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A multichannel learning-based approach
for sound source separation in reverberant
environments
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Abstract

In this paper, a multichannel learning-based network is proposed for sound source separation in reverberant field.
The network can be divided into two parts according to the training strategies. In the first stage, time-dilated
convolutional blocks are trained to estimate the array weights for beamforming the multichannel microphone
signals. Next, the output of the network is processed by a weight-and-sum operation that is reformulated to handle
real-valued data in the frequency domain. In the second stage, a U-net model is concatenated to the beamforming
network to serve as a non-linear mapping filter for joint separation and dereverberation. The scale invariant mean
square error (SI-MSE) that is a frequency-domain modification from the scale invariant signal-to-noise ratio (SI-SNR)
is used as the objective function for training. Furthermore, the combined network is also trained with the speech
segments filtered by a great variety of room impulse responses. Simulations are conducted for comprehensive
multisource scenarios of various subtending angles of sources and reverberation times. The proposed network is
compared with several baseline approaches in terms of objective evaluation matrices. The results have
demonstrated the excellent performance of the proposed network in dereverberation and separation, as compared
to baseline methods.

Keywords: Source separation and dereverberation, Multichannel learning-based network, Time-dilated convolution
network, U-net, Beamforming

1 Introduction
As an important problem in speech enhancement,
source separation seeks to separate independent source
signals from mixture signals, based on the spatial cue,
the temporal-spectral cue, or statistical characteristics of
sources. For semi-blind source separation, the free-field
wave propagation model is assumed to facilitate a two-
stage procedure of source localization and separation by
using an array. Beamforming (BF) [1], time difference of
arrival (TDOA) [2], and multiple signal classification
(MUSIC) [3] are generally used source localization
methods. In the separation stage, BF methods such as
minimum power distortionless response (MPDR) can be

employed to extract source signals, based on the direc-
tion of arrivals estimated in the localization stage [4, 5].
In addition to BF methods, Tikhonov regularization
(TIKR) [6] which treats the separation problem as a lin-
ear inverse problem can also be used.
On the other hand, blind source separation (BSS) ap-

proaches do not rely on a wave propagation model and
exploits mainly the time-frequency (T-F) or statistical
characteristics of mixture signals. Independent compo-
nent analysis (ICA) is a well-known BSS algorithm that
separates the signals into statistically independent com-
ponents [7–11]. ICA was further extended to deal with
convolutive processes such as acoustic propagation, e.g.,
triple-N ICA for convolutive mixtures (TRINICON)
[12]. An alternative separation algorithm, independent
vector analysis (IVA) [13], cleverly circumvents the
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permutation issue in ICA by modeling the statistical
interdependency between frequency components.
In this paper, we shall explore the possibility of ad-

dressing source separation problems using a learning-
based approach, namely, deep neural networks (DNNs).
Wang et al. approached source separation by using
DNNs in which spectrogram was used as the input fea-
tures [14]. Promising results were obtained in light of
various network structures, including convolutional
neural network (CNN) [15], recurrent neural network
(RNN) [16], and the deep clustering (DC) method [17],
etc. Furthermore, utterance-level permutation invariant
training (uPIT) was introduced to resolve the label per-
mutation problem [18]. Recently, fully convolutional
time-domain audio separation network (Conv-TasNet)
was proposed [19] to separate source signals in the time
domain in a computationally efficient way.
Reverberation is detrimental to speech quality, which

leads to degradation in speech intelligibility. Multichan-
nel inverse filtering (MINT) was developed to achieve
nearly perfect dereverberation [20]. Multi-channel linear
prediction (MCLP) [21] based on a time-domain linear
prediction model in the T-F domain was reported effect-
ive. As a refined version of MCLP, the weighted predic-
tion error (WPE) algorithm was developed in the short-
time Fourier transform (STFT) domain via a long-term
linear prediction [22]. A multi-channel generalization
can be found in [23–25]. DNN approaches have also be-
come promising techniques for dereverberation.
Mapping-based approaches [26] attempt to enhance dir-
ectly the reverberated signals, whereas masking-based
approaches [27] attempt to learn a “mask” for anechoic
signals. In addition, combined systems of a DNN and
the WPE unit were also suggested [28, 29].
Source separation in a reverberant field is particularly

challenging. This problem was tackled by cascading a
WPE unit and a MPDR beamformer [30, 31]. Several
systems have been proposed in light of the joint
optimization of the preceding two units [32, 33]. In a
very recent work, the weighted power minimization dis-
tortionless response (WPD) [34] beamformer was devel-
oped by integrating optimally the WPE and MPDR units
into a single convolutional beamformer. DNN-based ap-
proaches have also been reported recently. An end-to-
end learning model was trained to establish a mapping
from the reverberant mixture input to anechoic sepa-
rated speech outputs [35]. Cascade systems [36, 37] were
also investigated. Multichannel networks [38, 39] were
proposed to exploit the spatial cue of microphone sig-
nals. In addition, integrated DNN and conventional
beamformers are suggested in recent years [40–42].
Most approaches employ a cascaded structure in

which a DNN is trained for the prior information re-
quired by the subsequent beamforming algorithm, e.g., a

post-enhancement mask for the beamforming output,
masking-based spatial cue estimation, and estimation of
the spatial covariance matrix, etc. In practice, DNNs
could have some limitations in obtaining the required
information for array beamforming where the magnitude
of target signals be held fixed in the training stage.
Under this circumstance, there is no guarantee that fixed
loss functions such as mean-square-error (MSE) or
signal-to-noise ratio (SNR) will lead to an optimal esti-
mate [43]. The proposed method seeks to achieve a syn-
ergetic integration of arrays and DNN to reformulate
and implement the real-valued weight-and-sum oper-
ation in a multichannel DNN through a learning-based
training for optimal weights. In addition, a new scale-
independent MSE loss is derived for optimal estimation
in the frequency domain. The proposed network is
shown to be resilient to various reverberation conditions
and subtending angles, as compared to the cascaded
DNN-array network.
Known for its efficacy on the separation task, Conv-

TasNet [19] uses the time-domain learnable analysis and
synthesis transformation and time-dilated convolutional
blocks as the separation module. Moreover, U-net [44]
which constitutes of multiple convolutional layers on the
basis of encoder-decoder structure was recently applied
and proved its effectiveness on the dereverberation task
[45, 46]. In this paper, we build upon Conv-TasNet and
U-net to develop a two-stage dereverberation-separation
end-to-end system. The proposed network consists of
two parts according to the training strategies. In the first
part, the network is trained for beamforming network
(BF-net), whereas in the second part, a U-net follows as
a non-linear postfilter of the BF-net whose parameters
are imported from the first part. The experiments are
conducted using the proposed network for the spatia-
lized Voice Cloning Toolkit (VCTK) corpus [47]. The
results are evaluated in terms of SI-SNR [43], Perceptual
Evaluation of Speech Quality (PESQ) [48], and Short-
Time Objective Intelligibility (STOI) [49].

2 Conventional approaches on separation and
dereverberation
Several conventional methods to be used as the baseline
approaches are reviewed in this section. The typical pro-
cessing flow of these methods has a dereverberation unit
as the front end, e.g., WPE [50] and a separation unit as
the back end, e.g., MPDR [5], TIKR [6], or IVA [13].
The cascaded structure of the DNN method, Beam-
TasNet [42], is also considered as the baseline to illus-
trate the benefit of end-to-end training with SI-SNR.

2.1 Dereverberation using the WPE
To account for the prolonged effects of reverberation, a
multichannel convolutional signal model [50] for a
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single-source scenario is generally formulated in the T-F
domain as

x t; fð Þ ¼
XL−1
l¼0

h l; fð Þs t−l; fð Þ; ð1Þ

where x(t, f ) = [x1(t, f ) x2(t, f ) … xM (t, f )]T is the
microphone signal vector and h(l, f ) = [h1(l, f ) h2(l, f )
… hM (l, f )]T with l = 0, 1, …, L is the convolutional
acoustic transfer functions from the source to the array
microphones. A delayed autoregressive linear prediction
model can be utilized to estimate recursively the late re-
verberation [23].

2.2 Dereverberation and separation systems
Three conventional methods and a DNN approach to be
used as the baselines are summarized next.

2.2.1 The baseline method 1: WPE-MPDR approach
The first baseline method is depicted in Fig. 1. The re-
verberated mixture signals x(t, f) are de-reverberated by
the WPE unit and then filtered by the MPDR beamfor-
mer. After the de-reverberated signals x̃(t, f) are acquired
through WPE, the weight vector of MPDR [5] wMPDR

can be obtained as

wMPDR ¼ R−1
xxa θn; fð Þ

aH θn; fð ÞR−1
xxa θn; fð Þ ; ð2Þ

where a(θn, f) ∈ℂM is the steering vector associated
with the nth source at the direction θn and Rxx = E{x̃(t,
f) x̃H(t, f)} is the spatial covariance matrix with E{.} being
the expectation operator with respect to the time frames
and can be estimated using recursive averaging. In this
paper, the steering vector is modeled with the acoustic
transfer function of the free-field plane-wave propaga-
tion. We investigate the scenario of the fixed source lo-
cations for which the direction of arrivals of source
speakers are known.

2.2.2 The baseline method 2: WPE-TIKR approach
The baseline method 2 is illustrated in Fig. 2. The
microphone signals are de-reverberated by using WPE,

followed by the source signal extraction using TIKR.
With the steering matrix A(f) = [a(θ1 , f ) … a(θn , f )]
established with the known source locations, the source
signals can be extracted by solving a linear inverse prob-
lem for the source signal vector s(t, f) in terms of TIKR
[6]. That is,

s t; fð Þ ¼ AH fð ÞA fð Þ þ ρ2I
� �−1

AH fð Þ~x t; fð Þ; ð3Þ

where ρ is the regularization parameter that trades off
the separability and audio quality of the extracted signals
and I denotes the identity matrix.

2.2.3 The baseline method 3: WPE-IVA approach
The baseline method 3 is illustrated in Fig. 3. The mix-
ture signals are de-reverberated by WPE, followed by the
source signal extraction using IVA. The IVA algorithm
resolves the permutation ambiguity in ICA by exploiting
the interdependence of frequency components of a par-
ticular source. A de-mixing matrix W can be calculated
using natural gradient method [51]. It follows that the
independent source vector ŝ in the T-F domain can be
separated as [13]

ŝ t; fð Þ ¼ W t; fð Þ~x t; fð Þ; ð4Þ

To reduce the dimension of the de-reverberated sig-
nals when there are more microphones than sources,
principle component analysis (PCA) [52] can be used.

2.2.4 The baseline method 4: Beam-TasNet approach
In Beam-TasNet, the front-end multichannel TasNet
(MC-TasNet) [53] is trained with scale-dependent SNR
to estimate the spatial covariance matrix for MVDR that
serves as a back-end separator. MC-TasNet consists of a
parallel encoder with unconstrained learnable kernels.
Once the separated signals are obtained using MC-
TasNet, the signal and noise spatial covariance matrices
associated with some target source can be estimated.
Next, an MVDR beamformer can be implemented with
weights:

Fig. 1 The block diagram of the baseline method 1
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wMVDR ¼
ΦNn

f

� �−1
ΦSn

f

Tr ΦNn
f

� �−1
ΦSn

f

� �u; ð5Þ

where Φf
S
n and Φf

N
n denote the signal and noise co-

variance matrices of the nth source signals, Tr(·) denotes
the trace operation, and u = [1 0 ⋯ 0]T is an M-dimen-
sional vector with one element representing the refer-
ence microphone. In this evaluation, the refinement
using voice activity detection is not used.

3 The proposed multichannel end-to-end NN
In this contribution, an end-to-end multichannel
learning-based approach is proposed to separate source
signals in reverberant rooms. The network performs
joint dereverberation and separation on the basis of
Conv-TasNet. Unlike original Conv-TasNet that uses
the time-domain learnable transformation to generate
features, we use instead STFT and inverse STFT to re-
duce the computational complexity for our BF-net. In
addition, the masks in Conv-TasNet can be reformulated
into a learning-based beamformer. Moreover, a U-net is
concatenated to the output layer of the BF-net to serve
as a postfilter of the beamformer.

3.1 Neural network-based beamforming
In array signal processing, an array aims to recover the
source signals via the optimal beamforming weights w
∈ℂM:

~sn t; fð Þ ¼ wHx t; fð Þ: ð6Þ
The learning approach of T-F masks can be applied to

the training of the beamforming weights. By converting

the complex representation to the real-valued represen-
tation that is amenable to NN platforms, Eq. (6) can be
rewritten as

Re xf gT Im xf gT
Im xf gT − Re xf gT

� 	
Re wf g
Im wf g

� 	
¼ Re ~snf g

Im ~snf g
� 	

;

ð7Þ

where Re{} and Im{} denote the real part and imagin-
ary part operations. The goal of the NN training is to
obtain the beamforming weights such that the masked
signal well approximates the target signal

~Sn ¼
XM
m¼1

conj Wmð Þ∘Xm; ð8Þ

where the {S̃n, Wm, Xm}∈ℂ
F×T denote as the STFT of

the nth target signals, the mth beamforming weights,
and the mth microphone signal. The symbol “○” repre-
sents element-wise multiplication, conj(·) is the conju-
gate operation element-wisely applied on matrix Wm,
and {F, T} denote the dimension of T-F bins. The pre-
ceding complex STFT representation of the nth target
signal can be converted to its corresponding real part
and imaginary part as follows:

~S
r
n ¼

XM
m¼1

Wr
m∘X

r
m þ

XM
m¼1

Wi
m∘X

i
m;

~S
i
n ¼

XM
m¼1

Wr
m∘X

i
m−

XM
m¼1

Wi
m∘X

r
m;

ð9Þ

where the superscripts {r, i} indicate the real and im-
aginary part.

Fig. 2 The block diagram of the baseline method 2

Fig. 3 The block diagram of the baseline method 3
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3.2 Dereverberation via spectral mapping
The reverberated speech signal is pre-processed by the
NN-based beamforming to give the nth enhanced signal
s̃n (t, f ). As indicated in the literature [54], the spectral
mapping approach is in general more effective than the
T-F masking approach for dereverberation problems.
Therefore, an additional DNN is employed as a postfilter
to learn the non-linear spectral mapping function ℋ(·).
The speech signals can be de-reverberated by using this
mapping function

ŝn t; fð Þ ¼ ℋ ~sn t; fð Þð Þ: ð10Þ

The mapping network ℋ is based on a U-net model.

3.3 Multichannel network structure
The proposed network depicted in Fig. 4 is comprised of
two parts according to the training strategy. At the first
stage, the BF-net learns to separate the independent rever-
berated source signal from the mixture signals received at
microphones. At the second stage, the BF-net in conjunc-
tion with the U-net postfilter attempts to learn the spec-
tral mapping between the reverberated signal and the
anechoic signal of independent sources. To initialize the
training, the parameters of the BF-net trained in the first
stage are transferred to that in the second stage. In both
stages, uPIT [18] is used to avoid permutation ambiguity.
The network architectures are detailed next.

3.3.1 The first stage: the weight-and-sum beamforming
network
The aim of this network is to generate N sets of optimal

beamforming weights fWr
m;W

i
mgMm¼1 ∈ℝF×T for the

weight-and-sum operation in Eq. (9). STFT is utilized to
produce the input acoustic features. Inter-channel time,
phase, and level differences (ITD, IPD, and ILD) [38]
that are commonly used spatial cues can be estimated
from the STFT data. In this contribution, we adopt ILD,
cosine IPD, and sine IPD defined as

ILD ¼ 10 log
jxmðt; f Þj
jx1ðt; f Þj ;

cos IPD ¼ cos ½∠xmðt; f Þ−∠x1ðt; f Þ�;
and sin IPD ¼ sin ½∠xmðt; f Þ−∠x1ðt; f Þ�;

ð11Þ

where the first microphone is used as the reference
sensor and xm(t, f ), m = 2, …, M, is the STFT of the
mth microphone signal. In addition, the spectral features
such as log power spectral density (LPSD), cosine, and
sine phase of the first microphone are combined with
the spatial features. That is, we concatenate spatial

features, fXILD;XcosIPD;XsinIPDgMm¼1 ∈ℝ
F×T, and spectral

features of the first microphone, {XLPSD, Xcos∠x1,
Xsin∠x1}∈ℝ

F×T to form the complete features, Λ∈ℝ3MF×T,
as the input to the BF-net.
The BF-net leverages the main architecture of Conv-

TasNet [19] which consists of multiple time-dilated con-
volutional blocks, as illustrated in Fig. 5. Each layer of
the time-dilated blocks contains dilated factors of the
number in two’s powers (2D−1). The input data is zero
padded to keep the output dimension for each convolu-
tional block. The increasingly dilated kernel of a block
repeats itself R times. The array weights are estimated
through the 1 × 1 pointwise convolutional layer (1×1-
Conv) with no activation function. The network is modi-
fied from Conv-TasNet by retaining only the residual

Fig. 4 The structure of the proposed network based on two training stages
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path of the time-dilated CNN blocks. That is, every out-
put of the convolutional block sums with its input to be-
come the input of the next block. The detailed design of
the convolution block is shown on the right-hand side of
Fig. 5. Before the data is passed to the convolutional
block, the input size is adjusted to B by using a bottle-
neck layer that is essentially a 1 × 1-Conv layer. In the
convolutional block, the feature is adjusted to larger size
H > B also through a 1 × 1-Conv layer. Followed by the
depthwise separable convolution [55], the separated one-
dimensional CNN with kernel size P convolves with the
corresponding input vectors. Next, with the 1 × 1-Conv,
the output size returns to B in order to merge with the
input data to the next layer of the convolutional block.
Parametric rectified linear unit (PReLU) is used as the
activation function [56], with the aid of the global layer
normalization [19].
The curriculum learning [57] is employed in the train-

ing stage. The training starts with using the reverberant
utterances as the training target, followed by switching
the targets to the anechoic utterances when the conver-
gence condition of loss function is met. Finally, the N
sets of separated signals, S̃ ∈ℝN×2×F×T, are obtained as
described in Fig. 4. The hyperparameters of the non-
causal time-dilated convolutional blocks employed in the
BF-net are summarized in Table 1. Adam [58] is used as
the optimizer with the learning rate 10−3.

3.3.2 The second stage: separation and dereverberation
network
As illustrated in Fig. 4, the BF-net in conjunction with a
U-net postfilter is employed in the second stage of joint
network training. The U-net postfilter is intended for
dereverberation. The parameters trained in the first
stage are transferred to the BF-net in the second stage.

The outcome of the training is the direct mapping
between the N sets of the de-reverberated signals, Ŝdrv
∈ℝN×2×F×T, and the anechoic speech signals, S
∈ℝN×2×F×T. Before the estimated output of the BF-net, S̃
∈ℝN×2×F×T, is passed to the U-net, the signals in STFT
domain are pre-processed to obtain the spectral cues, in-
cluding LPSD and its corresponding sine and cosine

phases, f~SnLPSD; ~S
n
cos∠x;

~S
n
sin∠xg

N

1 ∈ℝ
F�T . This feature set

serves as the input to the U-net model with an appropri-
ate input channel number. For example, if the output
number in the first stage is N separated sources, the pre-
processing channel number will be 3N. Hence, the fea-
ture size passed to the U-net is Λ̃ ∈ℝ3N×F×T.
The U-net model for a two-source problem is depicted

in the Fig. 6. The encoder structure consists of two 3 ×
3 two-dimensional CNN, where the output is zero-
padded to keep the size of the data, followed by a recti-
fied linear unit (ReLU) and a 2 × 2 max-pooling layer
with a stride size equal to 2. In a down-sampling step,
the number of input channels is doubled and the output
features serve as the shared information for the decoder.

Fig. 5 The detailed structure of the beamforming network

Table 1 Hyper-parameters used in the first stage of the BF-net

Symbol Parameter Description

NFFT 1024 Number of FFT

Wlen 512 Window size of FFT

Hop 128 Hopsize of the window

B 256 Channels in bottleneck

H 512 Channels in convolutional blocks

P 3 Kernel size in convolutional blocks

D 6 Convolutional blocks in each repeat

R 4 Number of repeats
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The decoder up-samples the data through the 2 × 2
transpose convolutional network along with halved fea-
ture maps of the input channels, where each is followed
by the concatenation of the corresponding maps from
the encoder and a repeated 3 × 3 CNN layers with ReLU
activation. To accelerate the training process, we also
perform the depthwise separable convolution [55] in the
consecutive CNN layers. The output layer produces the
nth real and imaginary parts of the enhanced signal in

STFT domain, Ŝdrv;n ¼ fŜrn; Ŝ
i
ng∈ℝF×T, through a 1 × 1

CNN layer.
The estimated signals can be recovered to the time-

domain with the ISTFT process, where the overlap-and-
add operation is applied. The network parameters are
summarized in Fig. 6, with the channel number indi-
cated and the kernel size of the associated layer labeled
at the bottom. During training, Adam [58] is used as the
optimizer with the learning rate of 10−4.

3.4 The objective function
The time-domain SI-SNR [43] is widely used as the ob-
jective function in separation tasks [19, 59]. However, if
the system is designed in frequency domain, the direct
minimization of the mean square error (MSE) is usually
adopted as the objective function, which is not directly
related to the separation criterion. Furthermore, because
the target signals are usually the T-F spectrogram with a
fixed magnitude, the estimated output is basically limited
to a certain level. Therefore, the performance of the net-
work will be intrinsically restricted by the definition of
the MSE loss function. In order to improve the flexibility
of the network output which is trained in the frequency-
domain, the scale-invariant MSE (SI-MSE) is formulated
by introducing a scaling factor γ:

ℒ ¼¼ Ŝn−γSn


 

2

F ; ð12Þ

where Ŝn and Sn are the nth estimated signal and the
target signal in the STFT domain. By minimizing the

objective function with respect to γ, the optimal scaling
value γ can be obtained as

γ ¼
P

t; f Ŝ
r
n t; fð ÞSrn t; fð Þ þ Ŝ

i
n t; fð ÞSin t; fð ÞP

t; f S
r
n t; fð Þ2 þ Sin t; fð Þ2 ; ð13Þ

where the fŜrnðt; f Þ; Ŝinðt; f Þg denote the real and im-
aginary part of the nth estimated signal, Ŝn in Eq. (12)
and so on for the target signal, Sn. Therefore, the MSE
loss can be rewritten in the form of SI-SNR as

SI‐SNR Ŝn; γSn
� �

≔10 log10
γSnk k2F

Ŝn−γSn


 

2

F

; ð14Þ

which can be optimized in the frequency domain with
a scalable the network output. We adopt this objective
function in both training stages and, meanwhile, the
uPIT [18] is also employed to prevent the network out-
puts from the permutation ambiguity error. When the
value of SI-SNR in the validation set is no longer de-
creasing after 10 consecutive epochs, the convergence
criterion is said to be met and the training stages will be
stopped.

4 Results and discussions
4.1 Dataset generation
Two array geometries fitted with different number of
microphones examined including uniform circular arrays
(UCAs) and uniform linear arrays (ULAs). As illustrated
in Fig. 7, UCAs of 4.4 cm radius fitted with 2, 3, 4, and 6
microphones are illustrated at the upper row. ULAs of
15 cm fitted with 2, 4, and 6 microphones are illustrated
at the lower row.
The dataset generation is considered in a Monte Carlo

simulation. Two independent speakers are randomly po-
sitioned in rooms with five different sizes. The micro-
phone array is also randomly placed in the same room
at half of the room height. The sources are kept at least
0.5 m away from the wall. The two sources are kept at

Fig. 6 Example of the U-net for a two-source problem
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least 1 m apart, while the distance between the source
and the array center is at least 0.7 m. The ranges of the
azimuth angles, 0° to 360° and elevation angles, 0° to 70°,
are examined. The dataset is remixed from the VCTK
corpus [47] where the speech recordings are down-
sampled to 16 kHz for our use. Speech segments of 92
speakers are randomly selected for training and valid-
ation, whereas 15 unseen speakers are selected for test-
ing. The image source method (ISM) [60] is employed to
generate room impulse responses (RIRs) with various re-
verberation times (T60) ranging from 200 ms to 900 ms.
The anechoic signal received at the reference micro-
phone is adopted as the training target. Mixture signals
are generated by mixing four-second RIR-filtered utter-
ance segments of two randomly selected speakers.
Speech mixture with signal-to-interference-ratio ranging
from – 5 dB to 5 dB used in the training and testing.
The simulation settings are summarized in Table 2 and
the resulting data size are 30000, 3000 for the training
and testing set. The additional 5000 data for the valid-
ation are created with the same manner of the training
set in order to determine the convergence of the net-
work. To further improve the performance of the net-
work, we also use the dynamic mixing (DM) approach
[61] to augment the dataset. The training set is changed
to the online data generation, where two randomly se-
lected speech segments are convolved with the pre-
generated RIRs and mixed together during the training
phase.

4.2 Evaluation of the proposed network
The separation performance of the proposed network is
assessed according to the testing set in Table 2. The
processed data are evaluated and averaged in terms of
the improvement of time-domain SI-SNR [43] (ΔSI-
SNR), the improvement of PESQ [48] (ΔPESQ), and the
improvement of STOI [49] (ΔSTOI) with respect to the
unprocessed signal received at the first microphone. In
this section, the evaluation is based on the six-element
UCA. The models to evaluate are BF-net (the first stage),
BF-net with LSTM, BF-net with U-net, and BF-net with
U-net and DM. The BF-net (the first stage) refers to the
half-trained network where the training is only per-
formed for the first stage. BF-net with LSTM is an alter-
native network where four layers of the deep long short-
term memory (LSTM) with 1024 neurons are adopted as
the non-linear postfilter. The BF-net with U-net is the
complete model of the proposed network. Moreover, the
performance can be further improved by utilizing the
DM approach. Two sources with subtending angles
within 0°–15°, 15°–45°, 45°–90°, and 90°–180° are inves-
tigated. The results summarized in Table 3 suggest that
separation performance can be improved by the nonlin-
ear postfilter network and adopting DM during training.
It can be seen from the ΔSI-SNR results, the subtending
angle of the two sources has little effect on the perform-
ance. However, the ΔPESQ score varies significantly with
subtending angle. ΔPESQ increases for subtending
angles less than 90°, slightly decreases for subtending

Fig. 7 Two array geometries fitted with different number of microphones examined in the work

Table 2 Data settings of the training and testing set

Training set Testing set

Room height (m) 2.7 3

Room width × length (m) 5 × 4 6 × 6 8 × 3 8 × 5 10 × 6 4 × 4 5 × 7 9 × 4 12 × 4

T60 (s) 0.2 0.3 0.4 0.6 0.8 0.16 0.36 0.61 0.9

Chen et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:38 Page 8 of 12



angles larger than 90°. In addition, room responses with
different reverberation times, T60 = 0.16 s, 0.36 s, 0.61 s,
and 0.9 s are also investigated. In Table 4, ΔSI-SNR ap-
pears to be independent of the reverberation time. We
can expect that the proposed network performs better
when T60 is low than that of high T60 because the un-
processed signal is not significantly corrupted. ΔPESQ
also follows the similar trend. The average scores of the
performance indices including ΔSTOI indicate that the
six-channel BF-net with U-net and DM turns out to be
the best model.

4.3 Comparison with the baseline approaches
In this section, we compare our best model with the
traditional BF, BSS, and DNN approaches introduced in
the Section 2 where WPE with MPDR and WPE with
TIKR are the BF approaches, WPE with IVA is the BSS
approach, while the Beam-TasNet approach is the DNN
method. The test cases are identical to that discussed in
the Section 4.2. The separation performance is summa-
rized in Tables 5 and 6. The results indicate that the
proposed network outperforms the baseline methods in
three performance metrics. To be specific, ΔSI-SNR in
Table 5 reveals that the performance of the BF ap-
proaches is highly dependent on the subtending angles.
For closely spaced sources with the subtending angle
within 0°–15°, WPE + TIKR performs poorly. In con-
trast, the BSS and the proposed learning-based ap-
proaches are more robust than the BF approach for

separating closely spaced sources. Furthermore, ΔSI-
SNR and ΔPESQ of the BSS approach and the proposed
DNN-based approach exhibit little variation for different
subtending angles and reverberation times. Although
Beam-TasNet that performs well in ΔSI-SNR, enhance-
ment is not satisfactory in terms of ΔPESQ and ΔSTOI
in particular when the subtending angle is small or when
the reverberation time is large. Because the estimation of
the spatial covariance matrix for the MVDR beamformer
relies heavily on MC-TasNet, the estimation error has
significant impact on the performance of MVDR, espe-
cially in adverse acoustic conditions.

4.4 Genericity to different array geometry
To further assess the applicability of the proposed pipe-
line to different array geometries, two kinds of array
geometries fitted with different number of microphones
examined in the work. Tables 7 and 8 summarize the
performance improvement for both UCAs and ULAs
when applied in rooms with different reverberation
times. The results in both tables indicate that the pro-
posed network performs well for various numbers of mi-
crophones. Furthermore, the performance of the
proposed network is increased with number of micro-
phones in both UCAs and ULAs. The results also show
that ULA can perform better than UCA when only two
microphones are adopted, owing to larger aperture. In
summary, the proposed network is applicable to differ-
ent array geometries if the dataset is properly generated

Table 3 Performance improvement of the proposed network evaluated with the six-channel UCA for different subtending angles

Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0°–15° 15°–45° 45°–90° 90°–180° Avg. 0°–15° 15°–45° 45°–90° 90°–180° Avg. Avg.

BF-net
(the first stage)

7.25 7.62 7.92 8.16 7.78 0.22 0.37 0.52 0.52 0.43 0.14

BF-net + LSTM 7.62 8.73 9.30 9.04 8.86 0.17 0.33 0.52 0.49 0.41 0.15

BF-net + U-net 12.29 12.87 12.51 12.48 12.62 0.32 0.63 0.84 0.79 0.70 0.20

BF-net + U-net + DM 14.32 14.27 13.69 13.81 13.99 0.51 0.78 0.95 0.89 0.83 0.22

Score of unprocessed signal − 16.72 − 13.15 − 10.93 − 12.95 − 12.73 1.46 1.56 1.60 1.51 1.55 0.59

The best scores for the respective subset are boldfaced

Table 4 Performance improvement of the proposed network evaluated with the six-channel UCA for different reverberation time

Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0.16 s 0.36 s 0.61 s 0.9 s 0.16 s 0.36 s 0.61 s 0.9 s Avg.

BF-net
(the first stage)

7.65 7.69 8.10 7.69 0.62 0.46 0.36 0.27 0.14

BF-net + LSTM 9.33 9.70 8.90 7.41 0.63 0.48 0.31 0.18 0.15

BF-net + U-net 11.27 12.48 13.44 13.38 0.95 0.77 0.58 0.48 0.20

BF-net + U-net + DM 12.33 13.78 15.02 14.98 1.10 0.90 0.70 0.59 0.22

Score of unprocessed signal − 5.67 − 11.45 − 16.17 − 18.27 1.80 1.59 1.43 1.36 0.59

The best scores for the respective subset are boldfaced
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Table 5 Comparison of the separation approaches based on the six-channel UCA for different subtending angles

Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0°–15° 15°–45° 45°–90° 90°–180° Avg. 0°–15° 15°–45° 45°–90° 90°–180° Avg. Avg.

WPE + MPDR 3.27 3.05 3.98 6.17 3.94 − 1.22 − 1.29 − 1.31 − 1.18 − 1.27 0.09

WPE + TIKR − 5.68 − 0.92 4.89 7.61 2.05 − 0.30 − 1.03 − 1.25 − 1.20 − 1.06 0.11

WPE + IVA 3.80 4.10 4.94 5.98 4.69 0.58 0.64 0.77 0.81 0.71 0.17

Beam-TasNet 7.03 7.55 7.79 7.48 7.57 − 0.01 0.01 0.13 0.08 0.05 0.06

BF-net + U-net + DM 14.32 14.27 13.69 13.81 13.99 0.51 0.78 0.95 0.89 0.83 0.22

The best scores for the respective subset are boldfaced

Table 6 Comparison of the separation approaches based on the six-channel UCA for different reverberation time

Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0.16 s 0.36 s 0.61 s 0.9 s 0.16 s 0.36 s 0.61 s 0.9 s Avg.

WPE + MPDR 0.00 4.16 5.69 6.25 − 1.42 − 1.33 − 1.21 − 1.10 0.09

WPE + TIKR − 0.41 2.44 3.26 3.10 − 1.28 − 1.14 − 0.96 − 0.83 0.11

WPE + IVA 3.88 4.86 5.18 4.88 0.81 0.80 0.70 0.51 0.17

Beam-TasNet 7.37 7.68 7.79 7.42 0.25 0.10 − 0.05 − 0.10 0.06

BF-net + U-net + DM 12.33 13.78 15.02 14.98 1.10 0.90 0.70 0.59 0.22

The best scores for the respective subset are boldfaced

Table 7 Performance improvement for UCAs with different number of microphones when applied in rooms with different
reverberation times

Channel Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0.16 s 0.36 s 0.61 s 0.9 s Avg. 0.16 s 0.36 s 0.61 s 0.9 s Avg Avg.

2-ch BF-net + U-net + DM 6.92 8.25 8.75 8.54 8.10 0.24 0.26 0.25 0.19 0.24 0.10

3-ch 8.41 9.72 10.84 10.63 9.88 0.42 0.39 0.33 0.28 0.36 0.14

4-ch 9.55 11.06 11.69 11.7 11.01 0.49 0.50 0.37 0.34 0.43 0.16

6-ch 12.33 13.78 15.02 14.98 13.99 1.10 0.90 0.70 0.59 0.83 0.22

Score of unprocessed signals − 5.67 − 11.45 − 16.17 − 18.27 − 12.73 1.80 1.59 1.43 1.36 1.55 0.59

The best scores for the respective subset are boldfaced

Table 8 Performance improvement for ULAs with different number of microphones when applied in rooms with different
reverberation times

Channel Model ΔSI-SNR (dB) ΔPESQ ΔSTOI

0.16 s 0.36 s 0.61 s 0.9 s Avg. 0.16 s 0.36 s 0.61 s 0.9 s Avg Avg.

2-ch BF-net + U-net + DM 9.43 10.60 12.04 11.94 11.02 0.55 0.48 0.42 0.32 0.44 0.15

4-ch 11.31 12.52 14.57 14.69 13.29 0.91 0.74 0.59 0.49 0.68 0.20

6-ch 11.37 12.51 14.61 14.72 13.32 0.92 0.76 0.60 0.47 0.69 0.20

Score of unprocessed signals − 6.10 − 11.94 − 16.24 − 18.50 − 13.25 1.82 1.60 1.44 1.38 1.56 0.59

The best scores for the respective subset are boldfaced
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for the corresponding geometries. Nevertheless, the net-
work trained on a UCA cannot be directly utilized on a
ULA and re-training is required.

5 Conclusions
In this paper, we have proposed a multichannel
learning-based DNN and demonstrated its efficacy in
source separation in reverberant environments. The
end-to end system relies on a joint training of a BF-net
and a U-net. In light of the two-stage training strategy
and the DM approach, the proposed six-channel net-
work proves effective in dereverberation and separation.
The proposed network has demonstrated superior per-
formance in terms of SI-SNR, PESQ, and STOI, as com-
pared with several baseline methods. The proposed
network remains effective, even for closely spaced
sources and high reverberation scenarios. Also, the ap-
plicability to different array geometries is validated if the
dataset is properly generated for the corresponding
geometries. However, the network trained on a UCA
cannot be utilized directly on a ULA, and vice versa.
Despite the excellent performance of the DNN-based

approach, it is noteworthy to mention some of its limita-
tions. It is a “black box” approach in which physical in-
sights play little role. Big data are required for training
the network, which is difficult if not impossible in appli-
cations. Generalization may be limited if the dataset is
not sufficiently comprehensive. These limitations to the
DNNs turn out to be the strengths of the BF and BSS
approaches. Network integration to create the synergy of
these techniques is on the future research agenda.
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