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Abstract

This paper presents a new dataset of measured multichannel room impulse responses (RIRs) named dEchorate. It
includes annotations of early echo timings and 3D positions of microphones, real sources, and image sources under
different wall configurations in a cuboid room. These data provide a tool for benchmarking recent methods in
echo-aware speech enhancement, room geometry estimation, RIR estimation, acoustic echo retrieval, microphone
calibration, echo labeling, and reflector position estimation. The dataset is provided with software utilities to easily
access, manipulate, and visualize the data as well as baseline methods for echo-related tasks.
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1 Introduction
When sound travels from a source to a microphone in an
indoor space, it interacts with the environment by being
delayed and attenuated due to the distance, and reflected,
absorbed, and diffracted due to walls, ceiling, floor, fur-
niture, and obstacles. The room impulse response (RIR)
represents this phenomenon as a linear and causal time
domain filter. As depicted in Fig. 1, RIRs are commonly
subdivided into 3 parts [1]: the direct path, corresponding
to the line-of-sight propagation; the early echoes, stem-
ming from a few disjoint specular reflections on the clos-
est reflectors, i.e., large flat surfaces, such as room walls;
and the late reverberation comprising the dense accumu-
lation of later reflections and scattering effects such as
diffusion and diffraction due to the interactions with small
objects and rough surfaces.
The late reverberation is indicative of the environment

size and reverberation time, producing the so-called lis-
tener envelopment, i.e., the degree of immersion in the
sound field [2]. In contrast, the direct path and the early

*Correspondence: diego.dicarlo89@gmail.com
1Inria, CNRS, IRISA, University of Rennes, 35000 Rennes, France
Full list of author information is available at the end of the article

echoes carry precise information about the scene’s geom-
etry, such as the position of the source and room surfaces
relative to the receiver position, and about the surfaces’
reflectivity. Such relation is well described by the image
source method (ISM) [3], in which the echoes are associ-
ated with the contribution of virtual sound sources lying
outside the real room. Therefore, one may consider early
echoes as delayed and attenuated copies of the source
signal, whose times of arrival (TOAs) are related to the
source and reflector positions.
Based on this idea, methods that explicitly account for

early echoes have been introduced a few decades ago;
such methods are dubbed here as echo-aware. In the lit-
erature, they can be broadly classified into implicit and
explicit approaches. Implicit approaches consider the so-
called relative transfer function (RTF) [4], which is the
ratio of the Fourier transform of two RIRs, otherwise
stated, the ratio of the corresponding acoustic transfer
functions. Such methods offer a notable advantage: many
blind RTF estimation procedures are available, i.e., estima-
tion frommicrophone observations only. Due to its ability
to encode many of the acoustic propagation path prop-
erties, spatial processing techniques based on the RTF
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Fig. 1 Example of room impulse response from dEchorate dataset

have been widely used for source separation and speech
enhancement [4–7], as well as in sound source localization
[8–11]. Explicit approaches instead require some sound
propagation properties (e.g., echoes’ TOAs) to be known
a priori. One of the early examples are the matched fil-
ters (or rake receivers) aiming at coherently sum the sound
reflections [12–14] to enhance target signals. Later, these
methods have recently regained interest as evidenced by
the European project SCENIC [15] and the UK research
project S3A1. In fact, few studies showed that know-
ing the properties of a few early echoes could boost
the performance of many indoor audio inverse problems
such as speech enhancement (SE) [16, 17], sound source
localization [18–21] and separation [22–25], and speaker
verification [26].
Another fervent area of research spanning transversely

the audio signal processing field is estimating the room
geometry blindly from acoustic signals [27–30]. As
recently reviewed by Crocco et al. in [29], end-to-end
room geometry estimation (RooGE) involves a number of
subtasks: The lowest common denominator of all these
tasks is acoustic echo retrieval (AER), that is, estimating
the properties of early echoes, such as their TOAs and
energies. The former problem is typically referred to as
TOA estimation, or time difference of arrival (TDOA)
estimation when the direct path is taken as reference.
In order to develop and evaluate methods in all these

fields, benchmark data are needed. As listed in [31] and
in [32], a number of recorded RIRs corpora are freely
available online, each of them meeting the demands of
certain applications. Table 1 summarizes the main char-
acteristics of some of them. One can broadly identify
two main classes of echo-aware RIR datasets in the lit-
erature: SE/automatic speech recognition (ASR)-oriented
datasets, e.g., [25, 31, 34], and RooGE-oriented datasets,
e.g., [28–30]. ASR-oriented methods regard acoustic
echoes indirectly, as highly correlated interfering sources

1http://www.s3a-spatialaudio.org/

coming from close reflectors, such as a table in a meeting
room or a near wall. This typically presents a challenge in
estimating the correct source’s direction of arrival (DOA)
with further consequences in DOA-based enhancement
algorithm. Although this factor is taken into account,
the abovementioned datasets lack complete annotation of
these echoes in the RIRs or the absolute position of objects
inside the room. RooGE-oriented group typically features
strong design choices, such as the usage of a single source,
isolated microphones scattered across the room or expen-
sive measurement equipment. These setups do not cover
many end user ASR applications, such as those performed
on table-top or hand-free communication devices. There-
fore, the main common drawback of these echo-aware
datasets is that they cannot be easily used for other tasks
than the ones which they were designed for.
To circumvent the complexity of recording and annotat-

ing real RIR datasets, many works (e.g., [35, 36, 36–38])
resort to the extensive use of acoustic simulators based
on the ISM, such as [39–42]. While such data are more
versatile, simpler, and quicker to obtain, they fail to fully
capture the complexity and richness of real acoustic envi-
ronments. Consequently, methods trained, calibrated, or
validated on themmay fail to generalize to real conditions,
as will be shown in this paper.
An exploitable echo-oriented RIR dataset should

include a variety of environments (room geometries and
surface materials), microphone placings (close to or away
from reflectors, scattered or forming ad-hoc arrays),
and, most importantly, precise annotations of the scene’s
geometry and echo timings in the RIRs. Moreover, in
order to be versatile and used in both SE and RooGE
applications, geometry and timing annotations should be
fully consistent. Such data are difficult to collect since
it involves precise measurements of the positions and
orientations of all the acoustic emitters, receivers, and
reflective surfaces inside the environment with dedicated
planimetric equipment.
To fill this gap, we present the dEchorate dataset: a

fully calibrated multichannel RIR dataset with accurate
annotation of the geometry and echo timings in different
configurations of a cuboid room with varying wall acous-
tic profiles. The dataset currently features 1800 annotated
RIRs obtained from 6 arrays of 5 microphones each, 6
sound sources, and 11 different acoustic conditions. All
the measurements were carried out at the acoustic lab
at Bar-Ilan University following a consolidated protocol
previously established for the realization of two other
multichannel RIRs datasets: the BIU’s Impulse Response
dataset [33] gathering RIRs of different reverberation lev-
els sensed by uniform linear arrays (ULAs) and MIRaGE
[43] providing a set of measurements for a source placed
on a dense position grid. The dEchorate dataset is
designed for AER with linear arrays and is more generally

http://www.s3a-spatialaudio.org/
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Table 1 Comparison between some existing RIR databases that account for early acoustic reflections. Receiver positions are indicated
in terms of number of microphones per array times number of different positions of the array (∼ stands for partially available
information). The read is invited to refer to [31, 32] for more complete list of existing RIR datasets

Database name Annotated Number of Key characteristics Purpose

Pos. Echoes Rooms RIRs Rooms Mic×Pos. Src

Dokmanić et al. [28] ✓ ∼ ∼ 15 3 5 1 Non-shoebox rooms RooGE

Crocco et al. [29] ✓ ∼ ✓ 204 1 17 12 Accurate 3D calibration
Many mic and src positions

RooGE

Remaggi et al. [30]† ✓ ∼ ✓ ∼1500 4 48×2 4–24 Circural dense array
Circular placement of sources

RooGE
SE

Remaggi et al. [25]† ✓ ∼ ✓ ∼1600 4 48×2+2×2 3–24 Circural dense array
Binaural recordings

RooGE
SE

BIU’s Database [33]‡ ✓ ✗ ✗ 1872 3 8×3 26 Linear array with different spacing
Circular placement of sources

SE

BUT-Reverb [31] ✓ ✗ ∼ 1426 8 (2–10)×6 3–11 Accurate metadata different
device/arrays various rooms

SE/ASR

VoiceHome [34] ✓ ✗ ✗ 188 12 8×2 7–9 Various rooms, real homes SE/ASR

dEchorate‡ ✓ ✓ ✓ 1980 11 5×6 6 Accurate echo annotation
different surface absorptions

RooGE
SE/ASR

†The dataset in [30] is originally intended for RooGE and further extended for (binaural) SE in [25] with a similar setup
‡These datasets have been recorded in the same room(s)

aimed at analyzing and benchmarking RooGE and echo-
aware signal processing methods on real data. In partic-
ular, it can be used to assess the robustness against the
number of reflectors, the reverberation time, additive spa-
tially diffuse noise, and non-ideal frequency and directive
characteristics ofmicrophone-source pairs and surfaces in
a controlled way. Due to the amount of data and recording
conditions, it could also be used to train machine learning
models or as a reference to improve RIR simulators. The
dataset is accompanied with a Python toolbox that can be
used to process and visualize the data, perform analysis,
or annotate new datasets.
The remainder of the paper is organized as follows.

Section 2 describes the construction and the composi-
tion of the dataset, while Section 3 provides an overview
of the data, studying the variability of typical acoustic
parameters. To validate the data, in Section 4, two echo-
aware applications are presented, one in speech enhance-
ment and one in room geometry estimation. Finally,
in Section 5, the paper closes with the conclusions and
offers leads for future work.

2 Dataset description
2.1 Recording setup
The recording setup is placed in a cuboid room with
dimension 6 m ×6 m ×2.4 m. The 6 facets of the room
(walls, ceiling, floor) are covered by acoustic panels allow-
ing controllable reverberation time (RT60). We placed 4
directional loudspeakers (direct sources, ID #1 to #4) fac-
ing the center of the room and 30 microphones mounted
on 6 static linear arrays parallel to the ground. These
elements are shown in Fig. 2, while a schematic view of

the setup is shown in Fig. 3. An additional channel is used
for the loop-back signal, which serves to compute the time
of emission and detect errors. Each loudspeaker and each
array is positioned close to one of the walls in such a way
that the origin of the strongest echo can be easily iden-
tified. Moreover, their positioning was chosen to cover a
wide distribution of source-to-receiver distances, hence,
a wide range of direct-to-reverberant ratios (DRRs). Fur-
thermore, 2 more loudspeakers (ID #5, #6) were posi-
tioned pointing towards the walls (indirect sources). This
was done to study the case of early reflections being
stronger than the direct path.
Each linear array consists of 5 microphones with non-

uniform inter-microphone spacings of 4, 5, 7.5, and 10
cm2. Hereinafter, we will refer to these elements as non-
uniform linear arrays (nULAs).

2.2 Measurements
The main feature of this room is the possibility to change
the acoustic profile of each of its facets by flipping double-
sided panels with one reflective (made of Formica lami-
nate sheets) and one absorbing face (made of perforated
panels filled with rock wool). A complete list of the mate-
rials of the room is available in Section 6.1. This allows
to achieve diverse values of RT60 that range from 0.1 to
almost 1 s. In this dataset, the panels of the floor were
always kept absorbent.
Two types of measurement sessions were considered,

namely, one-hot and incremental. For the first type, a sin-
gle facet was placed in reflective mode while all the others

2I.e., [−12.25,−8.25,−3.25, 3.25, 13.25] cm w.r.t. the barycenter
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Fig. 2 Pictures of the acoustic lab. From left to right: the overall setup,
one microphone array, and the setup with revolved panels

were kept absorbent. For the second type, starting from
fully absorbent mode, facets were progressively switched
to reflective one after the other until all but the floor are
reflective, as shown in Table 2. The dataset features an
extra recording session. For this session, office furnitures
(chairs, coat hanger, and a table) were positioned in the
room to simulate a typical meeting room with chairs and
tables (see Fig. 4). Theses recordings may be used to assert

Fig. 3 Recording setup—top view

the robustness of echo-aware methods in a more realistic
scenario.
For each room configuration and loudspeaker, three

different excitation signals were played and recorded in
sequence: chirps, white noise, and speech utterances. The
first consists in a repetition of 3 exponentially swept
frequency sine (ESS) signals of duration 10 s and fre-
quency range from 100 Hz to 14 kHz interspersed with 2
s of silence. Such frequency range was chosen to match
the loudspeakers’ characteristics. To prevent rapid phase
changes and “pop” effects, the signals were linearly faded

Table 2 Surface coding in the dataset: each binary digit indicates
if the surface is absorbent (0, ✗) or reflective (1, ✓)

Surfaces Floor Ceil West South East North

One-hot 010000 ✗ ✓ ✗ ✗ ✗ ✗

001000 ✗ ✗ ✓ ✗ ✗ ✗

000100 ✗ ✗ ✗ ✓ ✗ ✗

000010 ✗ ✗ ✗ ✗ ✓ ✗

000001 ✗ ✗ ✗ ✗ ✗ ✓

Incremental 000000 ✗ ✗ ✗ ✗ ✗ ✗

010000 ✗ ✓ ✗ ✗ ✗ ✗

011000 ✗ ✓ ✓ ✗ ✗ ✗

011100 ✗ ✓ ✓ ✓ ✗ ✗

011110 ✗ ✓ ✓ ✓ ✓ ✗

011111 ✗ ✓ ✓ ✓ ✓ ✓

furniture 010001∗ ✗ ✓ ✗ ✗ ✗ ✓

*the code 020002 is used in the dataset
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Fig. 4 Broad view picture of the acoustic lab at Bar-Ilan University.
This picture corresponds to the configuration 010001∗

in and out over 0.2 s with a Tuckey taper window.3 Second,
10-s bursts of white noise were played in the room. Finally,
for each recording, 3 different anechoic speech utterances
from theWall Street Journal (WSJ) dataset [44] were used
as source signal. Through all recordings, at least 40 dB
of sound dynamic range compared to the room silence
was asserted, and a room temperature of 24◦ ± 0.5 ◦C
and 80% relative humidity were registered. In these con-
ditions, the speed of sound is cair = 346.98 m/s [45].
In addition, 1 min of room tone (i.e., silence) and 4 min
of diffuse babble noise were recorded for each session.
The latter was simulated by transmitting different chunks
of the same single-channel babble noise recording from
additional loudspeakers facing the four room corners.
All microphone signals were synchronously acquired

and digitally converted to 48 kHz with 32 bit/sample using
the equipment listed in Table 3. The polarity of each
microphone was recorded by clapping a book in the mid-
dle of the room, and their gain was corrected using the
room tone.
Finally, RIRs are estimated with the ESS technique

[46, 47] where the abovementioned exponential time-
growing frequency sweep is used as probe signal. The
interested reader can refer to [31, 48] for a detailed
description of the ESS method and its advantages with
respect to other measurement techniques. Then, the
RIR is estimated by deconvolving the microphone signal,
implemented as division in the frequency domain3.

2.3 Dataset annotation
One objective of this dataset is to feature annotations in
the “geometrical space,” namely the microphone, facet,
and source positions, which are fully consistent with anno-
tations in the “signal space,” namely the echo timings
within the RIRs. This is achieved as follows:

(i) First, the ground truth positions of the array and
source centers are acquired via a Beacon indoor
positioning system (bIPS). This system consists in 4
stationary bases positioned at the corners of the

3The code to generate the reference signals and to process them is available
together with the data. The code is based on the pyrirtools Python library.

Table 3 Measurement and recording equipment

Loudspeakers (Directional, direct) 4× Avanton

(directional, indirect) 2× Avanton

(omnidirectional) 1× B&G

(babble noise) 4× 6301bx Fostex

Microphones 30× AKG CK32

Array 6× nULA (5 mics each, handcrafted)

A/D converter ANDIAMO.MC

Indoor positioning Marvelmind Starter Set HW v4.9

ceiling and a movable probe used for measurements
which can be located within errors of ±2 cm.

(ii) The estimated RIRs are superimposed on synthetic
RIRs computed with the image source method (ISM)
from the geometry obtained in the previous step. A
Python GUI4 (showed in Fig. 5) is used to manually
tune a peak finder and label all the echoes
corresponding to found peaks, that is, annotate t heir
timings and their corresponding image source
position and room facet label. A description of these
tools is presented at the end of the section.

(iii) By solving a simple multi-dimensional scaling (MDS)
problem [49–51], refined microphone and source
positions are computed from echo timings. The
non-convexity of the problem is alleviated by using a
good initialization (obtained at the previous step), by
the high SNR of the measurements and, later, by
including additional image sources in the
formulation. The prior information about the arrays’
structures reduced the number of variables of the
problem, leaving the 3D positions of the sources and
of the arrays’ barycenters in addition to the arrays’ tilt
on the azimuthal plane.

(iv) By employing a multilateration algorithm [52], where
the positions of one microphone per array serve as
anchors and the TOAs are converted into distances,
it is possible to localize image sources alongside the
real sources. This step will be further discussed
in Section 4.

Knowing the geometry of the room, in step (i), we are
able to initially guess the position of the echoes in the
RIR. Then, by iterating through steps (ii), (iii), and (iv), the
position of the echoes is refined to be consistent under
the ISM.
The final geometrical and signal annotation are chosen

as a compromise between the bIPS measurements and
the MDS output. While the former ones are noisy but con-
sistent with the scene’s geometry, the latter ones match
the TOAs but not necessarily the physical world. In par-
ticular, geometrical ambiguities such as global rotation,

4This GUI is available in the dataset package.

https://github.com/maj4e/pyrirtool
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Fig. 5 Detail of the GUI used to manually annotate the RIRs. For a given source and a microphone in an nULA, a and b show 2 RIRs for 2 different
room configurations (blue and orange) before and after the direct path deconvolution. c The results of the peak finder for one of the deconvolved
RIRs. d A detail on the RIR skyline (see Fig. 6) on the corresponding nULA, transposed to match the time axis

translation, and up-down flips were observed. Instead of
manually correcting this error, we modified the origi-
nal problem from using only the direct path distances
(dMDS) to considering the image sources’ TOA of the ceil-
ing as well in the cost function (dcMDS). Table 4 shows
numerically the mismatch (in centimeters) between the
geometric space (defined by the bIPSmeasurements) and
the signal space (the one defined by the echo timings,
converted to centimeters based on the speed of sound).
To better quantify it, we introduce here a goodness of
match (GoM) metric: it measures the fraction of (first-
order) echo timings annotated in the RIRs matching the
annotation produced by the geometry within a thresh-
old. Including the ceiling information, dcMDS produces

Table 4 Mismatch between geometric measurements and
signal measurements in terms of maximum (Max.), average (Avg.),
and standard deviation (Std) of absolute mismatch in centimeters

Metrics bIPS dMDS dcMDS

Geom. Max. 0 6.1 1.07

Avg.±Std. 0 1.8 ± 1.4 0.39 ± 0.2

Signal Max. 5.86 1.20 1.86

Avg.±Std. 1.85 ± 1.5 0.16 ± 0.2 0.41 ± 0.3

Mismatch GoM (0.5 ms) 97.9% 93.4% 98.1%

GoM (0.1 ms) 26.6% 44.8% 53.1%

GoM (0.05 ms) 12.5% 14.4% 30.2%

The goodness of match (GoM) between the signal and geometrical measurements
is reported as the fraction of matching echo timings for different thresholds in
milliseconds

a geometrical configuration which has a small mismatch
(0.4 cm on average, 1.86 cm max) in both the signal and
geometric spaces with a 98.1% matching all the first order
echoes within a 0.5-ms threshold (i.e., the position of all
the image sources within about 17-cm error). It is worth
noting that the bIPS measurements produce a signifi-
cantly less consistent annotation with respect to the signal
space.
Finally, the GUI mentioned in (ii) consists of a set of

tools that were found useful in checking all the RIRs and
annotating the echo TOAs in the dataset. These tools are
listed below.
The “skyline” visualization consists in presenting the

intensity of multiple RIRs as an image, such that the wave-
fronts corresponding to echoes can be highlighted [53].
Let hn(l) be an RIR from the dataset, where l = 0, . . . , L−1
denotes sample index and n = 0, . . . ,N − 1 is an arbitrary
indexing of all the microphones for a fixed room configu-
ration. Then, the skyline is the visualization of the L × N
matrix H created by stacking column-wise N normalized
echograms5, that is:

Hl,n = | hn(l) |
maxl | hn(l) | , (1)

where | · | denotes the absolute value.
Figure 6 shows an example of skyline for 120 RIRs

corresponding to 4 directional sources, 30 microphones,

5The echogram is defined either as the absolute value or as the squared value
of the RIR.
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Fig. 6 The RIR “skyline” described in Section 2.3, annotated with observed peaks (×) together with their geometrically expected position (◦)
computed with the Pyroomacoustic acoustic simulator. As specified in the legend, markers of different colors are used to indicate the room facets
responsible for the reflection: direct path (d), ceiling (c), floor (f), west wall (w), . . . , north wall (n)

and the most reflective room configuration, stacked hor-
izontally, preserving the order of microphones within the
arrays. One can notice several clusters of 5 adjacent bins
of similar color (intensity) corresponding to the arrivals at
the 5 sensors of each nULA. Thanks to the usage of linear
arrays, this visualization allowed us to identify both TOAs
and their labeling.
Direct path deconvolution/equalization was used to

compensate for the frequency response of the source
loudspeaker and microphone [27, 54]. In particular, the
direct path of the RIR was manually isolated and used
as an equalization filter to enhance early reflections from
their superimposition before proceed with peak picking.
Each RIR was equalized with its respective direct path. As
depicted in Fig. 5, this process was required for correctly
identifying the underlying TOAs’ peaks.
Different facet configurations for the same geometry

influenced the peaks’ predominance in the RIR, hence
facilitating its echo annotation. An example of RIRs cor-
responding to 2 different facet configurations is shown
in Fig. 5: the reader can notice how the peak predomi-
nance changes for the different configurations.
An automatic peak finder was used on equalized

echograms |hn(l)| to provide an initial guess on the peak
positions. In this work, peaks are found using the Python
library peakutils whose parameters were manually
tuned.

2.4 Limitations of current annotation
As stated in [55], we want to emphasize that annotating
the correct TOAs of echoes and even the direct path in

“clean” real RIRs is far from straightforward. The peaks
can be blurred out by the loudspeaker characteristics or
the concurrency of multiple reflections. Nevertheless, as
showed in Table 4, the proposed annotation was found to
be sufficiently consistent both in the geometric and in the
echo/signal space. Thus, no further refinement was done.
This dataset can be used as a first basis to develop bet-
ter AER methods (see [29]) for a review), which could be
used to iteratively improve the annotation, for instance
including 2nd-order reflections.

2.5 The dEchorate package
The dataset comes with both data and code to parse and
process it. The data are presented in 2 modalities: the
raw data, that is, the collection of recorded wave files, are
organized in folders and can be retrieved by querying a
simple dataset table; the processed data, which com-
prise the estimated RIRs and the geometrical and signal
annotations, are organized in tensors directly importable
in Matlab or Python (e.g., all the RIRs are stored in a ten-
sor of dimension L× I× J×D, respectively corresponding
to the RIR length in samples, the number of microphones,
of sources, and of room configurations).
Together with the data, a Python package is available

on the same website. This includes wrappers, GUI, exam-
ples, and the code to reproduce this study. In particular,
all the scripts used for estimating the RIRs and annotating
them are available and can be used to further improve and
enrich the annotation or as baselines for future works.
The dataset is available at [56], and the code to access

and process the data is available at github.

https://bitbucket.org/lucashnegri/peakutils/
https://www.github.com/Chutlhu/DechorateDB
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3 Analyzing the data
In this section, we will illustrate some characteristics of
the collected data in terms of acoustic descriptors, namely
the RT60, the DRR, and the direct-to-early ratio (DER).
While the former two are classical acoustic descrip-
tors used to evaluate SE and ASR technologies [57],
the latter is less common and used in strongly echoic
situations [58, 59].

3.1 Reverberation time
For a given source-receiver pair in a room, the RT60 is
defined as the time it takes for the sound level to decrease
by 60 dB in the microphone signal just after the source
has been turned off. It is used to quantify the reverbera-
tion phenomenon and is one themost common descriptor
for room acoustics. Besides, as reverberation affects detri-
mentally the performances of speech processing technolo-
gies, the robustness against RT60 has become a common
evaluation metric in SE and ASR.
Table 5 reports the estimated RT60(b) values per octave

band b ∈ {500, 1000, 2000, 4000} (Hz) for each room con-
figuration in the dataset. These values were estimated
using Schroeder’s integration methods [60–62] in each
octave band. For the octave bands centered at 125 Hz
and 250 Hz, the measured RIRs did not exhibit sufficient
power for a reliable estimation. This observation found
confirmation in the frequency response provided by the
loudspeakers’ manufacturer, which decays exponentially
from 300 Hz downwards.
Ideally, for the RT60 to be reliably estimated, the

Schroeder curve, i.e., the log of the square-integrated,
octave band-passed RIR, would need to feature a linear
decay for 60 dB of dynamic range, which would occur
in an ideal diffuse sound regime. However, such range is
never observable in practice, due to the presence of noise
and possible non-diffuse effects. Hence, a common tech-
nique is to compute, e.g., the RT10 on the range [−5,−15]
dB of the Schroeder curve and to extrapolate the RT60 by
multiplying it by 6.
For the dataset, we visually inspected all the RIRs cor-

responding to directional sources 1, 2, and 3, i.e., 90 RIRs
in each of the 10 rooms. Then, two sets were created.
Set A features all the Schroeder curves featuring linear

log-energy decays allowing for reliable RT10 estimates.
Set B contains all the other curves. In practice, 49% of
the 3600 Schroeder curves were placed in the set B.
These mostly correspond to the challenging measurement
conditions purposefully included in our dataset, i.e.,
strong early echoes, loudspeakers facing towards reflec-
tors, or receivers close to reflectors. Finally, the RT60 value
of each room and octave band was calculated from the
median of RT10 corresponding to Schroeder curves in
A only.
As can be seen in Table 5, obtained reverberation values

are consistent with the room progressions described in
Section 2. Considering the 1000-Hz octave band, the RT60
ranges from 0.14 s for the fully absorbent room (000000)
to 0.73 s for the most reflective room (011111). When
only one surface is reflective, the RT60 values remain
around 0.19 s.

3.2 Direct to early and reverberant ratio
In order to characterize an acoustic environment, it is
common to provide the ratio between the energy of the
direct and the indirect propagation paths. In particu-
lar, one can compute the so-called DRR directly from a
measured RIR h(l) [57] as:

DRR = 10 log10

∑
l∈D h2(l)

∑
l∈R h2(l)

[ dB] , (2)

where D denotes the time support comprising the direct
propagation path (set to ±120 samples around its time of
arrival, blue part in Fig. 1), andR comprises the remainder
of the RIR, including both echoes and late reverberation
(orange and green parts in Fig. 1).
Similarly, the DER defines the ratio between the energy

of the direct path and the early echoes only, that is:

DER = 10 log10

∑
l∈D h2(l)

∑
l∈E h2(l)

[ dB] , (3)

where E is the time support of the early echoes only (green
part in Fig. 1).
In contrast with RT60 whichmainly describes the diffuse

regime, both DER and DRR are highly dependent on the
position of the source and receiver in the room. Therefore,

Table 5 Reverberation time per octave bands RT60(b) calculated in the 10 room configurations

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Room 9 Room 10
000000 011000 011100 011110 011111 001000 000100 000010 000001 010001∗

500 Hz 0.18 (11) 0.40 (7) 0.46 (20) 0.60 (51) 0.75 (48) 0.22 (8) 0.21 (5) 0.21 (8) 0.22 (7) 0.37 (12)

1000 Hz 0.14 (62) 0.33 (83) 0.34 (86) 0.56 (89) 0.73 (90) 0.19 (79) 0.19 (74) 0.18 (69) 0.19 (70) 0.26 (72)

2000 Hz 0.16 (65) 0.25 (81) 0.30 (86) 0.48 (82) 0.68 (88) 0.18 (74) 0.20 (64) 0.18 (66) 0.18 (67) 0.24 (69)

4000 Hz 0.22 (15) 0.25 (17) 0.37 (22) 0.55 (16) 0.81 (29) 0.22 (17) 0.23 (12) 0.26 (14) 0.24 (18) 0.28 (14)

For each coefficient, the number of corresponding Schroeder curves inA used to compute the median estimate is given in parentheses
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for each room, wide ranges of these parameters were reg-
istered. For the loudspeakers facing the microphones, the
DER ranges from 2 to 6 dB in one-hot room configura-
tions and from− 2 to 6 dB in the most reverberant rooms.
Similarly, the DRR has a similar trend featuring lower val-
ues, such as − 2 dB in one-hot rooms and down to − 7.5
dB for the most reverberant ones. A complete annotation
of these metrics is available in the dataset.

4 Using the data
As an illustration of its wide range of potential uses, the
dEchorate dataset is now used to investigate the perfor-
mance of the state-of-the-art methods on two echo-aware
acoustic signal processing applications on both synthetic
and measured data, namely, spatial filtering and room
geometry estimation.

4.1 Application: echo-aware beamforming
Let I be the microphones listening to a single static
point sound source, contaminated by noise sources. In the
short-time Fourier transform (STFT) domain, we stack
the I complex-valued microphone observations at fre-
quency bin f and time index t into a vector x(f , t) ∈ C

I .
Let us denote s(f , t) ∈ C and n(f , t) ∈ C

I the source signal
and the noise signals at microphones, respectively, which
are assumed to be statistically independent. By denoting
h ∈ C

I the Fourier transforms of the RIRs, the observed
microphone signals in the STFT domain can be expressed
a follows:

x(f , t) = h(f )s(f , t) + n(f , t). (4)

Here, the STFT windows are assumed long enough so
that the discrete convolution-to-multiplication approxi-
mation holds well.
Beamforming is one of the most widely used techniques

for enhancing multichannel microphone recordings. The
literature on this topic spans several decades of array pro-
cessing, and a recent review can be found in [63]. In the
frequency domain, the goal of beamforming is to estimate
a set of coefficients w(f ) ∈ C

I that are applied to x(f , t),
such that ŝ(f , t) = wHx(f , t). Hereinafter, we will consider
only the distortionless beamformers aiming at retrieving
the clean target speech signal, as it is generated at the
source position, that is ŝ ≈ s.
As mentioned throughout the paper, the knowledge of

early echoes is expected to boost spatial filtering per-
formances. However, estimating these elements is diffi-
cult in practice. To quantify this, we compare explicit
and implicit echo-aware beamformers with echo-agnostic
ones. In order to study their empirical potential, we will
evaluate their performance using both synthetic and mea-
sured data, as available in the presented dataset.

Echo-agnostic beamformers do not need any echo-
estimation step: they just ignore their contributions. The
most striking example is the direct-path delay-and-sum
beamformer (DS) [64] which, in far-field settings, requires
the only knowledge of DOA of the target source.
Explicit echo-aware beamformers extend the direct-

path beamformers by considering the multi-path propa-
gation. They fall in the category of rake receivers, borrow-
ing the idea from telecommunication where an antenna
rakes (i.e., combines) coherent signals arriving from few
different propagation paths [12–14]. To this end, they
typically consider that for each RIR i, the delays and
frequency-independent attenuation coefficients of R early
echoes are known, denoted here as τ

(r)
i and α

(r)
i , respec-

tively. In the frequency domain, this translates into the
following:

h(f ) =
[R−1∑

r=0
α

(r)
i exp

(
2π jf τ (r)

i

)
]

i

, (5)

where r = 0, . . . ,R − 1 denotes the reflection order.
Recently, these methods have been used for noise and
interferer suppression in [16, 65] and for noise and rever-
beration reduction in [17, 66]. The main limitation of
these explicit echo-aware works is that echo properties,
or alternatively the position of image sources, must be
known or estimated a priori. Hereafter, we will assume
these properties known by using the annotations of the
dEchorate dataset, as described in Section 2.3. In par-
ticular, we will assume that the RIRs follow the echo
model (5) with R = 4, corresponding to the 4 strongest
echoes, so that such echoes correspond all to first-order
images. Then, knowing the echo delays, the associated
frequency-independent attenuation coefficients can be
retrieved from the observation using a simple maximum
likelihood approach, as in [67, Eq. 10].
Implicit echo-aware beamformers aim at estimating

the full acoustic propagation path (e.g., in [68–71]) or,
alternatively, consider coupling filters between pairs of
microphones, called RTFs [4]. The latter methods were
introduced specifically to circumvent the need for blind
estimation of echoes properties or RIRs. Note that con-
trary to RIRs, there exist efficient methods to estimate
RTFs from multichannel recordings of unknown sources
(see [63] (Section VI.B) for a review). On one hand, RTFs
can then be naturally and easily incorporated in power-
ful beamforming algorithms for speech separation; on the
other hand, this approach naturally estimates the source
image as it is listened at the reference microphone; there-
fore, in its vanilla form, it is limited for the dereverberation
application. More recent studies focuses, e.g., in [7, 72,
73], on how to achieve both dereverberation and noise
reduction in various scenarios.
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In this work, RTFs are estimated with known back-
ground noise statistics over 2 s of speech using the gener-
alized eigenvector decomposition (GEVD) method [6], as
illustrated in [74].
We evaluate the performance of both types of beam-

formers on the task of noise and late reverberation
suppression. Different minimum variance distortionless
response (MVDR) beamformers are considered, assuming
either spatially white noise (i.e., classical DS design), dif-
fuse noise (i.e., the Capon filter), or diffuse noise plus the
late reverberation [7]. In the latter case, the late reverber-
ation statistics are modeled by a spatial coherence matrix
[75] weighted by the late reverberation power, which is
estimated using the procedure described in [76].
Overall, the different RIR models considered are direct

propagation (DP, i.e., ignoring echoes), multipath propa-
gation (Rake, i.e., using 4 known early echoes) [16, 17],
or the full reverberant propagation (RTF) [4, 74]. Table 6
summarizes the considered beamformer designs. All these
methods are compared in their oracle setting, i.e., know-
ing the source’s DOA for DP, knowing the early echoes
properties for Rake, and knowing the noise statistics
for RTF.
Performance measures of the different designs are com-

pared on the task of enhancing a target speech signal in
a 5-channel mixture using the nULAs in the dEchorate
dataset. They are tested in scenarios featuring high rever-
beration and diffuse babble noise, appropriately scaled
to pre-defined signal-to-noise ratios SNR ∈ {0, 10, 20}.
Using the dEchorate data, we consider the room con-
figuration 011111 (RT60 ≈ 730 ms) and all possi-
ble combinations of (target, array) positions. Both real
and corresponding synthetic RIRs are used, which are
then convolved with anechoic utterances from the WSJ
corpus [44] and corrupted by recorded diffuse babble
noise. The synthetic RIRs are computed with the Python
library pyroomacoustics [41], based purely on the
ISM. Hence, on synthetic RIRs, the known echo timings
perfectly match the components in their early part (no
model mismatch).

Table 6 Summary of the considered beamformers

Acronym Steering vectors Noise model

DS [64] Direct path AOA Spatially white n.

MVDR-DP [64] Direct path AOA Diffuse n.

MVDR-RTF* [4] RTF Diffuse n.

MVDR-Rake* [16] 4 echoes/chan. Diffuse n.

MVDR-DP-Late [17] Direct path AOA Spatially white n.+lr.

MVDR-RTF-Late* [74] RTF Diffuse n. + lr.

MVDR-Rake-Late* [17] 4 echoes/chan. Diffuse n. + lr.

“n.” and “lr.” are used as short-hand for noise and late reverberation, respectively. “*”
denotes echo-aware beamformers

The evaluation is carried out similarly to the one in [17]
where the following metrics are considered:

• The signal-to-noise-plus-reverberation ratio
improvement (iSNRR) in dB, computed as the
difference between the input SNRR at the reference
microphone and the SNRR at the filter output. In the
present study, SNRR is defined as the ratio between
the target signal power and the power of the noise
plus the power of late-reverberant target signal.

• The speech-to-reverberation-energy-modulation
ratio improvement (iSRMR) [77] to measure the
dereverberation.

• The Perceptual Evaluation of Speech Quality
Improvement (iPESQ) score [78] to assess the
perceptual quality of the signal and indirectly the
amount of artifacts.

Implementations of the SRMR and Perceptual Evalution
of Speech Quality (PESQ) metrics are available in the
Python library speechmetrics. Both the iSNRR and
the PESQ are relative metrics, meaning they require a tar-
get reference signal. Here, we consider the clean target
signal as the dry source signal convolved with the early
part of the RIR (up to the Rth echo) of the reference (first)
microphone. On the one hand, this choice numerically
penalizes both direct path-based and RTF-based beam-
formers, which respectively aim at extracting the direct
path signal and the full reverberant signal in the refer-
encemicrophone. On the other hand, considering only the
direct path or the full reverberant signal would be equally
unfair for the other beamformers. Moreover, including
early echoes in the target signal is perceptually motivated
since they are known to contribute to speech intelligibil-
ity [79]. Finally, the late reverberant signal for computing
the SNRR is the dry source signal convolved with the late
part of the RIR, assumed here to start 70 ms after the
direct path’s TOA. Such values correspond to the aver-
age distance of 2nd-order image sources and was found to
make the late reverberation well-approximated by the late
diffusion model of [75].
Numerical results are reported in Fig. 7. On synthetic

data, as expected, one can see that the more infor-
mation is used, the better the performance measures
are. Including late reverberation statistics considerably
boosts performance in all cases. Both the RTF-based
and the echo-aware beamformers significantly outper-
form the simple designs based on the direct path only.
While the two designs perform comparably in terms of
iSNRR and iPESQ, the former has a slight edge over the
latter in terms of median iSRMR. A possible explana-
tion is that GEVD methods tend to consider the stronger
and more stable components of the RTFs, which in
the considered scenarios may identify with the earlier

https://github.com/LCAV/pyroomacoustics
https://github.com/aliutkus/speechmetrics/
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Fig. 7 Boxplot showing the comparison of different echo-agnostic and echo-aware (*) beamformers for the room configuration 011111
(RT60 ≈ 730 ms) on measured and synthetic data for all combinations of source array positions in the dEchorate dataset. The mean values are
indicated as +, while whiskers indicates extreme values

portion of the RIRs. Moreover, since it is not constrained
by a fixed echo model, the RTFs can capture more
information, e.g., frequency-dependent attenuation coef-
ficients. Finally, one should consider the compacity of
the model (5) with respect to the RTF model in terms
of the number of parameters to be estimated. In fact,
when considering 4 echoes, only 8 parameters per chan-
nel are needed, as opposed to several hundreds for the
RTF (ideally, as many as the number of frequency bins per
channel).
When it comes to measured RIRs, however, the trends

are different. Here, the errors in echo timings due to
calibration mismatch and the richness of real acoustic
propagation lead to a drop in performance for explicit
echo-aware methods, both in terms of means and vari-
ances. This is clearest when considering the iPESQmetric,
which also accounts for artifacts. The RTF-based beam-
former considering late reverberation MVDR-RTF-Late
outperforms the other methods, maintaining the trend
exhibited on simulated data. Finally, conversely to the
MVDR-RTF-Late, the MVDR-Rake-Late yields a sig-
nificant portion of negative performances. As already
observed in [17], this is probably due to tiny annotation
mismatches in echo timings as well as the fact that their
frequency-dependent strengths, induced by reflective sur-
faces, are not modeled in rake beamformers. This suggests
that in order to be applicable to real conditions, future
work in explicit echo-aware beamforming should include
finer blind estimates of early echo properties from signals,
as well as addressing the frequency-dependent behavior
of attenuation coefficients. Towards the solution of the
former problem, AER techniques investigated in [38, 80]
aim at estimating echo TOAs with sub-Nyquist precision.
However, preliminary experiments with these methods on
dEchorate found them not to be reliable enough for
automated annotation purpose.

4.2 Application: room geometry estimation
The shape of a convex room can be estimated knowing
the positions of first-order image sources. Several meth-
ods have been proposed which take into account different
levels of prior information and noise (see [30, 81] for a

review). When the echoes’ TOA and their labeling are
known for 4 non-coplanar microphones, one can per-
form this task using geometrical reasoning as in [28, 82–
84]. In details, the 3D coordinates of each image source
can be retrieved solving a multilateration problem [85],
namely the extension of the trilateration problem to 3D
space, where the goal is to estimate the relative position
of an object based on the measurement of its distance
with respect to anchor points. Finally, the position and
orientation of each room facet can be easily derived from
the ISM equations as the plane bisecting the line joining
the real source position and the position of its correspond-
ing image (see Fig. 8).
In dEchorate, the annotation of all the first order

echo timings are available, as well as the correspondences
between echoes and room facets. This information can
be used directly as input for the abovementioned mul-
tilateration algorithm. We illustrate the validity of these
annotations by employing the RooGE technique in [28]
based on them. This is done with known labels, bypassing
any AER step.
Table 7 shows the results of the estimation of the room

facets position in terms of plane-to-plane distance (dis-
tance error (DE), in centimeters) and plane-to-plane angle

Fig. 8 Image source estimation and reflector estimation for one of
the sound sources in the dataset
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Table 7 Distance error (DE) in centimeters and angular error (AE)
in degrees between ground truth and estimated room facets
using each of the sound sources (#1 to #4) as a probe

Source ID 1 2 3 4

Wall DE AE DE AE DE AE DE AE

West 0.74 8.99◦ 4.59 8.32◦ 5.89 5.75◦ 0.05 2.40◦

East 0.81 0.08◦ 0.9 0.50◦ 69.51 55.70◦ 0.31 0.21◦

South 3.94 16.08◦ 0.18 1.77◦ 14.37 18.55◦ 0.82 1.65◦

North 1.34 0.76◦ 1.40 8.94◦ 0.63 0.17◦ 2.08 1.38◦

Floor 5.19 1.76◦ 7.27 2.66◦ 7.11 2.02◦ 5.22 1.90◦

Ceiling 1.16 0.28◦ 0.67 0.76◦ 0.24 1.16◦ 0.48 0.26◦

For each wall, bold font is used for the source yielding the best DE and AE, while
italic highlights the outliers when present

(angular error (AE), in degrees) between the real wall and
the estimated one. The position of the surface is obtained
using a single source and 6 microphones, one per array.
The reported results are the mean over all the combina-
tions of 6 microphones among the 30 ones, partitioned
by arrays. Room facets are estimated using each of the
sources #1 to #4 as a probe. Except for source #3, the
majority of facets are estimated correctly in terms of their
placement and orientation with respect to the coordi-
nate system computed in Section 2.3. For instance, using
source #4, all 6 surfaces were localized with 1.49 cm DE
on average and their inclinations with 1.3◦ AE on aver-
age. These results are in line with the ones reported by
Dokmanić et al. in [28] using a setup of 5 microphones
listening to 1 sound source. Furthermore, one can use all
the 4 sources to estimate the room geometry as suggested
in [29]. By doing so, the entire room geometry estimation
results in 1.15 cm DE and 2.6◦ AE on average.
The small errors are due to a concurrency of multi-

ple factors, such as tiny offsets in the annotations. In the
real recording room, some gaps were present between
revolving panels in the room facet. In addition, it is pos-
sible that for some (image source, receiver) pairs, the
far-field assumption is not verified, causing inaccuracies
when inverting the ISM. The 2 outliers for source #3 are
due to a wrong annotation caused by the source directivity
which induced an echo mislabeling. When a wall is right
behind a source, the energy of the related 1st reflection is
very small and might not appear in the RIRs. This hap-
pened for the eastern wall, and a second-order image was
taken instead. Finally, the contribution of multiple reflec-
tions arriving at the same time can result in large late
spikes in estimated RIRs. This effect is particularly ampli-
fied when the microphone and loudspeakers exhibit long
impulse responses. As a consequence, some spikes can be
missclassified. This happened for the southern wall where
again a second-order image was taken instead. Note that
such echomislabeling can either be corrected manually or

using the Euclidean distance matrix criteria as proposed
in [28]. Note that in the final annotation provided with
the dataset, these cases are manually corrected. In partic-
ular, while the annotation of the image sources remains
valid and reliable, the corresponding echo contributions
as peaks in the RIRs are hidden. Consequently, the TOAs
corresponding to these case are removed from the dataset
annotation. Overall, this experiment illustrates well the
interesting challenge of estimating and exploiting acous-
tic echoes in RIRs when typical sources and receivers with
imperfect characteristics are used.

5 Conclusions and perspectives
This paper introduced a new database of room impulse
responses featuring accurate annotation of early echo tim-
ings that are consistent with source, microphone, and
room facet positions. These data can be used to test the
methods in the room geometry estimation pipeline and in
echo-aware audio signal processing. In particular, robust-
ness of these methods can be validated against different
levels of RT60, SNR, surface reflectivity, proximity, or early
echo density.
This dataset paves the way to a number of interesting

future research directions. By making this dataset freely
available to the audio signal processing community, we
hope to foster research in AER and echo-aware signal
processing in order to improve the performance of exist-
ing methods on real data. Moreover, the dataset could
be updated by including more robust annotations derived
from more advanced algorithms for calibration and AER.
Finally, the data analysis conducted in this work brings

the attention to exploring the impact of mismatch
between simulated and real RIRs on audio signal process-
ing methods. By using pairs of simulated vs. real RIRs
available in the dataset, it should be possible to develop
techniques to convert one to the other, using style transfer
or domain adaptation techniques, thus opening the way to
new types of learning-based acoustic simulators.

6 Appendix
6.1 Roommaterials (Table 8)

Table 8 Materials covering the acoustic laboratory in Bar-Ilan
University

Surface Mode Material

Floor Absorbent Hairy carpet

Ceiling Absorbent Glass wool mats covered with porous tin

Ceiling Reflective Formica (20 mm thick)

Walls Absorbent Glass wool mats covered with porous tin

Walls Reflective Panels: Formica (20 mm thick)

Wall: plaster
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AE: Angular error; AER: Acoustic echo retrieval; ASR: Automatic speech
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function; TOA: Time of arrival; TDOA: Time difference of arrival; ISM: Image
source method; SE: Speech enhancement; iPESQ: Perceptual evaluation of
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Conference on Acoustics, Speech and Signal Processing (ICASSP). Separake:
source separation with a little help from echoes, (2018), pp. 6897–6901.
https://doi.org/10.1109/ICASSP.2018.8461345

https://doi.org/10.5281/zenodo.4626590
https://www.github.com/Chutlhu/DechorateDB
https://doi.org/10.1201/9781315372150
https://doi.org/10.1201/9781315372150
https://doi.org/10.1121/1.382599
https://doi.org/10.1121/1.382599
https://doi.org/10.1109/78.934132
https://doi.org/10.1109/78.934132
https://doi.org/10.1109/TSA.2004.832975
https://doi.org/10.1109/TSA.2004.832975
https://doi.org/10.1109/TASL.2009.2016395
https://doi.org/10.1109/TASLP.2014.2372335
https://doi.org/10.1109/WASPAA.2015.7336917
https://doi.org/10.1109/IROS.2016.7759437
https://doi.org/10.1016/0167-6393(93)90072-S
https://doi.org/10.1109/ISCAS.1995.521409
https://doi.org/10.1109/ISCAS.1995.521409
https://doi.org/10.1109/89.622565
https://doi.org/10.1016/j.procs.2011.09.039
https://doi.org/10.1016/j.procs.2011.09.039
https://doi.org/10.1109/JSTSP.2015.2415761
https://doi.org/10.1109/JSTSP.2015.2415761
https://doi.org/10.1121/1.5095535
https://doi.org/10.1109/ICME.2010.5583886
https://doi.org/10.1109/LSP.2016.2601878
https://doi.org/10.1109/ICASSP.2019.8683534
https://doi.org/10.1109/ICASSP40776.2020.9054561
https://doi.org/10.1109/ICASSP40776.2020.9054561
https://doi.org/10.1109/TASLP.2013.2297012
https://doi.org/10.1109/TASLP.2013.2297012
https://doi.org/10.1109/TASLP.2016.2614140
https://doi.org/10.1109/TASLP.2016.2614140
https://doi.org/10.1109/ICASSP.2018.8461345


Carlo et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:39 Page 14 of 15

25. L. Remaggi, P. J. Jackson, W. Wang, Modeling the comb filter effect and
interaural coherence for binaural source separation. IEEE/ACM Trans.
Audio Speech Lang. Process. 27(12), 2263–2277 (2019). https://doi.org/
10.1109/TASLP.2019.2946043

26. K. A. Al-Karawi, D. Y. Mohammed, Early reflection detection using
autocorrelation to improve robustness of speaker verification in
reverberant conditions. Int. J. Speech Technol. 22(4), 1077–1084 (2019).
https://doi.org/10.1007/s10772-019-09648-z

27. F. Antonacci, J. Filos, M. R. Thomas, E. A. Habets, A. Sarti, P. A. Naylor, S.
Tubaro, Inference of room geometry from acoustic impulse responses.
IEEE Trans. Audio Speech Lang. Process. 20(10), 2683–2695 (2012).
https://doi.org/10.1109/TASL.2012.2210877
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Acoustics, Speech, and Signal Processing (ICASSP). Pyroomacoustics: a
Python package for audio room simulations and array processing
algorithms, (Calgary, 2018). https://doi.org/10.1109/ICASSP.2018.8461310

42. D. Diaz-Guerra, A. Miguel, J. R. Beltran, gpurir: a Python library for room
impulse response simulationwithGPUacceleration. Multimedia ToolsAppl.
80(4), 5653–5671 (2021). https://doi.org/10.1007/s11042-020-09905-3
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