features
from image for salient object detection. More detailed
information can be preserved with this approach. To make
residual U-block suitable for voice conversion task, we
redesigned the residual U-block named 1-2-1 residual U-
block (1-2-1 RSU). The detailed structure of 1-2-1 residual
U-block is shown in Fig. 2b. In Fig. 2, the ReBNConvlD
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Fig. 1 The architecture of U2-VC. The 1-2-1 residual U-blocks (RSU) with different layers (1-2-1RSU7,- - -, 1-2-1RSU4F) consist of the U-Net like encoder-
decoder structure. “7”,"6","5," and “4" represent the layers (L) of 1-2-1 residual U-blocks. Greater L means the1-2-1 residual U-block could capture more
large-scale information . In this network, we set the L from large to small in order to extract the features from the global to the detail. This process
preserves more fine details of input features which could be better for the naturalness of converted speech. Inspired by AGAIN-VC, sigmoid function
is used at the end of encoder. Sandwich adaptive instance normalization (SaAdalN) is adopted in decoder for speaker identity transformation
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Table 1 Bold words represent the three parts of our U2-VC as noted in section 3.
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denotes the input size. “O” denotes the output size.

K" denotes the kernel size. “S” denotes the stride. “D” denotes the dilation. “H” denotes the hidden size. “L" denotes the layer. As stated
before, residual U-block has the same structure as original residual U-block except the input layer and the reshaping operation

Encoder

Decoder

1-2-1RSU7

1-2-1RSU6

1-2-1RSU5

1-2-1RSU4

1-2-1RSU4F

ConviDyy 1:80 0:256 K:1x 1
Conv1Dgyr 11256 04 K:1x 1

Conv1Dyy 11256 O:256 K:3x 3
Conv2Dgpy 111 O:16 K33
Conv2Dgpo~g 1116 O:16 K:3x 3
MaxPool2D K:3x3 S:2
Conv2Dgpny 116 O:16 K:3x3 D:2
Conv2Dpre~r 1132 0:32 Ki3x3
Conv2Dpry 1132 O:1 K33

Conv1Dyy 112256 0:256 K:3x 3
Conv2Dgny 11 O:16 K3 %3
MaxPool2D K:3x3 S:2
Conv2DENgyo~5 1:16 O:16 K:3x 3
Conv2Dgpg 1116 0:16 K3x3 D:2
Conv2Dprs~s 1:132 0:32 K:3x3
Conv2Dpr; 1132 O:1 K33

ConviDy 1:2256 0:256 K3x 3
Conv2Dgny 1 O:16K:3%3
MaxPool2D K:3x3 S:2
Conv2Dgno~s 1116 O:16 K3 3
Conv2Dgps 116 O:16 K:3x 3 D:2
Conv2Dpga~; 1132 0:32 K:3x3
Conv2Dpg 1132 O:1 K3x3

Conv1Dyy 1:2256 0:256 K:3x 3
Conv2Dgpny 11 O:16K3%3
MaxPool2D K:3x 3 S:2
Conv2Dgpp~3 16 O:16 K:3x 3
Conv2Dgpng 116 O:16 K3x3 D:2
Conv2Dpr3~s 1132 0:32 Ki3x3
Conv2Dpry 1132 O:1 K:3x3

Conv1Dyy 11256 0:256 K:3x 3
Conv2Dgny 1 O:16 K3 %3
Conv2Dgpp 116 O:16 K:3x3 D:2
Conv2Dgp3 116 O:16 K3x 3 D4
Conv2Dgng 1:116 O:16 K:3x3 D:8
Conv2Dpg3 1132 0:32 K3x3 D4
Conv2Dpp 1132 0:32K3x3 D:2
Conv2Dpr; 1132 O:1 K:3x3

Convi1Dyy 114 0:256 K:3x3

Conv1Dyy 11256 O:256 K:3x 3
Conv2Dgpyy 1 O:16K3%3
Conv2DENgy~6 116 O:16 K:3x 3
MaxPool2D K:3x3 S:2
Conv2Dgpn7 116 O:16 K3x3 D:2
Conv2Dpre~> 1:132 0:32 Ki3x3
Conv2Dpry 1132 O:1 K3x3

Conv1Dyy 112256 0:256 K:3x 3
Conv2Dgny 1 O:16 K3 %3
MaxPool2D K:3x3 S:2
Conv2DENgyo~5 116 O:16 Ki3x 3
Conv2Dgpg 1116 O:16 K:3x3 D:2
Conv2Dprs~; 1:132 0:32 K33
Conv2Dpr; 1132 O:1 K:3x3

ConviDyy 1:1256 0:256 K3x 3
Conv2Dgpy 111 O:16 K3x3
MaxPool2D K:3x3 S:2
Conv2Dgno~g 1116 O:16 K33
Conv2Dgps 116 O:16 Ki3x3 D:2
Conv2Dpga~; 1132 0:32 K3x3
Conv2Dpgy 1:32 O:1 K3x3

Conv1Dyy 11256 O:256 K:3x 3
Conv2Dgng 111 0:16 K3%3
MaxPool2D K:3x3 S:2
Conv2Dgpnp~3 16 O:16 K:3x 3
Conv2Dgng 116 O:16 K3x3 D:2
Conv2Dpr3~ 1132 0:32 Ki3x3
Conv2Dpry 1132 O:1 K3x3

Conv1Dyy 1:2256 0:256 K:3x 3
Conv2Dgny 1 O:16K3x%x3
Conv2Dgpp 116 O:16 K3x3 D:2
Conv2Dgp3 16 O:16 K3x 3 D4
Conv2Dgns 1:116 0:16 K:3x3 D:8
Conv2Dpr3 1132 0:32 K3x3 D4
Conv2Dpp; 1132 0:32K3x3 D:2
Conv2Dpry 1132 O:1 K:3x3

Output Module: GRU 1:2256 H:256 L:2; linear 1:256 O:80; Conv2DFuse I:6 O:1 K:1x 1

denotes the block consists of a 1D CNN, a batch normal-
ization layer, and a leaky Relu activation function, while
the ReBNConv2D has the similar architecture and the
only difference is that the 1D CNN in the ReBNConv1D is
replaced by a 2D CNN.

The main differences between the original residual U-
block and the proposed 1-2-1 residual U-block are the

input convolution layer and the reshaping operation. As
mentioned before, speech signal is a kind of sequence
while its spectrogram can be regarded as an image with
one channel. Accordingly, we adopt a 1-2-1D CNN struc-
ture in newly designed residual U-block according to the
pros and cons of 1D CNN and 2D CNN, as pointed out
in [12]: a 1D CNN is good at capturing dynamic change,
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Fig. 2 The comparison of residual U-block (RSU) and 1-2-1 residual U-block (1-2-1 RSU). We set the number of U-block layers (L) equal to 7 as an
example in both residual U-block and 1-2-1 residual U-block. 1-2-1 RSU with other number of layers have the same structures as 1-2-1 residual
U-block (L=7)

while a 2D CNN is good at converting features while pre-
serving the original structures. Therefore, a 1D CNN with
batch normalization(BN) followed LeakyReLU is used as
the input layer to extract the local feature, and many dif-
ferent layers of 2D CNN with batch normalization and
LeakyReLU are used for downsampling and upsampling in
U-block to extract multi-scale feature. The output feature
of U-block has to be reshaped from 2D to 1D because we
only use 1D IN to extract the speaker identity information
along the time axis. The main reason is that the speaker
identity information is a kind of time-invariant feature.

Figure 3 compares the 1-2-1 residual U-block (RSU)
used in U2-VC and the plain residual block used in
AGAIN-VC. The operation of the plain residual block can
be described as:

F @) =x+Hr (H1(x), (2)

where F (x) denotes the output feature of the plain
residual block when given the input feature x, which is
extracted from log-mel spectrograms of the source speech
and the target speech; 7H; represents the operation of
ReBNConvlD and #; represents the operation of plain
1D convolution block. Both operations aim to extract the
local feature. Instead of using the plain convolution block
to extract the local feature only, multi-layer U-block is
proposed in RSU to extract different scale features. The
output feature of RSU can be represented as:

Frsu &) = Hi1 (0) + Hy (H1 %)), (3)

where FRrsy (x) denotes the output feature of RSU; H;
stands for the convolution operation to extract the local

feature, and Hy represents the operation of U-block
to extract the multi-scale feature from the local feature
H1 (x). The benefit of using RSU is that it helps U?-
VC preserve more detailed features when compared to
AGAIN-VC, which is helpful to improve the naturalness
of the converted speech.

3.3 Sandwich adaptive instance normalization

Sandwich adaptive instance normalization (SaAdalN) is
the extended application of sandwich batch normaliza-
tion for style transformation [25]. AdalN firstly preforms
instance normalization on content feature, and then affine
transformation is performed on normalized content fea-
ture with the statistic of style feature. AdaIN can be
formulated as:

C—u©

AdaIN(C,S) =0 (S) 5 ©)

+ 1 (S, (4)

where C is the content input, and S is the style input.
Different from batch normalization, u(-) and o (-) rep-
resent the channel-wise average and standard deviation
of the input, respectively. As discussed in [25], AdaIN
would lead to the content loss in the output because the
style-dependent re-scale might further amplify the intrin-
sic data heterogeneity brought by the variety of the input
content images. To reduce the content loss problem in
AdalN, SaAdalN is proposed with shared sandwich affine
layer after the instance normalization of content feature
to reduce data heterogeneity, which can make the out-
put preserve more content information. The proposed
SaAdalN can be formulated as:
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Output Feature: 7 (x)+ 74, (7 (x))
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Fig. 3 The comparison of 1-2-1 residual U-block and plain residual
block. a The residual block. b The 1-2-1 residual U-block (1-2-1RSU).
The constitution of the output feature from each block illustrates why
the 1-2-1 residual U-block can preserve more details than plain
residual block

C—n(©)

SaAdaIN(C,S) = o (S) (Vsa < o (C)

> + ﬁSﬂ>+,u (S) ’
(5)

where ys, and B, are the parameters that can be learned
from the added affine layer, and their shapes are both the
same as the number of channels of input feature. Experi-
mental results on image style transformation have verified
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the superiority of SaAdaIN compared to AdaIN [25]. And
the ablation experimental results in this paper also show
the importance of introducing SaAdaIN for voice con-
version in improving the naturalness of the converted
speech.

3.4 Loss

It has to be noted that log-mel spectrogram of the source
and that of the target are both extracted from the speech
signals with the same speaker during the training phase
in order to calculate all the side self-reconstruction losses
and final self-reconstruction loss. We adopt deep supervi-
sion similar to U2-Net, and the loss is defined as:

M
Loss = axly + Y wil; 6)
i=1
=% - X, ?)
I =% — X1 (8)

where X represents the source log-mel spectrogram;
?{_)1, with i = 1,.-.,M, represents the ith side out-
put reconstructed log-mel spectrogram, and Xion rep-
resents the final reconstructed log-mel spectrogram. /;
denotes the ith side self-reconstruction loss between the
side output reconstucted log-mel spectrogram and the
source log-mel spectrogram with M = 6 as shown in
Fig. 4, while /; is the self-reconstruction loss between the
final reconstructed log-mel spectrogram and the source
log-mel spectrogram. w; and wy are the weights of the
two loss terms. For all /; and lf, we use L1 loss as self-
reconstruction loss.

4 Experimental setup

We implement three experiments, including the abla-
tion study, mono-lingual voice conversion evaluation, and
cross-lingual voice conversion evaluation, to verify the
effectiveness of our proposed algorithm in improving
the naturalness of the converted speech. AdaIN-VC and
AGAIN-VC are chosen as the baselines for comparison in
both mono-lingual voice conversion evaluation and cross-
lingual voice conversion evaluation. Details will be given
in the following parts.

4.1 Dataset

VCTK dataset [34] is chosen for training, ablation
study, and comparing the proposed approach with other
approaches in mono-ilingual scenario. VCTK is an English
dataset consisted of 46-h speech data with 109 speakers.
In addition, the dataset for cross-lingual VC task taken
from Voice Conversion Challenge (VCC) 2020 [18] is also
used to evaluate the robustness of proposed approach in
cross-lingual scenario. This dataset includes 6 speakers
consisting both male and female speakers. Each speaker
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Fig. 4 Comparison among source, target and the converted
spectrograms. a Source speech. b Target speech. € The converted
speech of AGAIN-VC. d The converted speech of U2-VC
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has around 70 utterances. There are 3 languages in this
dataset including Finnish, German, and Mandarin.

4.2 Vocoder

Because the output of the proposed U2-VC is log-mel
sectrogram of the converted speech, we need a vocoder
to convert the log-mel spectrogram to time-domain
waveform. The pretrained MelGAN [35] is chosen as
the vocoder when considering its high inference speed
of waveform generation and high quality of generated
speech. Note that MelGAN is used for all the baselines
and the proposed approach as the vocoder to give a fair
comparison when implementing all the evaluations.

4.3 Training details

During the training phase, we randomly select 80 speakers
from VCTK corpus, and then 200 utterances are ran-
domly chosen for each speaker. Meanwhile, the remaining
speakers are randomly chosen for evaluation in unseen-
to-unseen conversion scenario. All the raw speech signals
are downsampled to 22.05 kHz and transform it into log-
mel spectrogram with 1024 STFT window length, 256 hop
length, and 80 mel-frequency bins for training and eval-
uation according to the configuration of MelGAN ([35].
During the training phase, AdamW optimizer [36] is used
to train our network with 81 = 0.9, 2 = 0.999 and its
initial learning rate set to be 5¢*. The proposed U>-VC is
implemented based on Pytorch 1.5.1. The training is con-
ducted on NVIDIA Tesla V100 with 32 GB memory, and
the number of training step is 170k.

4.4 Evaluation metrics

We evaluate the proposed U2-VC using the naturalness of
the converted speech and the speaker similarity between
the converted speech and the target one. Both naturalness
and the speaker similarity need objective evaluation and
subjective evaluation. Three evaluation metrics are used
for objective evaluation and subjective evaluation, which
include (1) Mel-cepstral distortion (MCD), (2) NISQA
model, and (3) mean opinion score (MOS). The rea-
son for choosing these three evaluation metrics can be
summarized as follows:

1. Mel-cepstral distortion: Mel-cepstral distortion
(MCD) measures the difference between the target
and converted spectral features. It can be calculated
between the converted and target Mel-cepstral
coeffificients or MCEPs [37]. The lower scores, the
better performance.

2. NISQA model: NISQA [27] is a speech quality
prediction model. The model can not only well
predict the overall MOS, but also measure the four
speech quality dimensions including noisiness,
coloration, discontinuity, and loudness. We use
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NISQA as an objective measurement on the
naturalness of the converted speech through the
predicted overall MOS. The higher scores, the better
performance.

3. Mean opinion score (MOS): mean opinion score
(MOS) is used for subjective evaluation on both
naturalness and the similarity to the target speaker of
the converted speech. For similarity, annotators were
asked to rate the score from 1 to 5 depending on how
confident they considered these two speech signals
were uttered by the same speaker for subjective
evaluation on similarity, where 1 represents being
totally different and 5 represents being absolutely
same after listening the target speech and the
converted one. For naturalness, annotators were
asked to rate the score from 1 to 5 depending on the
naturalness of the converted speech, where 1
represents being completely unnatural and 5
represents being completely natural. The higher
score, the better performance.

4.5 Statistical testing method

We use analysis of variance (ANOVA) as the statistical
testing method to verify that the proposed approach out-
performs the baselines in a statistically significant manner.
In ANOVA, we set the confidence level to be 0.95. If the
significance between two approaches is less than 0.05, it
means that there is a significant difference between the
two approaches.

4.6 Experimentimplementation details

As mentioned above, we implement three experiments
including the ablation study, mono-lingual voice con-
version evaluation, and cross-lingual voice conversion
evaluation. The experiment implementation details are
summarized as follows:

1. Ablation study: Ablation study is performed on
U2-VC to verify the effectiveness of the proposed
structure and SaAdaIN. Both seen-to-seen
conversion and unseen-to-unseen conversion
scenarios are included in this ablation study, where
seen-to-seen conversion means both the source
speaker and the target one are included in the
training set, while unseen-to-unseen conversion
indicates that both of them are not included in the
training phase. Both objective and subjective metrics
are used for evaluation. For subjective evaluation,
raters can speak authentic English fluently.

2. Mono-lingual voice conversion evaluation:
Mono-lingual conversion performance comparison is
conducted to verify the advantage of the proposed
U2-VC. AGAIN-VC and AdaIN-VC are chosen as
baselines for validation. Both seen-to-seen
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conversion and unseen-to-unseen conversion cases
are included in this experiment. Both objective and
subjective metrics are selected for evaluation. For
subjective evaluation, raters can speak authentic
English fluently. ANOVA is used here to show the
advantage of the proposed approach compared with
the two baselines in a statistically significant manner.
3. Cross-lingual voice conversion evaluation: We
conduct cross-lingual conversion performance
comparison in order to evaluate the robustness of the
proposed U2-VC in cross-lingual scenario inspired
by [38], which can also test the ability of the
proposed algorithm in disentangling the content
information and the speaker identity of the input
speech. In this experiment, AGAIN-VC and
AdaIN-VC are also chosen as baselines. All the
models are trained with VCTK dataset to give a fair
comparison; meanwhile, we choose the speech
signals of Mandarin speakers from VCC dataset as
the target and the unseen speakers from VCTK
dataset as the source because the raters of subjective
evaluation can speak both Mandarin and English
fluently. Both objective and subjective metrics are
used for this evaluation. For objective evaluation, we
only use NISQA model to evaluate the naturalness
because the MCD requires that the converted speech
and the target speech have the same content. MOS is
chosen as subjective evaluation metric. ANOVA is
also used here to further show the advantage of the
proposed approach when compared with the
baselines in a statistically significant manner.

5 Experiment results

5.1 Ablation study

In this ablation study, we use “S;” “T, “F and “M” to rep-
resent the source speech, the target speech, female, and
male, respectively. As an example, “SF2TF” represents the
conversion from a source female speech to a target female
speech.

Tables 2 and 3 present the ablation study results of the
converted speech of AGAIN-VC, voice conversion based
on only U2-Net, voice conversion with only SaAdIN
and our U2-VC in speaker similarity, and naturalness
through objective evaluation metrics. Table 2 shows the
results in seen-to-seen scenario. One can see that all
of these approaches nearly have the same MCD score.
When focusing on the predicted MOS, U2-VC shows
much better performance compared to AGAIN-VC,
and the predicted MOS of the proposed U2-VC always
get the best performance. The maximum difference
is 0.3 compared to AGAIN-VC, which is a significant
improvement. The same trend can be observed in Table 3,
which measures the unseen-to-unseen conversion
scenario.
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Table 2 Objective evaluation results of the ablation study on architecture in seen-to-seen conversion scenario. “AGAIN-VC" represents
the network has neither U?-Net structure nor SaAdalN. “U?-VC” represents the network has both U?-Net structure and SaAdalN

MCD (dB) Predicted MOS by NISQA

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AGAIN-VC 6.33 6.07 6.32 6.33 6.26 3.87 363 393 4.02 3.86
w/o SaAdalN, with U%-Net 6.35 6.13 6.36 6.42 6.32 3.97 3.88 3.96 4.02 3.96
w/o U%-Net, with SaAdalN 6.34 6.04 6.23 6.31 6.23 4.01 3.83 3.99 3.99 3.96
u2-vC 6.36 6.11 6.32 6.39 6.29 413 3.93 414 4.05 4.06

Tables 4 and 5 present the subjective evaluation results
of the ablation study to make it more convincing. From
these results, one can see that both U2-Net structure and
SaAdaIN can improve the naturalness of the converted
speech in both seen-to-seen and unseen-to-unseen con-
version scenarios, which is more beneficial by introducing
the U2-Net structure. The integration of U?-Net struc-
ture and SaAdaIN can achieve the highest improvement
according to the subjective results. This is because the
U2-Net structure and the SaAdaIN are complementary to
each other. Instead of learning the learnable parameters
of the SaAdaIN directly from the local features with-
out U2-Net structure, the proposed approach learns these
parameters from the multi-scale features generated by the
U?-Net structure, which can improve the performance
of the SaAdaIN. Meanwhile, the proposed approach with
the SaAdaIN makes the U2-Net structure generate bet-
ter multi-scale features compared with the conventional
approach without the SaAdalIN.

In summary, the ablation study results demonstrate
the effectiveness of U2-Net structure and SaAdaIN in
improving the naturalness of the converted speech in both
seen-to-seen and unseen-to-unseen scenarios.

5.2 Comparison of mono-lingual conversion performance
Tables 6 and 7 present the comparison results of objective
evaluation and subjective evaluation with the standard
deviation of mono-lingual conversion in seen-to-seen sce-
nario, respectively. Meanwhile, Tables 8 and 9 present
the mentioned comparison results in unseen-to-unseen
scenario.

From Table 6, one can find that the proposed U2-VC
and AGAIN-VC nearly have the same MCD scores, and
the MCD scores of the proposed U2-VC improves a lot
compared to those of AdaIN-VC. When focusing on the
predicted MOS, the proposed U?-VC always gets the best
performance compared to AGAIN-VC and AdaIN-VC.
The difference of average predicted MOS is 0.2 compared
to that of AGAIN-VC, up to 0.92 compared to that of
AdaIN-VC, which is an obvious improvement. As stated
in [18], MCD score is not always related to the human
perception. The subjective evaluation is more important
because the results represent the authentic naturalness
and similarity of a voice conversion system. From Table 7,
one can see that the proposed U2-VC always shows the
best performance compared to AGAIN-VC and AdaIN-
VC in both similarity and naturalness, which means the
converted speech’s perceptual quality of the proposed
approach is much higher. Tables 8 and 9 present the exper-
imental results of the unseen-to-unseen scenario, which
has the similar trend with the seen-to-seen scenario as
presented in Tables 6 and 7.

We perform the statistical significance evaluation of
MOS through ANOVA with the confidence level of 0.95
to further confirm the better performance of the proposed
approach in perceptual speech quality. Tables 10 and 11
present the results in seen-to-seen scenario and unseen-
to-unseen scenario, respectively. From the similarity test
results, one can see that there is statistical significance
between the proposed approach and AdaIN-VC in the
four separate cases, but there is no obvious significance
between the proposed approach and AGAIN-VC. For all

Table 3 Objective evaluation results of the ablation study on architecture in unseen-to-unseen conversion scenario. “AGAIN-VC"
represents the network has neither U2-Net structure nor SaAdalN. “U2-VC" represents the network has both U2-Net structure and

SaAdalN

MCD (dB) Predicted MOS by NISQA

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AGAIN-VC 595 6.03 5.96 6.02 5.99 3.71 3.75 3.82 393 3.80
w/0 SaAdalN, with U2-Net 6.11 6.16 6.19 6.20 6.17 3.85 391 3.81 397 3.89
w/o U2-Net, with SaAdalN 6.01 6.02 5.96 6.01 6.05 3.88 3.74 3.83 3.89 3.84
u?-vc 6.01 6.09 6.02 6.03 6.04 4.00 3.95 3.85 397 3.94
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Table 4 Subjective evaluation results of the ablation study on architecture in seen-to-seen conversion scenario. “AGAIN-VC" represents

the network has neither U?-Net structure nor SaAdalN. “U-VC" represents the network has both U?-Net structure and SaAdalN

MOS (similarity)

MOS (naturalness)

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AGAIN-VC 350 338 3.00 330 330 3.25 338 3.00 363 332
w/o SaAdalN, with U%-Net 3.13 3.15 313 3.13 3.14 3.25 375 3.13 3.70 344
w/o U%-Net, with SaAdalN 3.25 3.25 3.00 3.25 3.19 3.50 337 3.10 367 341
uz-vc 3.63 3.38 3.39 3.69 353 4.00 413 3.69 391 3.93

Table 5 Subjective evaluation results of the ablation study architecture in unseen-to-unseen conversion scenario. “AGAIN-VC"

represents the network has neither U2-Net structure nor SaAdalN. “U2-VC" represents the network has both U%-Net structure and

SaAdalN
MOS (similarity) MOS (naturalness)
SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AGAIN-VC 3.13 2.89 2.75 3.00 2.94 3.00 3.00 3.13 3.50 3.16
w/o SaAdalN, with U?-Net 3.25 3.00 2.63 3.13 3.00 3.50 3.13 3.50 3.62 344
w/o U2-Net, with SaAdalN 3.13 3.13 3.00 3.10 3.09 3.25 3.00 3.15 3.62 3.26
u2-vc 3.25 325 3.23 3.13 322 3.75 3.88 3.80 3.88 3.83
Table 6 Objective comparison results of mono-lingual conversion in seen-to-seen scenario
MCD (dB) Predicted MOS by NISQA
SF2TF SF2T™M SM2TF SM2TM Average SF2TF SF2T™M SM2TF SM2TM Average
AdalN-VC 7.1 6.62 7.09 6.97 6.95 3.01 2.94 3.07 353 3.14
AGAIN-VC 6.33 6.07 6.32 6.33 6.26 3.87 3.63 3.93 4.02 3.86
u2-vC 6.36 6.11 6.32 6.39 6.29 413 393 414 4.05 4.06

Table 7 Subjective comparison results with standard deviation (std dev) of mono-lingual conversion in seen-to-seen scenario. The
results are listd as MOS/std dev

MOS (similarity)/std dev

MOS (naturalness)/std dev

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average

AdalN-VC 2.00/0.30 2.04/0.37 2.04/0.30 2.19/0.40 2.07 2.07/0.77 2.01/0.35 2.10/0.32 2.21/0.46 2.10
AGAIN-VC 2.92/0.46 2.76/0.40 2.87/045 3.40/0.59 2.99 3.38/0.65 3.18/0.49 3.12/041 3.62/043 333
u2-vc 3.30/041 3.24/0.40 3.28/0.38 4.02/0.42 346 3.91/0.56 3.92/047 3.78/0.31 4.16/0.32 3.94
Table 8 Objective comparison results of mono-lingual conversion in unseen-to-unseen scenario

MCD (dB) Predicted MOS by NISQA

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AdalN-VC 6.53 6.57 6.59 6.84 6.63 297 2.54 2.81 298 2.83
AGAIN-VC 5.95 6.03 5.96 6.02 5.99 3.71 3.75 3.82 393 3.80
u?-vc 6.01 6.09 6.02 6.03 6.04 4.00 3.95 3.85 3.97 3.94
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Table 9 Subjective comparison results with standard deviation (std dev) of mono-lingual conversion in unseen-to-unseen scenario.
The results are listd as MOS/std dev

MOS (similarity)/std dev MOS (naturalness)/std dev

SF2TF SF2TM SM2TF SM2TM Average SF2TF SF2TM SM2TF SM2TM Average
AdalN-VC 2.01/0.31 2.02/048 2.04/0.29 2.10/0.29 2.04 2.07/061 2.08/0.67 2.05/0.58 2.06/0.68 2.07
AGAIN-VC 2.68/0.49 2.88/0.57 2.94/0.47 3.31/0.35 2.95 3.14/0.82 3.24/0.65 3.02/0.82 3.50/0.51 3.23
u2-vc 3.14/043 3.40/0.49 3.34/043 3.62/0.37 3.37 3.94/0.77 4.04/047 3.74/0.78 4.05/0.56 3.94

Table 10 Statistical significance of the MOS results of mono-lingual conversion in seen-to-seen scenario

Statistical significance of MOS (similarity) Statistical significance of MOS (naturalness)
SF2TF SF2TM SM2TF SM2TM Overall SF2TF SF2TM SM2TF SM2TM Overall

AdalN-VC AGAIN-VC 0.000 0.015 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000
u2-vC 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC AdalN-VC 0.000 0.015 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000
u2-vC 0.380 0.094 0.083 0.007 0.003 0.086 0.014 0.018 0.038 0.000
u2-vc AdalN-VC 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC 0.380 0.094 0.083 0.007 0.003 0.086 0.014 0.018 0.038 0.000

Table 11 Statistical significance of the MOS results of mono-lingual conversion in unseen-to-unseen scenario. “Overall” represents the
overall statistical analysis of all the four conversion cases

Statistical significance of similarity Statistical significance of naturalness
SF2TF SF2TM SM2TF SM2TM Overall SF2TF SF2TM SM2TF SM2TM Overall

AdalN-VC AGAIN-VC 0.005 0.003 0.000 0.002 0.000 0.003 0.000 0.009 0.000 0.000
uz-vC 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC AdalN-VC 0.005 0.003 0.000 0.002 0.000 0.003 0.000 0.009 0.000 0.000
VERVe 0.215 0.063 0.051 0.604 0.009 0.023 0.007 0.045 0.037 0.000
u2-vC AdalN-VC 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC 0.215 0.063 0.051 0.604 0.009 0.023 0.007 0.045 0.037 0.000

Table 12 Objective evaluation results of voice conversion in cross-lingual scenario
Predicted MOS by NISQA

VCTK2VCC VCC2VCTK vceavec Average
AdalN-VC 283 272 281 2.79
AGAIN-VC 356 340 3.64 353
u?-vC 3.60 3.82 372 371

Table 13 Subjective evaluation results with standard deviation (std dev) of voice conversion in cross-lingual scenario. The results are
listd as MOS/std dev

MOS (similarity)/std dev MOS (naturalness)/std dev

VCTK2VCC VCC2VCTK vccavcc Average VCTK2VCC VCC2VCTK vccavcc Average
AdalN-VC 2.04/0.38 1.81/0.60 1.90/0.38 1.92 2.24/0.25 1.91/033 2.00/0.34 2.05
AGAIN-VC 2.94/0.45 247/0.58 2.68/0.44 2.70 3.19/0.50 2.74/0.48 2.58/0.60 284

u?-vC 3.33/0.37 3.10/0.48 3.14/0.49 3.19 3.78/0.48 3.44/0.46 3.26/0.40 349
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of the four cases, there is statistical significance between
the proposed approach and the two baselines, which
indicates that the proposed approach shows better per-
formance on the similarity compared with the baselines.
From the naturalness test results, there is statistical signif-
icance between the proposed approach and the baselines
in both separate and overall cases. Focusing on the sub-
jective evaluation, it is shown that the proposed approach
does improve the naturalness of converted speech with-
out degrading the speaker similarity compared with the
baselines in both seen-to-seen and unseen-to-unseen sce-
narios.

In summary, the comparison results, especially the sub-
jective evaluation results, show the advantage of the pro-
posed U2-VC in improving the quality of the converted
speech.

5.3 Comparison of cross-lingual conversion performance
For cross-lingual conversion evaluation, we set 3 con-
version cases which are VCTK2VCC, VCC2VCTK, and
VCC2VCC. The language of source speech has to be
English and Mandarin, while the target speech can be
any language in these two corpuses. The results of objec-
tive evaluation and subjective evaluation are shown in
Tables 12 and 13, respectively.

From Tables 12 and 13, one can see that the proposed
U2-VC always gets the best performance compared to
AdaIN-VC and AGAIN-VC in both objective evaluation
and subjective evaluation with the standard deviation. The
evaluation results demonstrate that even though the pro-
posed approach somewhat degrades its performance in
cross-lingual scenario, it is still much better than the com-
peting approaches. The spectrograms of the converted
speech signals in Figs. 5, 6, and 7 show that the proposed
approach can solve the problems of harmonic distor-
tion and content loss, which makes the converted speech
sound better in both similarity and naturalness.

Statistical significance evaluation of the MOS results is
also performed to verify the advantage of the proposed
approach in cross-lingual scenario. Table 14 presents the
evaluation result, and one can also see that the proposed
approach actually improves the naturalness of converted
speech without sacrificing the speaker similarity, which
has the same conclusion as that of mono-lingual conver-
sion.

In summary, the proposed U?-VC has the potential to
improve the system robustness in cross-lingual scenario,
which is proved by the evaluation results compared to
AdaIN-VC and AGAIN-VC.

6 Conclusion

In this paper, we propose U2-VC, which is a new one-
shot voice conversion system with U2-Net and SaAdalN.
The proposed approach has the capability of extracting
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Table 14 Statistical significance of the MOS results in cross-lingual conversion scenario. “Overall” represents the overall statistical

analysis of all the three conversion cases

Statistical significance of similarity

Statistical significance of naturalness

VCTK2VCC VCC2VCTK vceavcec Overall VCTK2VCC VCC2VCTK vceavcec Overall
AdalN-VC AGAIN-VC 0.001 0.041 0.004 0.000 0.001 0.002 0.029 0.000
u2-vC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC AdalN-VC 0.001 0.041 0.004 0.000 0.001 0.002 0.029 0.000
u?-vC 0.090 0.049 0.070 0.001 0.017 0.007 0.013 0.001
u2-vC AdalN-VC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AGAIN-VC 0.090 0.049 0.070 0.001 0.017 0.007 0.013 0.001

detailed features of input log-mel spectrogram, which
can improve the quality of the converted speech, espe-
cially its naturalness. In the near future, we will focus on
improving the robustness of the proposed approach in
more challenging scenarios, such as noisy and reverberant
environments.
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conversion samples are available on the demo page: https:/tjulfk.github.
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