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Abstract

Microphone and speaker array designs have increasingly diverged from simple topologies due to diversity of physical
host geometries and use cases. Effective beamformer design must now account for variation in the array’s acoustic
radiation pattern, spatial distribution of target and noise sources, and intended beampattern directivity. Relevant tasks
such as representing complex pressure fields, specifying spatial priors, and composing beampatterns can be
efficiently synthesized using spherical harmonic (SH) basis functions. This paper extends the expansion of common
stationary covariance functions onto the SHs and proposes models for encoding magnitude functions on a sphere.
Conventional beamformer designs are reformulated in terms of magnitude density functions and beampatterns
along SH bases. Applications to speaker far-field response fitting, cross-talk cancelation design, and microphone
beampattern fitting are presented.

Keywords: Spherical harmonics, Covariance functions, Radial basis functions, Kernel expansion, Array processing,
Beamformer design, Beampattern fitting, Cross-talk cancelation

1 Introduction
Acoustic array designs have undergone many iterations of
improvement as physical simulation data becomes more
accurate and abundant. Rapid microphone and speaker
array prototyping efforts have moved into simulation to
work in tandem with both industrial and product design.
Beamforming sits at the intersection where upstream
device geometry and hardware constrain the acoustics
and performance of the array, impacting the audio appli-
cation qualities downstream.
Microphone beamforming improves the signal-to-noise

ratio of automatic speech-recognition and wake-word
detection [6], estimate source direction-of-arrival [18],
and separate acoustic-objects [30]. Speaker beamform-
ing generalizes cross-talk cancelation [34] and can widen
acoustic-images by exciting wall reflections [37]. Far-field
beamformer performance improves when steering vectors
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incorporate the local geometry in their free-field acous-
tic responses [5]. Commercial software such as COM-
SOL [8] can readily import device geometries in acoustic
simulations. Therefore, a common basis representation
for beamformer design synthesizes different requirements
and simulations across applications.
The complex spherical harmonic (SH) functions [19, 24,

27] form one such basis that have found varied uses for
data fitting, analysis, and synthesis. Head-related trans-
fer functions can be efficiently encoded along the SH
bases for binaural reproduction [2, 11, 36]. Plane-waves
decomposition and beamforming on spherical micro-
phone arrays are directly formulated along the SH bases
[9, 21, 25, 27]. For non-spherical arrays, speaker and
microphone far-field directivity are decomposed along the
SHs from acoustic responses at large finite distances [3]
and integrated with room impulse response models [22,
29]. Acoustic directivity can also be fitted to magnitude
beampatterns along the SH bases [20, 26].
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Magnitude function synthesis on a sphere is less well-
known in beamforming but appears in interpolation and
Bayesian methods such as Kriging [32] and Gaussian pro-
cesses [28]. We show how these techniques that specify
covariance or kernel functions can relate acoustic direc-
tivity with spherical probablistic density functions to bet-
ter design, fit, and evaluate beampatterns. This improves
upon several prototyping stages which we list as the fol-
lowing contributions:

1 We fit non-parametric models to acoustic directivity
and show that their basis functions can be expanded
along SHs to give superior bias-variance trade-offs
than spatial cross-correlation models [19] and direct
SH fittings [14].

2 We derive the analytic SH expansions of several
Matérn covariance functions of chordal distances
which in previous works have only been shown to be
valid on the sphere [12, 13, 16, 31]. Expansion errors
under shape-constrained design parameters quickly
converges to 0 for increasing max truncation-orders
and ensuring model tractability.

3 We generalize the acoustic directivity index (DI) [19,
27] to support non-uniform spatial weighting or
probability density functions (PDFs) in terms of SHs.
This reduces bias of previous discrete sampling
schemes that must draw from finite measurements
and integrates over target and noise sources’
directional priors indicative of real-world
performance compared to flat priors.

4 We propose a mixture and product of SH encodings
model for synthesizing beampattern targets and
accelerate beampattern fitting optimization [20] by
analytic derivatives and integration over SH encoded
acoustic directivity.

5 We present case studies for fitting transcoded SHs to
simulated speaker responses’ anechoic acoustic
directivity, evaluating expected cross-talk cancelation
performances under varying spatial priors, and
ranking optimal cross-talk cancelation beampatterns
w.r.t. loss functions.

The paper contents are listed as follows: Section 2 intro-
duces the SH notation and derive several useful operators
along the SH bases. Section 3 presents novel encodings
of Matérn covariance function expansions of chordal dis-
tances along the SH bases and proposes the mixture of
encodings (MoE) and product of encodings (PoE) mod-
els for data fitting and magnitude function synthesis.
Section 4 introduces a new probabilistic treatment of
DI and then reformulates conventional minimum vari-
ance distortionless response (MVDR) and generalized
Rayleigh quotient (GRQ) beamformers in terms of SH
encoded spatial priors. Section 5 extends beampattern

fitting methods such as least squares (LS), magnitude
least squares (MLS), and magnitude squared least squares
(MSLS) into the SH bases. Section 6 establishes exper-
iments on anechoic far-field directivity fitting by radial
basis function (RBF) transcoding, performance impact
of spatial priors on cross-talk cancelation, and trade-offs
between beampattern fitting methods. Sections 7 and 8
discuss the findings and conclude the work.

2 Background and notation
The spherical harmonics are orthogonal basis functions
over spherical coordinates [19]:

Ym
l (θ ,φ) =

√
(2l + 1)

4π
(l − m)!
(l + m)!

Pml (cos θ)eimφ ,

l ≥ 0, −l ≤ m ≤ l,

(1)

where for notation, we denote l, m as the order and
degree, respectively, (θ , φ) the physics convention spher-
ical coordinates for colatitude and azimuth respectively,
and Pml (cos θ) the associated Legendre polynomials. A
function f (θ ,φ) defined over spherical coordinates can be
expanded along the SH bases:

f (θ ,φ) ≈
P∑
l=0

l∑
m=−l

Cm
l Ym

l (θ ,φ) = CTY (θ ,φ),

C =
[
C0
0 , C

−1
1 , C0

1 , C1
1 , . . .

]T
,

Y (θ ,φ) =
[
Y 0
0 (θ ,φ), Y−1

1 (θ ,φ), Y 0
1 (θ ,φ), . . .

]T
,

(2)

where Cm
l ∈ C are the expansion coefficients for basis

functions of order l and degree m, and P the maximum
order or the number of truncation terms in the SH expan-
sion. The number degrees m for order l totals 2l + 1 and
number of basis functions upto max truncation-order P is
(P+1)2. Therefore, a vector of coefficients C ∈ C

(P+1)2×1

and SH function evaluations Y (θ ,φ) ∈ C
(P+1)2×1 are

denoted in bold and arranged in ascending basis orders
[19]. We derive several vector operators along the SH
coefficients of f (θ ,φ) from Eq. 2.
Conjugation: The complex conjugate ()∗ of function

f (θ ,φ) flips the order of m and negates odd m har-
monics using the conjugate SH property Ym∗

l (θ ,φ) =
(−1)mY−m

l (θ ,φ) in [27]. The vectorized formulation per-
mutes the SH coefficients

f ∗(θ ,φ) ≈ C̃TY (θ ,φ), C̃ = diag [D0...P] C∗,

Dl = J l diag
[
(−1)−l:l

]
,

(3)

via the exchangematrix J l ∈ R
(2l+1)×(2l+1) defined in [15].

A real-valued function f (θ ,φ) = f ∗(θ ,φ) therefore has SH
coefficients satisfying C = C̃.



Luo EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:41 Page 3 of 17

Multiplication: The product two SH basis function is
closed under addition

Ym
l (θ ,φ)Ym̄

l̄ (θ ,φ) =

∣∣∣l+l̄
∣∣∣∑

L=
∣∣∣l−l̄

∣∣∣

√
(2l + 1)(2l̄ + 1)
4π(2L + 1)

YM
L (θ ,φ)

× c
(

l, l̄, L
m, m̄,M

)
c
(

l, l̄, L
0, 0, 0

)
,

(4)

where M = m + m̄ and c() the Clebsch-Gordan coef-
ficients defined in [4, 10]. We can therefore expand
the product of functions f (θ ,φ) ≈ CT

f Y (θ , φ), Cf ∈
C

(P+1)2×1 and f̄ (θ ,φ) ≈ CT
f̄ Y (θ , φ), C f̄ ∈ C

(P̄+1)2×1 in
terms of a product operator � of SH coefficients

� : Cf × C f̄ → Cf f̄ ,

f (θ ,φ)f̄ (θ ,φ) ≈ (Cf � C f̄ )
TY (θ , φ),

(Cf � C f̄ )
M
L =

P∑
l=0

l̄1∑
l̄=l̄0

√
(2l + 1)(2l̄ + 1)
4π(2L + 1)

c
(

l, l̄, L
0, 0, 0

)

×
m1∑

m=m0

c
(

l, l̄, L
m, m̄,M

)
Cm
l C̄m̄

l̄ ,

l̄0 = |L − l| , l̄1 = min(|L + l| , P̄),
m0 = max(M − l̄,−l), m1 = min(M + l̄, l),

(5)

where L, M are indices for the order and degree respec-
tively, m̄ = M − m, and Cm

l ∈ Cf , C̄m̄
l̄ ∈ C f̄ , Cf f̄ ∈

C
(P+P̄+1)2×1.
Squaredmodulus:A function’s magnitude squared can

be computed along SH bases via the product operator
of the SH expansion with its conjugate in Eqs. 3 and 5
given by∣∣f (θ ,φ)

∣∣2 = f (θ ,φ) f ∗(θ ,φ) ≈ (C � ˜C)TY (θ , φ). (6)

3 Function encodings and fitting
We define a stationary covariance function K over ran-
dom variables X(r) that depends only on the chordal
distance d(�) on a unit sphere:

K(X(r),X(r′)) = E
[
X(r)X∗(r′)

] = K(d(�)),

d(�) = 2 sin
�

2
= ∥∥r − r′∥∥ , (7)

where r ∈ R
3 is a cartesian unit vector represent-

ing a direction or point on the unit sphere, and � =
cos−1 (r · r′) the central angle between r, r′.
As a motivating example, let the random variable X(r)

be the sound pressure P(r,�, k) at position r and wave
number k due to a unit amplitude wave incident to a

direction drawn from random variable � with uniform
density function f (�) = (4π)−1 over the unit sphere. This
is equivalent to the well-known spatial cross-correlation
between sound pressure at two points in a diffuse field
[19] which after substitution into Eq. 7 yields the unnor-
malized sinc kernel:

∫
�

P(r,�, k)P∗(r′,�, k)
4π

d� = sin(k
∥∥r − r′∥∥)

k
∥∥r − r′∥∥ , (8)

where the positive semi-definiteness follows from expand-
ing P(r,�, k)P∗(r′,�, k) along SHs in [19] to supply the
weights λ and orthonormal bases ψ to Mercer’s Theorem
K(r, r′) = ∑∞

l=0 λlψl(r)ψl(r′) [23]. Moreover, Mercer’s
theorem allows a valid covariance function to be defined
without explicit specification of its random variables X(r)
provided that the former is expressible along an orthonor-
mal bases such as the SHs. We derive the analytic SH
expansions of several well-known stationary covariance
functions or RBFs.

3.1 Analytic encodings
Stationary covariance functions can be expanded into the
SH domain via the Legendre addition theorem:

K(�, 	) =
∞∑
l=0

bl(g, 	)Pl(cos�),

Pl(cos�) = 4π
2l + 1

l∑
m=−l

Ym∗
l (θ ,φ)Ym∗

l (θ∗,φ∗),
(9)

where expansion weights bl(g, 	) belong to some function
g parameterized by 	. The Legendre polynomial Pl(cos�)

of the angular distance 0 ≤ � ≤ π is expanded into
products of SHs evaluated at free coordinates (θ , φ) w.r.t.
a center or fixed coordinate (θ∗, φ∗). The SH coefficients
after substituting Eq. 9 into 2 are given by

Cm
l (
) = 4π bl(g, 	)

2l + 1
Ym∗
l (θ∗,φ∗),

f (θ ,φ, 
) = CT

Y (θ ,φ), 
 = {θ∗, φ∗, g, 	

}
,

(10)

where 
 is the set of parameters and CT

 the vector of

coefficients Cm
l (
). The function specific weights bl(g, 	)

must be real-valued and depend only on the order l as the
conjugate SH property in Eq. 3 ensures that f (θ ,φ, 
) ∈ R

iffCT

 = C̃T


. The exact values of bl(g, 	) can be computed
via the sine expansion of the Legendre polynomials [16,
31] given by
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bl(g, 	) = 2l + 1
2

∞∑
k=0

Dk
l A

k
l (g, 	),

Dk
l = 4

π

∏
[ 2(1 : l), 2(1 : k) − 1, l + (1 : k)]∏

[ 2(1 : l) + 1, (1 : k), 2(l + (1 : k)) + 1]
,

Ak
l (g, 	) = 1

2
(
g(l + 2k, 	) − g(l + 2k + 2, 	)

)
,

g(n, 	) =
∫ π

0
K(�, 	) cos(n�) d�,

(11)

where expansion coefficients g(n, 	) integrate the product
of covariance function K and the Chebyshev polynomials
cos(n�) = Tn(cos�).
We now consider members of the family of half-integer

order Matérn covariance functions [1] of chordal dis-
tances d(�) in Eq. 7 given by

Kν(t, 	) = e−st �(p + i)
�(2p + i)

p∑
i=0

(p + 1)!
i! (p − 1)!

(2st)i ,

ν = p + 1/2, t = d(�), s =
√
2ν
	

,

(12)

where p ∈ N
+ and �() is the Gamma function. These

RBFs are products of the Laplace kernel and polynomial
functions which can be combined with the Chebyshev
polynomials after a change of variables

cos(n�) = cos
(
2n

�

2

)
= T2n

(
cos

�

2

)

= F
(
[ 2n, −2n] ,

1
2
,
1 − cos �

2
2

)

= F
([

1
2

+ n,
1
2

− n
]
,
1
2
, sin2

�

2

)
cos

�

2

= F
([

1
2

+ n,
1
2

− n
]
,
1
2
,
t2

4

)
∂t
∂�

,

(13)

where F(a, b, z) is the generalized hypergeometric func-
tion (see Appendix Eq. 48). The modified integral after
substituting Eqs. 12 and 13 into g(n, 	) is given by

gν(n, 	) =
∫ 2

0
Kν(t, 	)F

([
1
2

+ n,
1
2

− n
]
,
1
2
,
t2

4

)
dt,

(14)

where dt = cos �
2 d�. After symbolic integration [35]

w.r.t. t for cases ν = { 1
2 ,

3
2 ,

5
2 ,∞

}
, the novel expansion

coefficients are presented as follows:

Matérn ν = 1/2 (Exponential): Non-differentiable
function at � = 0.

K 1
2
(�, 	) = e−

t
	 , ξ = 	−2,

g(n, 	) = (−1)nπ(F(1, [1 − n, 1 + n] , ξ)

− 	−1F(1, [ 3/2 − n, 3/2 + n] , ξ)).

(15)

Matérn ν = 3/2: Once-differentiable product of linear
polynomial and exponential functions.

K 3
2
(�, 	) =

(
1 +

√
3t
	

)
e−

√
3t
	 , ξ = 3	−2,

g(n, 	) = (−1)nπ(F(1, [ 1 − n, 1 + n] , ξ)

− 2ξF(2, [ 2 − n, 2 + n] , ξ)

+ 2ξ
√
3

	
F(2, [ 5/2 − n, 5/2 + n] , ξ)).

(16)

Matérn ν = 5/2: Twice-differentiable product of
quadratic polynomial and exponential function.

K 5
2
(�, 	) =

(
1 +

√
5t
	

+ 5t2

3	2

)
e−

√
5t
	 , ξ = 5	−2,

g(n, 	) = (−1)nπ(F([ 1] , [ 1 − n, 1 + n] , ξ)

− 2ξF(2, [ 2 − n, 2 + n] , ξ)

+ 2ξ
√
5

	
F(2, [ 5/2 − n, 5/2 + n] , ξ)

+ 2ξ
√

π

3
F([ 3/2, 2] , [ 1/2, 2 − n, 2 + n] , ξ)

− ξ
√
5π
	

F([ 2, 5/2] , [ 3/2, 5/2− n, 5/2 + n] , ξ)).

(17)

Matérn ν = ∞ (squared exponential): Infinitely differ-
entiable function everywhere.

K∞(�, 	) = e−
t2
2	2 , ξ = 	−2,

g(n, 	) = πe−ξ In(ξ),
(18)

where In is the nth order modified Bessel function of the
first kind.
Design parameters: The bandwidth term 	 which

parameterizes the RBFs can be chosen to satisfy con-
straints such as the full width at half magnitude (FWHM)
and the minimum. The FWHM for RBFs on the sphere
gives twice the radians at which the function is half the
maximum amplitude (Kν(�, 	) = 1

2 ) and minimized
at � = π as shown in Fig. 1. For Matérn covariance
functions, the FWHM can be found for a given 	 and
conversely, 	 for a desired target response:
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Fig. 1 Solid lines show RBFs with FWHM 2π
3 and bandwidth terms 	 that satisfy Kν(� = π

3 , 	) = 1
2 . Dashed lines show RBFs with

	ν

(
� = π

3 , TdB = −12
)
for Eq. 19. Smaller 	 and larger ν result in more localized covariance functions

FWHMν(	) = 2 argmin
�

∣∣∣∣Kν(�, 	) − 1
2

∣∣∣∣ ,
	ν(T�, TdB) = argmin

	

∣∣∣∣Kν(T�, 	) − 10
TdB
20

∣∣∣∣ ,
(19)

whereTdB is the target decibel response atT� radians (See
Appendix Eqs. 50–55 for analytic expressions).
For specifying sharp peaks and discontinuities on a

sphere, a sharp covariance function is desirable. Given
Matérn functions of different classes Kν1 , Kν2 where ν1 <

ν2 and identical FWHM, the less differentiable function
Kν1 is bounded above for 0 < � < FWHM

2 and below
for FWHM

2 < � < π as shown in Fig. 1. A sharp peak
function can therefore be parameterized with small ν, TdB
and T� but requires higher max truncation-order terms P
or SH bases to achieve the same reconstruction error as
shown in Fig. 2. The rootmean square error (RMSE) curve
RMSE(P) is asymptotically steeper for smoother function
classes (larger ν) and bounded below by functions with
larger bandwidth 	within the same class.We now propose
new techniques for fitting SH encoded RBFs to far-field
directivity responses and composing magnitude functions
on the sphere.

3.2 Mixture of encodings
A set of M complex target responses (Xi, θi, φi) can be
modeled by a weighted summation of N distinct SH
encoded functions f (θ , φ, 
j) in Eq. 10 given by

f (θ ,φ) = c +
N∑
j=1

wjf (θ , φ, 
j), (20)

where c is a scalar constant, and wj are unknown weights.
The system of equations is given by

Aw = b − c, Aij = f (θi, φi, 
j), bi = Xi,

j = {θ∗j, φ∗j, gj, 	j

}
, c = c × 1,

(21)

where A ∈ C
M×N , w ∈ C

N×1, b, c ∈ C
M×1 are the system

matrix, vectorized unknowns, targets, and scalar constant
respectively. The SH expansion of a constant over spher-
ical coordinates is given by 2c

√
π Y 0

0 (θ ,φ). The solution
vector w can be found by direct inversion of A when N =
M and by least-squares methods for overdetermined cases
N < M or when constraints on w are specified.
For N = M and common RBF parameterizations


i = {
θi, φi, g, 	

}
centered over distinct target responses

(Xi, θi, φi), MoE converges to RBF interpolation for valid
kernel functions as the max truncation-order P increases;
SH encodings converge to covariance functions at the
limit limP→+∞ f (θi, φi, 
j) = Kν(�ij, 	j). Moreover, SH
encodings for arbitrary P are valid kernels as the Legen-
dre polynomials in Eq. 9 are also valid kernels [16]. As
a result, the original kernel functions can be initially fit-
ted to a large number of samples using the original kernel
functions before expanding into the SH bases. For exam-
ple, native methods such as Gaussian processes [28] use
the log-marginal likelihood to fit bandwidth 	 and specify
the posterior mean weights
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Fig. 2 RBFs with design parameters in Fig. 1 are expanded at (θ = 0, φ = 0) along SH bases in Eqs. 9 and 10 upto maximum truncation-order P.
Their expansions are evaluated over the domain of |θ | ≤ π , φ = 0 (elevation) in Eq. 2 and the root mean square errors computed

w = (K + σ 2I)−1(b − c), K ij = Kν(�ij, 	), (22)

computed from a common covariance function where �ij
is the central angle between (θi,φi) and (θj,φj). We refer
to this schema as MoE-RBF transcoding given that a non-
parametric RBF interpolation of N supports is encoded
rather than fitted to (P+1)2 SH basis functions. The bias-
variance trade-off after transcoding is thus more sensitive
to the choice of the kernel function and its smoothness
and locality on the sphere rather than the number of SH
bases (See Section 6.1 for experiment).
We now consider the case where non-negative RBFs are

fitted to magnitude only responses X ≥ 0. At the limit
where P → ∞ and f (θi, φi, 
j) = Kν(�ij, 	j), the inter-
polant f (θ ,φ) can be constrained to be non-negative by
finding the non-negative least-squares solution w to the
real-values of Eq. 21 given by

R [A]diag
[
sgn(R[ b − c] )

]
w = R [b − c] , (23)

where c = 0 and w ≥ 0. For finite order SH encodings
however, f (θi, φi, 
j) and f (θ ,φ) may ripple below 0 due
to truncation error. If constant c > 0 is raised, then the
sign of R[b − c] forces each encoding f (θ , φ, 
i) to con-
tribute as either a peak or a null (See example in Fig. 3a)
and the latter may overshoot and induce negative values
in f (θ ,φ). One solution is to fit SH encodings of a kernel’s
squared modulus from Eq. 6 with non-negative weights
w ≥ 0 given by

f (θ , φ, 
j) =
∣∣∣f̄ (θ , φ, 
j)

∣∣∣2 , c = 0, (24)

where f̄ (θ , φ, 
j) is an SH encoding of a kernel and its
squaredmodulus is strictly non-negative and does not rip-
ple below 0. We note that a kernel’s squared modulus is a
valid kernel due to the general rule that the product of ker-
nels is a kernel [28]. All modulus squared Matérn kernels
are thereby suitable candidates for magnitude fitting with
slight modifications to parameter selection.
Parameter optimization of 	 depends on the Matérn

class ν; exponential and squared exponential K 1
2
(�, 	) =∣∣∣K 1

2
(�, 2	)

∣∣∣2, K∞(�, 	) =
∣∣∣K∞(�, 	

√
2)
∣∣∣2 are closed

under the squared modulus and so bandwidth 	 is sim-
ply scaled. For other half-integer ν classes, the kernels
remain products of exponential and polynomial functions
but are not part of the Matérn family; bandwidth 	 needs
re-derivation w.r.t. the objective function. For parameter
design of 	, targeting half the desired dB response TdB/2
at T� in Eq. 19 is sufficient.

3.3 Product of encodings
The PoEmodel or the product ofN SH encodings is useful
for fitting to low-order target responses given by

f (θ ,φ) =
N∏
j=1

(1 + wjf (θ , φ, 
j)), (25)

where wj ∈ C are unknown weights and the product of
SH encodings 1 + f (θ , φ, 
j) are closed under SH mul-
tiplication via Eq. 5; SH expansion of the unit constant
is 2

√
π Y 0

0 (θ ,φ). PoEs can model sharper functions than
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Fig. 3Mixture and product of two K∞ kernels from Eqs. 23, 28. Weights w are fitted to X = {12dB , −12dB} responses respectively at their centers of
expansion (θ∗ , φ∗). Only the magnitude responses are shown as the phase component is constant (0 radians)

MoEs (See example in Fig. 3b) as the derivative of prod-
ucts are multiplicative whereas the derivative of mixtures
is additive. PoEs however do require substantially more
bases than MoE as the product of N SH encodings of Pth
max truncation-order spans (NP + 1)2 bases. Data fit-
ting is also not closed-form due to non-linear objective
functions.
Consider the non-linear least-squares solution thatmin-

imizes the surrogate log function

L(w) =
∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

F2
i (w)

∣∣∣∣∣
∣∣∣∣∣
2

2

, bi = Xi,

Fi(w) =
N∑
j=1

log
(
1 + wj f (θi, φi, 
j)

)− log bi,

(26)

where (Xi, θi, φi) are theM target responses. For gradient-
based optimization, the Jacobian given by

∂Fi(w)

∂wj
= f (θi, φi,
j)

1 + wj f (θi, φi, 
j)
, (27)

can be used to update w.
In the case of magnitude target responses, a non-

negative PoE can be fitted by constraining the weights to
be real and bounded wj ≥ −1. For the case of N = M, the
weights can be further constrained such that each encod-
ing contributes a peak or null to f (θ ,φ) analogous to the
MoE formulation in Eq. 23:

f (θ ,φ) =
N∏
j=1

(1 + wj sgn(bj − 1)f (θ , φ, 
j)),

0 ≤ wj ≤ 1, ∀ sgn(bj − 1) = −1,
0 ≤ wj ≤ ∞, ∀ sgn(bj − 1) = 1,

(28)

where f (θ ,φ,
j) = f̄ (θ ,φ,
j)

f̄ (θj ,φj ,
j)
normalize SH encodings

f̄ (θ ,φ,
j) of kernels at their center of expansions (θj,φj)
to prevent over-shooting. PoEs can therefore model low-
order cascades of spatial peak and null magnitude func-
tions. We now show how to extend MoE and PoE models
into beamformer designs.
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4 Conventional beamformer extensions
An N channel array can be oriented towards directional
sources by parameterizing so-called steering vectors in
terms of each channel’s directivity or anechoic far-field
responses. A steering vector d(θ , φ) and the resulting
beampattern B(θ ,φ) can be parameterized along SH bases
given by

d(θ ,φ) = CT
d Y (θ ,φ), B(θ ,φ) = wHd(θ ,φ), (29)

where Cd ∈ C
(P+1)2×N is the column matrix of SH

coefficients fitted to N sets of acoustic directivities, and
w ∈ C

N×1 are the unknown beamformer’s weights.
The beamformer’s DI evaluates the power output gain
at (θ∗,φ∗) w.r.t. the power average over the spherical
coordinates [19, 27]:

DI(B(θ∗,φ∗)) = 4π |B|2 (θ∗,φ∗)∫
�

|B|2 (θ ,φ) d�

= 4π
∣∣wHCT

d Y (θ∗,φ∗)
∣∣2

wHCT
dC

∗
dw

.
(30)

Maximizing DI is the basis of conventional beamform-
ers such as MVDR which we show can be generalized for
non-uniform spatial sampling or density functions in both
numerator and denominator.

4.1 Spatial prior encodings
Across applications, target and noise sources may appear
in varied locations. An array can be steered to boost or
nullify a source if its exact locations are known. If their
locations are uncertain, an informative prior can instead
be specified. Let the uncertainty in sampling from a source
direction and its associated steering vector be modeled
as a random variable with probability density function
fp(θ , φ). We can specify a spatial density function on the
unit sphere in terms of SHs by normalizing MoE or PoE
functions from Eqs. 20 and 25 to satisfy non-negative and
unity integral constraints given as follows:

fp(θ , φ) = CT
p Y (θ ,φ), fp(θ , φ) ∈ R,

fp(θ , φ) ≥ 0,
∫

�

fp(θ , φ) d� = 1,
(31)

where the formulations given in Eqs. 23, 24, and 28 ensure
that fp(θ , φ) is both non-negative and real-valued. The
unity integral constraint is satisfied by normalizing the SH
coefficients Cp ∈ C

(P+1)2×1 by the scaled 0th order coef-
ficient 2

√
π C0

0 following the integration of SH functions
property in [27].
The statistical moments of the random variable of steer-

ing vectors d(θ ,φ) are computed from the product of its
SH coefficients in Eq. 29 and that of the density function
fp(θ ,φ) in Eq. 31. The weighted steering vectors are closed
under SH multiplication via Eq. 5:

d(θ ,φ)fp(θ ,φ) = QTY (θ ,φ), Q = Cd � Cp, (32)

where Q ∈ C
(2P+1)2×N are SH product coefficients. The

steering vector’s mean μd and covariance �d taken over
the spherical coordinates are therefore analytic following
the SH orthogonality property in [19, 27] and multiplica-
tive closure property of Eq. 32:

E [d] =
∫

�

d(θ ,φ)fp(θ ,φ)d� = CT
dC

∗
p,

E
[
ddH] =

∫
�

d(θ ,φ)dH(θ ,φ)fp(θ ,φ)d� = CT
d Q̄

∗,

μd = E [d] , �d = E
[
ddH]− μdμ

H
d ,

(33)

where Q̄ is truncated to the first (P + 1)2 rows of Q.
A formulation that avoids truncating Q uses multiplica-

tive associate property to compute the row i and column j
elements of covariance E

[
ddH] in Eq. 33 from SH prod-

ucts of pair-wise channel responses (columns i, j of d(θ ,φ)

in Eq. 29) given by

Eij
[
ddH] =

∫
�

di(θ ,φ)dH
j (θ ,φ)fp(θ ,φ)d�

= (Cd(:, i) � C̃d(:, j)
)T C∗

p.
(34)

Note that the density function fp(θ ,φ) must be encoded
to have twice the max truncation-order Cp ∈ C

(2P+1)2×1

of the steering vectors. The density function is truncated
back tomax-order P only when computing themeanμd in
Eq. 33 for consistency with d(θ ,φ). With the steering vec-
tors’ first and second moment statistics defined, we now
propose a novel probablistic beamformer formulation.

4.2 Steerable probabilistic beamforming
In far-field beamforming, let the target and noise source
directions be modeled by random variables with density
functions fA(θ ,φ), fR(θ ,φ) respectively satisfying Eq. 31.
Define the probabilistic directivity index (PDI) as the
power ratio of the beampattern from Eq. 29 integrated
w.r.t. the target and noise density functions given by

PDI(B, fA, fR) =
∫
�

|B|2 (θ ,φ)fA(θ ,φ) d�∫
�

|B|2 (θ ,φ)fR(θ ,φ) d�

= wH
EfA
[
ddH]w

wH EfR
[
ddH]w .

(35)

PDI generalizes DI from Eq. 30 as the latter can be spec-
ified via dirac delta density function fA(θ ,φ) = δθ ,φ for the
target and uniform density function fR(θ ,φ) = 1

4π for the
noise. Maximizing the PDI is equivalent to finding a maxi-
mum SNR filter via the GRQ formulation in [19, 27] given
by

w∗ = argmax
w

wHAw
wHRw

, wHd(θ ,φ) = 1, (36)
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where A = EfA
[
ddH] , R = EfR

[
ddH] ∈ C

N×N are
the non-centered acceptance and rejection covariance
matrices respectively. Note that the distortionless con-
straint for some steering vector d(θ ,φ) is optional but
useful for normalizing the beamformer response at a
look direction. The solution vector w are the beamformer
weights and can be found via the generalized eigenvalue
decomposition [33].
GRQ beamformers generalize instances of MVDR just

as DI is a special case of PDI. If the acceptance covari-
ance matrix is constructed from a single point source
A = d(θ ,φ)dH(θ ,φ) and the rejection covariance matrix
computed over noise sources distributed (uniform for DI
definition in Eq. 30) over spherical coordinates, then the
solution to Eq. 36 is the MVDR beamformer given by

d(θ ,φ) = CT
d Y (θ ,φ), R = EfR

[
ddH] ,

v(θ ,φ) = R−1d(θ ,φ) = E
−1
fR
[
ddH]CT

d Y (θ ,φ),

w(θ ,φ) = v(θ ,φ)

dH(θ ,φ)v(θ ,φ)
,

(37)

where the look direction can be steered by evaluat-
ing the SH bases at (θ ,φ) spherical coordinates. In the
more general case, the SH encoded density functions
fA(θ ,φ), fR(θ ,φ) can be steered under the SO(3) SH rota-
tion operator [17]. We now turn to a related fitting
problem that replaces SH encoded density functions with
target SH encoded magnitude response functions.

5 Beampattern fitting formulations
Let an N channel beamformer and target beampattern
functions along SH bases be given by

B(θ ,φ) = f TA(θ ,φ)w, f A(θ ,φ) = CT
AY (θ ,φ),

fB(θ ,φ) = YT (θ ,φ)CB ≥ 0, ∠fB(θ ,φ) = 0,
(38)

where B(θ ,φ) is the complex beamformer response,
CA ∈ C

(P+1)2×N the channel’s SH fitted far-field response
weights, f A(θ ,φ) ∈ C

N×1 the channel far-field responses,
w ∈ C

N×1 the unknown weights. The target magnitude
beamformer response fB(θ ,φ) is a non-negative real func-
tion with constant phase specified via MoE or PoE models
in Eqs. 23, 24, and 28 along the SH bases. Beampattern
fitting thus solves for weights w s.t. B(θ ,φ) ≈ fB(θ ,φ) in
terms of SH coefficients CA,CB.

5.1 Direct least squares
The direct LS fit of weights w in B(θ ,φ) to target fB(θ ,φ)

in Eq. 38 minimizes the squared modulus of the com-
plex residuals between target and response beampatterns.
Both magnitude and phase responses are fitted in the LS
objective function given by

F(w) =
∫

�

∣∣∣f TA(θ ,φ)w − fB(θ ,φ)

∣∣∣2 d�

=
∫

�

∣∣∣YT (θ ,φ)CAw − YT (θ ,φ)CB

∣∣∣2 d�

= wHCH
ACAw − 2wHCH

ACB + CH
B CB

= (CAw − CB)H (CAw − CB) ,

(39)

where by SH orthogonality, the residuals are transformed
into SH coefficients. The minimizer is therefore the ordi-
nary least squares (OLS) solution to CAw = CB given by

argmin
w

F(w) = (CH
ACA

)−1 CH
ACB. (40)

OLS however over-constrains the residuals as the beam-
former’s phase responses are unnecessarily fitted to a
constant (0 radians), causing the minimizer to under-fit
the target magnitude responses. This is addressed in the
so-called discrete MLS formulation.

5.2 Magnitude least squares
The magnitude response can be fitted by minimizing the
squared error between the modulus beampattern |B(θ ,φ)|
and target fB(θ ,φ) integrated over the spherical coordi-
nates. The integrated MLS fitting can be approximated
by the discrete MLS formulation using quadrature or
sampling the beampattern over a dense uniform spaced
spherical coordinate grid ofM directions given by

F(w) =
∫

�

(∣∣∣f TA(θ ,φ)w
∣∣∣− fB(θ ,φ)

)2
d�,

≈
M∑

θi,φi

(∣∣∣f TA(θi,φi)w
∣∣∣− fB(θi,φi)

)2
.

(41)

The solution w for discrete MLS can be found via the
local-variable exchange (LVE) method [20] given by

F̃(w, z) =
M∑

θi,φi

∣∣∣f TA(θi,φi)w − fB(θi,φi)zi
∣∣∣2 ,

ẑi = argmin
zi

F̃(ŵ, zi) = ej∠f TA(θi,φi)ŵ,

ŵ = argmin
w

F̃(w, ẑi) = (AHA
)−1 AHb,

Aij = fAj(θi,φi), bi = fB(θi,φi)ẑi,

(42)

which introduces a vector of complex unit variables z ∈
C
M×1 and converts Eq. 41 into a LS problem. The solution

alternates between phase matching the magnitude tar-
get fB(θi,φi) to the corresponding beamformer response
fAj(θi,φi) with the free-variable zi and finding the OLS
solution ŵ until convergence. An analogous solution for
the integrated MLS formulation is more difficult as z is
replaced with the complex unit function ejfz(θ ,φ) s.t. an
unwrapped phase function fz(θ ,φ) = YT (θ ,φ)Cz is con-
strained to be real-valued following Eq. 3 but may also
be discontinuous (e.g., spatial nulls may invert the phase).
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Instead, we introduce a novel MSLS formulation which
we extend along SHs to show that it does not require
discretization over the sphere to optimize.

5.3 Magnitude squared least squares
The magnitude response can be fitted by minimizing the
squared error between the squared modulus beampat-
tern |B(θ ,φ)|2 and target f 2B (θ ,φ). The MSLS objective
function is given by

F(w) =
∫ (∣∣∣f TA(θ ,φ)w

∣∣∣2 − f 2B (θ ,φ)

)2
d�

= (GA(w ⊗ w∗) − GB
)2 ,

GA(i, j) = CAi � C̃Aj , GB = CB � C̃B,

(43)

where ⊗ is the Kronecker product, GB ∈ C
(2P+1)2×1 the

SH coefficients of the squared magnitude target beam-
pattern, GA(i, j) ∈ C

(2P+1)2×1 the pair-wise SH products
of channel i and j’s far-field SH coefficients CAi and CAj

respectively, and GA ∈ C
(2P+1)2×N2 the column matrix

of the pair-wise products (column k = N(i − 1) +
j + 1 is GA(i, j)). The derivation follows from expand-
ing the squared magnitude of the beamformer response
into weighted SH products via the distributive property
of product operator in Eqs. 5, 6 and then rearranging the
terms into a matrix Kronecker-vector product given by∣∣∣f TA(θ ,φ)w

∣∣∣2 = (CAw � C̃Aw
)T Y (θ ,φ)

= (GA(w ⊗ w∗)
)T Y (θ ,φ).

(44)

TheMSLS objective function in Eq. 43 is quartic w.r.t. w
and the solution can be found via iterative methods such
as gradient descent and Gauss-Newton (see Appendix
Eq. 49 for derivatives). Note that the quartic objective
function causes the fitted squared magnitude response
to over-weight larger values resulting in over-fitted peaks
and under-fitted nulls w.r.t. the target beampattern. We
now turn to experimental studies to validate our methods
in the remainder of the work.

6 Experiments
6.1 Acoustic directivity fitting
In microphone and speaker prototyping, it is necessary
to characterize the impact of the physical array’s ane-
choic far-field acoustic directivity. Fitting the SH bases
to acoustic directivity transforms the responses into a
spatially continuous and spatially band-limited represen-
tation for subsequent beamform design. We present a
case study comparing several SH fittingmethods and their
bias-variance trade-off to the anechoic far-field responses
of a custom down-firing mid-range speaker on a table.
In simulation [8], a pressure source at the speaker cone
center generates a response that we uniformly sample at

R = 1 meter radius over a grid of 7.5 degree azimuth and
2 degree elevation increments. Let the dataset be speci-
fied byD = {X, θ , φ} where X ∈ C

N×1 is the vector of N
complex pressure samples at frequency with wavelength
smaller than the simulation distance, and θ , φ ∈ R

N×1

vectors of the sample azimuth and colatitude in radians
respectively.
Let a reference function f̄ (θ ,φ) = CT

f̄ Y (θ ,φ) be the SH
bases fitted upto max-order P = 30 to dataset D via the
truncated singular value decomposition (TSVD) [14] as
follows:

AC f̄ = X, Ai,: = YT (θi,φi), A = USVH ,

C f̄ = VS̃−1UHX, σ = diag [S] ,

S̃−1
ij =

{
σ−1
i , if i = j and σi > α σmax

0, otherwise ,

(45)

where matrix A ∈ C
N×(P+1)2 is the row-matrix of SH

bases evaluated at θ , φ spherical coordinates. The SVD
of A is given by left and right singular vectors U ∈
C
N×(P+1)2 , V ∈ C

(P+1)2×(P+1)2 respectively and the sin-
gular values S ∈ R

(P+1)2×(P+1)2 . The inverse matrix S̃−1 ∈
R

(P+1)2×(P+1)2 is the diagonal of reciprocal singular val-
ues greater than α = 0.01 fraction of the largest singular
value. The fitted SH weights C f̄ ∈ C

(P+1)2×1 follows from
inverting the truncated singular values and vectors.
Candidate SH fitting methods are compared to the

reference fit under 10 randomized trials of 4-fold cross-
validation (40 permutations of pairs of training and test
sets). A single trial randomizes the sample indices of
dataset D before partitioning the samples into 4 mutu-
ally exclusive training sets of size N

4 ; test sets complement
each of the training sets as shown in Fig. 4a. The MoE-
RBF transcoding method in Eq. 22 with Matérn kernel
functions K{ 1

2 ,
3
2 ,

5
2 ,∞

} in Eq. 12 as well as the sinc kernel in
Eq. 8 are then fitted over each training set before inference
over the test sets. RBF fitting under a Gaussian process
model maximizes the log-marginal likelihood quantity of
the kernel function hyperparameters 	 (or wavenumber k
for sinc kernel) under noisy observation assumptions (A is
the equivalent gram matrix with noise variance σ = 10−6

as diagonal loading) [28]. After convergence, the least
squares solution w to Eq. 21 are found and the MoE func-
tion f (θ ,φ) in Eq. 20 are expanded into Cf weighted SH
bases via Eq. 10.
The set of candidate fittings for one of the cross-

validation trials are visualized in Fig. 4. The TSVD can-
didate of lower max truncation-order (P = 6) SH bases
under-fits the training set resulting in overly smooth mag-
nitude and phase responses shown in Fig. 4b. Increasing
the fit’s max-order SH bases however does not improve
generalization as shown by the larger errors in Table 1.
Instead, fitting by non-parametric RBF expansions at each
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Fig. 4 Sample model fit and inferences are shown for far-field speaker responses by TSVD SH bases and RBF kernels under 4-fold cross-validation.
TSVD bias-variance is sensitive to max-order P whereas RBFs are sensitive to the kernel function sharpness; K 1

2 ,
5
2
generalizes well, K∞ is too smooth,

sinc too sharp

of the training samples outperforms parametric fitting
of SH bases due to the former’s bias-variance trade-off.
Among the set of RBF kernels to choose from, the sharp
but long-tailed function K 1

2
had superior generalization

as shown in Fig. 4d. Conversely smooth but short-tailed
functions such as K∞ over-fits to the training set when
the samples are sparse and the underlying function rough
as shown in Fig. 4f. This results in poor fits near discon-
tinuities in the far-field response such as nulls; decreasing

Table 1 Fourfold cross-validation errors for far-field speaker
responses (mean, variance, 10 trials)

Method NRMSE NRMSIE

TSVD: P=5 [14] 0.249 ± 0.0047 0.27 ± 0.00455

TSVD: P=6 0.238 ± 0.0067 0.252 ± 0.00676

TSVD: P=7 0.246 ± 0.00981 0.256 ± 0.0102

TSVD: P=12 0.66 ± 0.161 0.694 ± 0.177

RBF: Sinc [19] 0.944 ± 0.103 0.954 ± 0.109

RBF: K 1
2

0.22 ± 0.0104 0.221 ± 0.011

RBF: K 3
2

0.233 ± 0.01 0.244 ± 0.0104

RBF: K 5
2

0.223 ± 0.0162 0.229 ± 0.0172

RBF: K∞ 0.343 ± 0.0388 0.352 ± 0.04

the kernel’s bandwidth 	 narrows the function for fit-
ting to local features at the cost of poor generalization
at more distant samples. Choosing an unsuitable kernel
such as the sinc function when the sound-field is not dif-
fuse also results in poor generalization as the acoustic
targets’ phase are regular but the sinc kernel has multiple
zero-crossings that cause discontinuities.
The generalization errors of the cross-validation trials

are shown in Table 1 via two metrics. The normalized
root mean square error (NRMSE) as defined in Appendix
Eq. 56 averages the squared error between the test samples
and the model inference f (θ ,φ) ≈ YT (θ ,φ)Cf evalu-
ated at the sample’s spherical coordinates; normalization
constant is the standard deviation of the dataset. The nor-
malized root mean squared integrated error (NRMSIE) as
defined in Appendix Eq. 57 averages the squared error
between the candidate and reference function f̄ (θ ,φ) over
the continuous spherical coordinates; normalization con-
stant is the standard deviation of the reference function.
The NRMSE metric is restricted to only test samples
whereas NRMSIE incorporates both training and test
sample by computing the total distance between any two
functions on the sphere. For the TSVD model-order can-
didates, both metrics are minimized when the model
order is empirically found to be P = 6; further increasing
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the number of basis functions results in severe over-fitting
as seen in the case of P = 12. For the MoE-RBF kernel
candidates, K{ 1

2 ,
3
2 ,

5
2
} had the best performances with low

mean errors within a standard deviation of each other;K∞
however is both too smooth and local resulting in larger
error mean and variance across trials.

6.2 Beamformer cross-density priors
MVDR and GRQ beamformers designed with spatial pri-
ors for target and noise sources may be mismatched
in real-world scenarios. For example, density functions
fA(θ ,φ), fR(θ ,φ) may be updated a posteriori with tar-
get and noise source location data collected from camera
data. Spatial priors that depend on the array’s location
in the environment such as the center, side, corner of a
room may be separately defined. We show how PDI in
Eq. 35 may be used to evaluate both the expected beam-
former performance when the density functions matches
the design priors and the performance degradation when
they mismatch.
Consider the combinations of target and noise source

types with spatial priors specified in Table 2. A stationary
point source has a direction sampled from a Dirac delta
density function. Diffuse and reverberant noise has equal
energy in all directions and thus sampled from a uniform
density function. Moving sources and directional noise
have spatial priors that contain modes for varying blur
and spread due to jitter motion and early wall reflections
respectively. Beamformers designed with spatial priors
suited to their application are shown to outperform those
that use uninformative or inaccurate priors.
One such application is speaker cross-talk cancela-

tion (XTC) where a beamformer jointly maximizes the
response at one receiver while minimizing the responses
at all other receivers. If the receiver locations are non-
stationary in the case of a moving head with two ears,
then a speaker beamformer must avoid over-fitting to a
narrow region. Instead, we treat the ipsilateral and con-
tralateral ears w.r.t. left and right inputs as target and
noise sources respectively with locations sampled from
a wide density function. The former has the acceptance
XTC PDF fA(θ ,φ) = YT (θ ,φ)CA given by the normalized
PoEs of two kernel functions K∞ fitted to target responses
X = {12dB, −12dB} at their center of expansions. The lat-
ter has the rejection XTC* PDF fR(θ ,φ) = YT (θ ,φ)C∗

A
which simply reflects the acceptance PDF over themedian
plane due to symmetry of the ears by conjugating the

Table 2 Sample beamformer density functions

Row: Target Col: Noise Diffuse Directional

Point Dirac, Uniform Dirac, Spread

Moving Blur, Uniform Blur, Spread

SH weights. The PoE design parameters are presented as
follows:


1 =
{
θ = π

3
, φ = −π

12
, 	 = 1

2

}
, w1 = 10.3,


2 =
{
θ = π

3
, φ = π

12
, 	 = 1

2

}
, w2 = −0.97.

(46)

The acceptance PDF shown in Fig. 4g oversamples
the elevated ipsilateral quarter-sphere region and under-
sampling near the contralaternal ear. The rejection PDF
shown in Fig. 4j oversamples the elevated contralat-
eral quarter-sphere region and undersampling near the
ipsilateral ear.
Far-field anechoic responses belonging to an N = 4

channel planar array are simulated at 1 meter distances
and then fitted to P = 12 max-order SH functions. Far-
field MVDR and GRQ beamformers are then optimized
for PDIs with Dirac, uniform, XTC and XTC* density
functions specified in Table 3 and their beampatterns
shown in Fig. 5. The cases are indexed by the PDI’s accept
and reject PDFs (fA, fR) and their optimal beamformers
specified:

• (Dirac, Uniform): MVDR maximizes the response at
one ipsilateral ear location (θ = π

3 , φ = − π
12 ),

minimizes overall leakage.
• (Dirac, XTC*): MVDR maximizes the response at

one ipsilateral ear location (θ = π
3 , φ = − π

12 ),
minimizes leakage near contralateral ears.

• (XTC, Uniform): GRQ maximizes the responses
near ipsilateral ears, minimizes overall leakage.

• (XTC, XTC*): GRQ maximizes the responses and
minimizes the leakage near ipsilateral and
contralateral ears respectively.

Beamforming PDIs are largest when fA is the Dirac func-
tion; conventional two channel XTC designs set fR to
the Dirac function which places a null at the secondary
receiver location to further increase the array cancelation
gain but may mismatch if the receiver moves. Setting fR to
the uniform function minimizes the leakage in all direc-
tions whereas the XTC* density presents a compromise.

Table 3 Beamformer cross-density probabilistic directivity index
(Eq. 35) performance (dB)

Row: PDI / Col: BF MVDR MVDR GRQ GRQ

(fA, fR) (D, U) (D, X*) (X, U) (X, X*)

(Dirac, Uniform) 9.53 9.09 8.11 3.46

(Dirac, XTC*) 8.15 8.57 7.7 4.63

(XTC, Uniform) 2.14 2.15 2.67 2.19

(XTC, XTC*) 0.756 1.64 2.26 3.36
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Fig. 5 Beampatterns are shown for MVDR / GRQ beamformers designed from a combination of spatial priors for cross-talk cancelation. Dirac and
uniform density functions cause over-fitting to the ipsilateral response and under-fitting to the contralateral response respectively unlike the XTC
and XTC* priors

For cross-density PDIs, beamforming performance max-
imally degrades when both fA, fR mismatch in the case
of (Dirac, Uniform) and (XTC, XTC*). Beamformer GRQ
(XTC, XTC*) is 6 dB lower thanMVDR (Dirac, Uniform) if
receiver locations align with PDI (Dirac, Uniform) condi-
tions. GRQ (XTC, XTC*) is more than 2.5 dB higher than
MVDR (Dirac, Uniform) for more realistic PDI (XTC,
XTC*) conditions.
We can also evaluate conventional XTC designs under

PDI priors. For example, the constant parameter regular-
ized XTC1 [7] can be generalized for multiple channels in
terms of Eq. 35 by setting the accept and reject densities
to the dirac delta functions at the accept and reject center
angles (θ1,φ1) ∈ 
1 and (θ2,φ2) ∈ 
2 in Eq. 46 respec-
tively and adding a diagonal loading parameter λ to the
rejection covariance matrix:

EfA
[
ddH] = d(θ1,φ1)dT (θ1,φ1),

EfR
[
ddH] = d(θ2,φ2)dT (θ2,φ2) + λI.

(47)

GRQ beamformers that maximize the PDI under Eq. 47
for varying λ are then evaluated w.r.t. the cross-density
priors in Table 3 and their expected cancelation gains
shown in Fig. 6. The XTC gain at the precise target (θ1,φ1)
and cancelation (θ2,φ2) angles grows to infinity as λ → 0.
In practice, we prefer to choose the λ that maximizes a
PDI with suitable priors. For example, λ = 6.5e−7 maxi-
mizes the PDI with (XTC, XTC*) priors at 3 dB expected
cancelation gain and sharply declines for larger λ. If the
accept region is restricted to the exact target angle in
the case of the (Dirac, XTC*) prior, then λ = 1.5e−6
maximizes the PDI.

1The Tikhonov regularized solution in [7] give identical PDI and XTC gain in
Fig. 6.

6.3 Beampattern fitting
In applications that require an array to archive a specific
beampattern, conventional beamformers such as MVDR
and GRQ are ill-suited. The former penalizes a beampat-
tern’s mismatch w.r.t. a target whereas the latter maxi-
mizes the expected beampattern’s array gain between two
spatial regions. An idealized target beampattern may be
specified in some applications such as stereo cross-talk
cancelation that places a peak in one region, a null at
another, and has sufficient leakage control or side-lobe
attenuation everywhere else (see Fig. 3). Given an acous-
tic simulation of a physical array, we evaluate how close a
beamformer can fit to a beampattern.
Far-field anechoic responses belonging to an N = 8

channel array on both sides of a wedge (2 × 4 rectangle
array) are simulated at 1 meter distances and then fitted
to max truncation-order P = 14 SH functions. Two tar-
get beampatterns are specified along SH bases of the same
max truncation-order using the MoE and PoE models as
shown in Fig. 3. The PoE target response has a more direc-
tive peak but smoother null than the MoE target. We fit
separate beamformer weights to the target beampatterns
by minimizing the LS, MLS, and MSLS loss functions
from Eqs. 39, 41, and 43 via the OLS, LVE, and the
Gauss-Newton methods, respectively. Last, we compare
beampatterns by evaluating them across loss functions.
The fitting errors for each set of beamformer weights

are shown in Table 4. Rows represent the set of loss
function evaluated over beampatterns generated from the
optimization method specified in the column. Diagonal
entries correspond to the optimizer’s fitting errors and
are the minima along each row. Off-diagonal entries cor-
respond to the row’s loss function evaluated on beam-
patterns produced by other fitting methods where we
expect larger errors. Similarity scores in parentheses
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Fig. 6 Constant parameter λ regularized beamformers [7] parameterized by Eq. 47 achieve unbounded XTC gains. Their beampatterns evaluated
w.r.t. PDI give the expected XTC gain over different accept and reject density functions

normalize the errors on each row by dividing by the diag-
onal entry. Beampatterns generated by MLS and MSLS
methods induce large errors and low similarity scores
w.r.t. the LS beampattern due to having variable phase
responses; MLS and MSLS beampatterns are not unique
under arbitrary phase shifts of the beamformer weights.
Conversely, LS beampatterns are fitted to both magnitude
and phase responses, thereby under-fitting the magnitude
and inducing larger MLS and MSLS errors. Last, MLS
and MSLS produce beampatterns that are more closely
matched in magnitude than their phase; MLS and MSLS
generated beampatterns have higher similarity scores than
that of LS beampatterns.
The beampatterns visualized in Fig. 7 illustrate the

trade-offs made by minimizing each loss function. LS
fitted beampatterns that are constrained to match the

Table 4 Beampattern (BP) fitting errors for MoE and PoE targets
(similarity scores in parentheses)

Row Loss / Col BP LS MLS MSLS

MoE BP (Fig. 3a)

LS (Eq. 39) 0.3 (1) 6.24 (0.05) 3.19 (0.09)

MLS (Eq. 41) 0.33 (0.61) 0.2 (1) 0.24 (0.85)

MSLS (Eq. 43) 2.6 (0.42) 1.41 (0.77) 1.08 (1)

PoE BP (Fig. 3b)

LS (Eq. 39) 0.26 (1) 2.14 (0.12) 1.27 (0.21)

MLS (Eq. 41) 0.31 (0.84) 0.26 (1) 0.31 (0.86)

MSLS (Eq. 43) 6.02 (0.5) 4.27 (0.7) 2.98 (1)

complex target function over-fits to the 0 radian phase
component at the expense of the magnitude component.
MLS fitted beampatterns more closely match the target
magnitude responses as the phase responses can vary
freely. MSLS beampatterns over-fit to regions where the
target magnitude response are large due to squaring the
magnitude before finding the least squares solution. For
the MoE target response, all the beampatterns ignored
the sharp null, fitting instead to the wide main lobe. For
the PoE target response, the beampatterns fitted both the
sharp main lobe and the wide null.

7 Results and discussion
We derived the SH expansion of Matérn covariance func-
tions of chordal distance over a unit sphere in terms
of generalized hypergeometric functions. Simulated ane-
choic far-field acoustic responses are fitted to RBFs and
then transcoded into SH bases, resulting in large data
compression. Cross-validation experiments show that the
MoE-RBF models have superior bias-variance trade-off
compared to direct SH fitting via the TSVD method.
Choosing a covariance function with smoothness and
locality characteristics that match the spatial acoustic
responses improve generalization along unseen areas on
the sphere.
Spatial density functions and beampattern targets are

then designed using MoE and PoE methods. This enabled
conventional beamforming to be reformulated in terms
of PDI and probablistic steering vectors sampled from
the SH encoded far-field response and spatial density
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Fig. 7 Beampatterns are shown for far-field beamformers fitted to target MoE and PoE targets specified in Fig. 3 using LS, MLS, and MSLS methods. LS
over-fits to a 0 radian phase response. MLS achieves a closer fit to the magnitude target. MSLS over-fits to areas where the magnitude target is large

functions respectively. Experiments show how PDI incor-
porates uncertainty of ear locations in cross-talk cancela-
tion designs and provide a means to evaluate cancelation
performance when the priors change. PDI also provides
a useful criteria for controlling the amount of diagonal
loading in regularized cross-talk cancelation designs.
Beampattern fitting methods such as LS, MLS, and

MSLS are at last reformulated along SH bases. For inte-
grated MLS, it remains an open question whether real-
valued phase functions can be fitted along SHs due to
spatial phase wrapping and discontinuities. For MSLS, we
give closed-form gradients and derivatives along the SH
bases. Several metrics for comparing beampattern simi-
larity and errors are presented. Experiments demonstrate
how effective each method fits a target cross-talk cance-
lation beampattern from a simulated acoustic array. LS
method underfits the magnitude beampattern and should
only be used if a flat phase response over the sphere
is desirable. MLS equally fits to both peaks and nulls
whereasMSLS overfits to peaks in the target beampattern.

8 Conclusions
Data-dependent far-field beamforming requires an effi-
cient representation for synthesizing simulated acoustic
data, spatial density priors, and beampattern designs. The
SH basis functions are one such representation where data

fitting, kernel function expansions, and magnitude func-
tion designs can be encoded or transcoded from other
methods commonly used in practice. This allows conven-
tional beamforming and beampattern fitting methods to
be reformulated in terms of SH bases yielding solutions
that are both closed-form and parametric in the spheri-
cal coordinates. As a result, we efficiently fitted and stored
the acoustic simulations of an array in a continuous and
generalizable format. We evaluated beamforming perfor-
mance under varying use cases via spatial probabilistic
priors and beampattern targets. Last, new device geome-
tries, microphone / speaker topologies, and array designs
are iterated upon and compared in rapid prototyping
offline.

Appendix
The generalized hypergeometric function is expressed in
terms of the Porchhammer symbol given by

F(a, b, z) =
∞∑
k=0

∏p
i=1(ai)k∏q
j=1(bj)k

zk

k!
, (a)k = �(a + k)

�(a)
,

(48)

where �() is the gamma function.
The MSLS residual, Jacobian, Gradient, and Gauss-

Newton Hessian are given by
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r(w) = GA(w ⊗ w∗) − GB,
∂r(w)

∂w
= GA(I ⊗ w∗),

∂F(w)

w
= 2

(
∂r(w)

∂w

)H
r(w),

∂

∂w

(
∂F(w)

∂w

)
≈ 2

(
∂r(w)

∂w

)H
∂r(w)

∂w
.

(49)

RBF design parameters
The exponential and squared exponential RBFs in Eqs. 15,

18 have FWHM equal to twice the solution of e−
dp(�)

p	p = 1
2

where d(�) = ±	(p ln 2)
1
p . The FWHM in terms of �

radians is given by

FWHMp(	) = 4 sin−1

⎛
⎝	(p ln 2)

1
p

2

⎞
⎠ , 	 ≤ π

(p ln 2)
1
p
.

(50)

The design parameter 	 for a target response pair TdB
decibels at T� radians is given by

	p(T�, TdB) = 2 sin
(
T�

2

)( −20
pTdB ln 10

) 1
p
. (51)

For Matérn ν = 3/2, the FWHM and design parameter
	 are found by reducing the RBF in Eq. 16 into the Lambert
W function given by

K 3
2
(w) = −wew+1, w = −

(
1 +

√
3d
	

)
,

d
	

=
W−1

(
−

K 3
2
(w)

e

)
+ 1

−√
3

,

(52)

whereW−1(z) branch is used to ensure d
	

≥ 0.

FWHMν= 3
2
(	) = 4 sin−1

(
	
(
W−1

(−1
2e
)+ 1

)
−2

√
3

)
,

	ν= 3
2
(T�, TdB) =

−2
√
3 sin

(
T�

2

)

W−1

(
−10

TdB
20

e

)
+ 1

.
(53)

For Matérn ν = 5/2, the FWHM and design parame-
ter 	 are found using either bisection or Newton’s method
as the RBF in Eq. 17 has a negative first derivative for all
positive w given by

K 5
2
(w) =

(
w2

3
+ w + 1

)
e−w, w =

√
5d
	

,

∂K 5
2
(w)

∂w
= −w(w + 1)e−w

3
< 0, w > 0.

(54)

FWHMν= 5
2
(	) = 4 sin−1

⎛
⎝	 argminw

∣∣∣K 5
2
(w) − 1

2

∣∣∣
2
√
5

⎞
⎠ ,

	ν= 5
2
(T�, TdB) =

2
√
5 sin

(
T�

2

)
argminw

∣∣∣∣K 5
2
(w) − 10

TdB
20

∣∣∣∣
.

(55)

Error metrics
The NRMSE is computed over N∗ test samples X̃ and
scaled by the full samples X’s standard deviation σ :

NRMSE =
√∑N∗

i=0
∣∣f (θi,φi) − X̃i

∣∣2
N∗ σ 2 ,

σ 2 = E
[|X − E [X]|2] .

(56)

The NRMSIE between function f (θ ,φ) and target func-
tion f̄ (θ ,φ) over the spherical coordinates reduces to the
squared SH residual error and normalized by the target
function’s standard deviation:

NRMSIE =
√

1
4πσ 2

∫
θ

∫
φ

∣∣∣f (θ ,φ) − f̄ (θ ,φ)

∣∣∣2 d�

≈

√√√√(Cf − C f̄

)H (
Cf − C f̄

)
4πσ 2 ,

σ 2 = E

[∣∣∣f̄ (θ ,φ) − E

[
f̄ (θ ,φ)

]∣∣∣2]

≈
CH
f̄ C f̄ − C0∗

0f̄ C
0
0f̄

4π
.

(57)

Abbreviations
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