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Abstract

One of the greatest challenges in the development of binaural machine audition systems is the disambiguation
between front and back audio sources, particularly in complex spatial audio scenes. The goal of this work was to
develop a method for discriminating between front and back located ensembles in binaural recordings of music.
To this end, 22, 496 binaural excerpts, representing either front or back located ensembles, were synthesized by
convolving multi-track music recordings with 74 sets of head-related transfer functions (HRTF). The discrimination
method was developed based on the traditional approach, involving hand-engineering of features, as well as using
a deep learning technique incorporating the convolutional neural network (CNN). According to the results obtained
under HRTF-dependent test conditions, CNN showed a very high discrimination accuracy (99.4%), slightly
outperforming the traditional method. However, under the HRTF-independent test scenario, CNN performed worse
than the traditional algorithm, highlighting the importance of testing the algorithms under HRTF-independent
conditions and indicating that the traditional method might be more generalizable than CNN. A minimum of 20
HRTFs are required to achieve a satisfactory generalization performance for the traditional algorithm and 30 HRTFs
for CNN. The minimum duration of audio excerpts required by both the traditional and CNN-based methods was
assessed as 3 s. Feature importance analysis, based on a gradient attribution mapping technique, revealed that for
both the traditional and the deep learning methods, a frequency band between 5 and 6 kHz is particularly
important in terms of the discrimination between front and back ensemble locations. Linear-frequency cepstral
coefficients, interaural level differences, and audio bandwidth were identified as the key descriptors facilitating the
discrimination process using the traditional approach.
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1 Introduction
The renewed and still increasing popularity of binaural
technologies, seen over the past decade, promotes the
creation of large repositories of binaural audio or audio-
visual recordings. This tendency might give rise to cur-
rently unknown challenges in semantic search and re-
trieval of such recordings in terms of their “spatial
information.”

Most of the studies in the area of spatial audio infor-
mation retrieval intended for binaural signals aim to
localize “individual” audio sources, while the attempts to
characterize the location, depth, or width of the “ensem-
bles” of sources are scarce. Although the precise
localization of virtual audio sources might be beneficial
in the design of speech communication systems, e.g., to
control beamforming algorithms, in the case of music
applications this aspect might be considered of second-
ary importance, giving precedence to higher-level spatial
audio scene descriptors, such as ensemble width, depth,
or its location [1].
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The aim of this study was to (1) develop a method dis-
criminating between front and back located music ensem-
bles in binaural recordings and to (2) quantify the influence
of the selected parameters on its performance. While the
above discrimination task may appear to be simple, it is very
challenging to undertake since machines, like humans, suffer
from a well-known front-back confusion phenomenon [2].
Even the state-of-the-art algorithms intended for the
localization of single talkers in binaural speech signals strug-
gle to disambiguate front speakers from their back constitu-
ents, when used without simulated head movements [3, 4].
The task of front-back discrimination is even more challen-
ging in the case of complex spatial audio scenes considered
in this study, with many simultaneous sound-emitting
sources (such as in music ensembles), due to confounding
of binaural cues reaching the artificial ears.
The development of the method for the automatic dis-

crimination between front and back located music ensem-
bles in binaural recordings is important for several reasons.
Such a method could be used in future systems for search
and retrieval of binaural recordings (while music ensembles
are traditionally located in front of a listener, modern bin-
aural audio recordings increasingly include unusual music
ensemble settings). Moreover, it could improve the per-
formance of binaural localization methods since an initial
“crude” front-back disambiguation procedure may help in
subsequent “fine” estimation of the direction of sound inci-
dence [5]. Besides, it could aid music genre recognition al-
gorithms since spatial properties of musical ensembles are
likely to be genre specific. In addition, the method might be
used as a building block for spatial audio up-mixing algo-
rithms to disambiguate groups of front sources from the
back ones. Furthermore, it might be employed in algo-
rithms for objective quality assessment of binaural audio
signals, as there is a strong interaction between the spatial
distribution of foreground audio content around a listener
and the audio quality [6].
This study builds on the prior work of the present au-

thors. While some of our former studies also, among other
factors, considered the automatic localization of music en-
sembles in binaural signals [7–9], they were either focused
on achieving the task of classification of spatial audio scenes
without too much effort paid to understanding the mecha-
nisms underlying the classification process [7], or they aimed
to compare human against machine-classification of spatial
audio scenes [9]. The limitation of the work described in [8]
is that it only studied the method performance under the
HRTF-dependent scenario, ignoring an important aspect of
HRTF-independent testing. In this work, much more effort
was put into getting a better insight as to how the algo-
rithms undertake their discrimination, and to find which
features play the most important role in this process. For ex-
ample, the performance of CNN was visualized using a gra-
dient attribution mapping technique [10] (visualization of

deep learning algorithms is very rare in the literature con-
cerning binaural modeling of hearing).
Another key aspect differentiating this work from the pre-

vious ones is that our former studies were based on the bin-
aural recordings synthesized using a set of thirteen binaural-
room-impulse-responses (BRIR). These BRIR sets were cap-
tured in real-life acoustical venues such as recording studios
or control rooms in order to increase the ecological validity
of these studies. However, this imposed some problems that
potentially affected the results. The first challenge was re-
lated to spatial sparsity of the BRIR used in that they were
measured at a limited number of selected angles, which
made it difficult to accurately pan virtual sources and might
have introduced spatial aliasing effects. The second chal-
lenge considered a relatively small number of BRIR sets used
(13 in total), making it difficult to test the generalizability of
the development methods, particularly in the context of
deep learning techniques. To overcome these limitations, in
this study a relatively large number of HRTF sets was used
(74 in total) allowing the authors to thoroughly validate the
generalizability of the developed method. Moreover, the
employed HRTF sets were of much higher spatial resolution
compared to the previously used BRIR sets.
The paper is organized as follows. Section 2 introduces

the background to this study. The binaural audio reposi-
tory is described in Section 3. Section 4 describes the
common methodology employed in all the experiments.
In addition, it gives a concise overview (outline) of the
experimental work. Section 5 presents the experiments
in separate sections in chronological order. The discus-
sion, including the limitations of the study, and the con-
clusions are presented in Sections 6 and 7, respectively.

2 Background
2.1 Spatial audio scene-based paradigm
Complex spatial audio scenes could be described at the
three following hierarchical levels: (1) low-level of individ-
ual audio sources, (2) mid-level of ensembles of sources,
and (3) high-level of acoustical environments, as pointed
out by Rumsey [1] in his spatial audio scene-based para-
digm. However, most of the studies concerned with spatial
audio scene analysis in binaural signals are limited to the
first level of spatial scenes characterization, predominantly
to the localization of individual sources (see [11] for the
review of the binaural localization models), whereas the
studies aiming to develop methods for the automatic
characterization of higher-level properties of spatial audio
scenes are still very rare [12]. This study is concerned with
the automatic characterization of spatial scenes at the
mid-level, using the above hierarchy.

2.2 Perception of front and back audio sources
Perception of complex spatial scenes within the horizon-
tal plane is predominantly governed by the three types
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of binaural cues, namely interaural level differences
(ILD), interaural time differences (ITD), and interaural
coherence (IC), whereas the perception of scenes in the
vertical plane mainly depends on the spectral cues con-
veyed by the head-related transfer functions (HRTF)
[13]. The main challenge hindering the developments of
the systems for the binaural spatial audio analysis is the
so-called front-back confusion effect, originating from
the ambiguity of the binaural cues conveyed by the sig-
nals reaching the ears. In order to disambiguate front
sources from the back ones, humans rely on visual cues
or subconsciously employ micro head movements [4,
14]. In the absence of the visual cues or with lack of the
dynamic cues induced by the head movement, humans
must rely on HRTF spectral cues, similar to the
localization of sources in the vertical plane. However,
the literature is not conclusive as to which spectral cues
in particular play the major role in the front-back disam-
biguation. Some studies support the view that there exist
some universal macroscopic spectral regions responsible
for the front-back disambiguation [15–19], whereas
some others conclude that there are no generic spectral
cues but it is the listener-specific spectral cues that help
to discriminate front and back sources [20, 21].

2.3 The state-of-the-art binaural localization models
The state-of-the-art algorithms are capable of localizing
several sources emitting sounds simultaneously, both in
anechoic and reverberant environments [3, 4, 22–24].
Traditionally, the two-stage topology was employed,
consisting of the audio feature extractor followed by the
machine learning classifier [3, 25, 26]. The features fed
to the input of such classifiers normally included a selec-
tion of binaural cues (ILD, ITD) [25]. Due to the prob-
lems with the accurate estimation of ITD descriptor
under noisy or reverberant conditions, some of the re-
cent models also exploit raw values of the inter-aural
cross-correlation function as a feature vector [3, 23].
In line with the general trend in artificial intelligence,

the recently developed binaural localization models
utilize deep learning techniques [3, 24, 27–29]. Binaural
signals can either be directly used at the input of the
deep neural networks [27] or indirectly after some form
of signal processing, typically involving a traditional fea-
ture extraction [4], estimation of the inter-aural cross-
correlation function [3, 23, 24, 29], or calculation of
spectrograms [28]. The last mentioned solution was also
applied in this study. The fundamental weakness of the
state-of-the-art methods is that, for complex scenes,
such as those used in this work, they require an a priori
knowledge of the number and characteristics of the indi-
vidual sources in an analyzed scene [3, 13, 24–26]. Such
information is normally unavailable in real-life binaural
audio repositories with music recordings, rendering

these methods impractical for the discrimination of en-
semble locations. Drawing inspiration from human hear-
ing systems, some state-of-the-art binaural audio
localization methods were designed to mimic the head
movements, demonstrating significant improvements in
discrimination between front and back sources [3, 4].
However, such an approach limits the scope of its prac-
tical applications, since the system must be either
equipped with a robotic head (such as in [30]) or it
should be capable of adaptive synthesis of the binaural
signals [3]. The state-of-the-art binaural localization
models are typically developed and tested under HRTF-
dependent conditions, that is in a setting where sound
recordings used for training and testing are generated
using the same HRTF sets. This approach tends to give
inflated results (due to an over-fitting effect) and is in-
sufficient to test the generalization property of the devel-
oped models [29].
The key features of the developed model presented in

this paper is that (1) it incorporates a static-head ap-
proach, (2) the method is assumption free with regard to
the number and type of music audio sources in analyzed
recordings, and (3) the developed method was thor-
oughly tested both under the HRTF-dependent and
HRTF-independent conditions, allowing the authors for
a comprehensive characterization of the method’s
performance.

3 Repository of binaural music recordings
In total, 22,496 binaural music recordings were gener-
ated by convolving 152 multitrack music recordings with
74 HRTF sets. Each binaural excerpt had a duration of 7
s and represented either a front or back located music
ensemble (see Fig. 1 for an example of the spatial distri-
bution of audio sources). The ensemble width was re-
stricted to fixed azimuth limits of ± 30° during the
convolution procedure (this limit was adopted for
consistency with our previous studies [7, 9]), with the
angles randomly selected for individual sources. Despite
the relatively narrow intended ensemble width, informal
listening tests undertaken by these authors showed that
the perceived width for some stimuli was much wider
than intended, spanning almost all semicircles (± 90°),
which is consistent with the observation made by Pulkki
et al. [31]. HRTFs were not interpolated during the con-
volution procedure. For each intended direction of an
individual source, the HRTFs for the nearest available
angle were selected.
The music recordings represented a broad range of

genre types, including classical music orchestral ex-
cerpts, opera, pop music, jazz, country, electronica,
dance, rock, and heavy metal. The number of individual
sound sources within each recording ranged from 5 to
62 with a median of 10. All individual multitrack signals
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were RMS-normalized prior to the convolution. The
binaural excerpts generated were stored as uncom-
pressed two-channel files, sampled at a rate of 48 kHz
with a 24-bit resolution.
The reason for including a relatively large number of

HRTFs (74 in total) was the need to thoroughly test the
generalization property of the developed method. The
employed HRTFs could be divided into thirteen groups
based on their origin, e.g., the institution where the mea-
surements were undertaken [32–46] (see Table 3 in the
Appendix for a detailed description of the HRTFs used
in this study). The selection included both human
HRTFs as well the artificial ones such as KEMAR (GRAS
45BA, 45BB-4, 45BC, DB-4004), Neumann (KU 100),
Head Acoustics (HMSII), FABIAN, SAMRAI (Koken),
and ARI Printed Head. The employed HRTFs were mea-
sured in near or far field, with the measurement radius
ranging from 50 cm to 2 m. Some of the HRTFs were
selected based on the study of So et al. [47], who within
the set of 196 non-individualized HRTFs identified a
subset of 12 HRTFs, representative of the clusters for
forward and backward directional sound (HRTFs No. 10
−16, 31−33 in Appendix: Table 3).
The repository of binaural renderings was divided into

two sets intended for model training and testing, re-
spectively. Table 1 illustrates the data distribution be-
tween the sets. Note, that while the training and testing
sets were mutually exclusive in terms of music record-
ings, they shared the same spatial characteristics as the

identical 74 HRTFs were used to generate the recordings
in both sets. This may potentially cause a problem re-
garding the model “generalizability” testing, however,
this was addressed in the final experiment by using three
different data filtering strategies “within” the original
data splits (Sec. 5.8), ensuring that “unique” HRTFs were
employed in the train and test repositories.

4 Methodology
This section describes the common methodology shared
across the experiments. Differences in the experimental
protocol pertinent to the individual experiments will be
described separately in Section 5.

4.1 Experimental outline
For clarity, the empirical work will be presented in sep-
arate sections, with the specific aims, method, and re-
sults of each experiment described individually. The
outline of these experiments is shown in Fig. 2.
The first three experiments, highlighted at the top left-

hand side of Fig. 2, concerned the process of “feature en-
gineering” pertinent to the traditional machine learning
approach. Their aim was to evaluate the usefulness of
the literature-inspired front-back cues, the cepstral coef-
ficients, and the binaural cues, respectively. These exper-
iments are presented in Sections 5.1–5.3. In the fourth
experiment, described in Section 5.4, the above groups
of features were combined and compared. The assump-
tion was that combining the individual groups of

Fig. 1 Examples of spatial audio sources distribution considered in the study: a front ensemble, b back ensemble. Dots represent N = 7 binaurally
synthesized virtual audio sources for the selected music recording

Table 1 Train and test data split in the repository of binaural audio excerpts

Dataset type No. of music recordings No. of HRTF sets No. of ensemble locations No. of binaural excerpts

Training 112 74 2 16576

Testing 40 74 2 5920
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features would improve the discrimination accuracy.
Moreover, the performance of the three traditional clas-
sification algorithms was evaluated and the best-
performing classifier was identified (XGBoost was found
to be the “winning” algorithm). The fifth experiment, de-
scribed in Section 5.5, concerned the development of the
deep learning-based method, as indicated at the top
right-hand side of Fig. 2. It involved the spectrograms
computation and the optimization of CNN, respectively.
The remaining three experiments outlined in Fig. 2

allowed for further “fine-tuning” of the best-performing
traditional method (XGBoost) and the deep learning
method (CNN). In the sixth experiment described in Sec-
tion 5.6, the effect of audio channel selection on the per-
formance of both methods was investigated and,
consequently, the methods were adjusted according to the
obtained results. In the seventh experiment (Sec. 5.7), the
effect of the audio excerpt duration was quantified. In the

concluding experiment, the final models were compared
and tested for their “generalizability” (Sec. 5.8).
Section 5.9 presents the results of an additional “fol-

low-up” experiment. Its purpose was to get a better un-
derstanding of how the algorithms are undertaking their
discrimination tasks obtained during the study. For clar-
ity, this experiment was omitted in Fig. 2.

4.2 Discrimination methods and their implementation
Two approaches to the discrimination of music ensemble
locations were taken: traditional machine learning and deep
learning. The traditional approach typically involves a fea-
ture extraction procedure followed by a classification rou-
tine. By contrast, in the deep learning approach, the audio
signals either are fed directly to the input of the classifica-
tion algorithm [27, 48], thus making the feature extraction
part obsolete, or undergo some initial transformations,
most notably conversion to spectrograms [28, 49]. Another

Fig. 2 Outline of the experiments
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distinct feature of the deep learning algorithms is their large
number of “trainable” parameters. In the computer vision
classification task deep learning methods markedly outper-
formed the traditional machine learning algorithms [50].
However, in our former work [9] concerning the automatic
classification of complex audio scenes in the BRIR-
convolved binaural recordings, the performance of the deep
learning algorithm was similar to that of the traditional ma-
chine learning methods. Therefore, in this study, both the
traditional machine learning methods and the deep learning
technique were incorporated, and their performance
compared.
The performance of the following three traditional classifi-

cation algorithms was compared: Logistic regression (Logit),
support vector machines (SVM), and an extreme gradient
boosting (XGBoost) technique. Logit method was selected
due to its inherent property of feature selection, when used
with L1 regularization [51], and because of its robustness to
data multicollinearity (the feature vectors extracted in this
study exhibited a high multicollinearity level). Moreover, in
one of our previous studies regarding the localization of
complex spatial scenes in binaural signals the Logit algo-
rithm showed a similar generalization performance com-
pared to CNN [9]. The SVM-based classification algorithm
was employed in this work due to its popularity and applica-
tions in acoustic scene classification [52]. The rationale for
selecting the XGBoost technique was related to its excep-
tionally good performance, for some applications even out-
performing deep learning techniques [53].
In the initial three experiments described in this paper

(Sections 5.1–5.3), only the Logit method was used, since
the experiments focused on the feature evaluation rather
than the comparison of the classification methods. The
Logit method was employed for this task since, as already
mentioned above, it showed a similar generalization per-
formance compared to CNN in one of our previous studies
[9]. Then, the performance of the three aforementioned al-
gorithms was compared in the 4th experiment described in
Section 5.4. According to obtained results, XGBoost was se-
lected as the best traditional machine learning algorithm
and it was later used for the comparison against CNN.
As far as the deep learning method approach is con-

cerned, it was decided to employ the technique based on
CNN, as it is widely used in audio classification applica-
tions [49]. While raw waveform-based deep learning
methods gain in popularity [27, 48], the best-performing
deep learning algorithms in the area of acoustic scene
classification or audio event recognition still exploit inter-
mediate “spectrogram” signal representation rather than
learnable signal transformations [49]. Consequently, in
this work, the binaural signals were also converted to
spectrograms, before being fed to the input of CNN.
Logit, SVM, and XGBoost algorithms were imple-

mented in the Python ecosystem using NumPy, scikit-

learn, and XGBoost libraries. While the first two algo-
rithms were deployed on a single CPU (Intel i7-7820X,
4.3 GHz, 8 cores, 16 threads), XGBoost calculations
were GPU-accelerated using an NVIDIA graphics card
(RTX 2080 Ti). CNN was implemented in MATLAB
using the Deep Learning Toolbox. The computations in-
volving CNN were undertaken employing Microsoft
Azure cloud computing service. They were accelerated
with 4 GPU units (NVIDIA Tesla T4).

4.3 Feature extraction
All the binaural audio excerpts were RMS-normalized
prior to feature extraction. In line with our former work
[7, 9], all the features considered in this study, with the
exception of the binaural cues, were extracted from the
left and right signals (x and y), respectively, as well as
from their sum and difference signals (m and s).
The features were extracted using time frames of 20 ms

in duration, overlapping by 50%. A Hamming window was
applied to the signal in each frame. The features extracted
for each frame were subsequently “aggregated” by calcu-
lating two statistics: mean value and standard deviation.
Only two statistics (mean and standard deviation) were
used due to the results of the pilot tests, demonstrating
that adding extra statistics, such as kurtosis or skewness,
brings no improvements in the performance of the algo-
rithms. In contrast to our former work [7], no delta fea-
tures were computed, as according to the pilot tests, they
had a negligibly small effect on the discrimination results.
The extracted features were standardized before they

were applied to the input of the classification algorithms
(mean value of each feature was equalized to zero,
whereas their variance was normalized to unity). While
some of the machine learning methods may benefit from
the automatic feature selection, according to our pilot
tests, the advantage of using such techniques was negli-
gibly small. Consequently, the automatic feature selec-
tion was not used in this work. However, the features
were selected “manually,” based on the comparative ana-
lysis of their contribution to the performance of the
method, as explained in detail in Section 5.6.
Since the left (x), right (y), and sum (m) signals were

very similar, the extracted features showed a high correl-
ation level. While a transform employing a principal
component analysis (or a similar technique) could be
used as a preprocessing stage to “de-correlate” the fea-
tures, this would introduce additional difficulty in inter-
pretation of the results (explaining which features are
the most important). Therefore, such technique was de-
liberately avoided in this work.

4.4 Performance evaluation
The traditional classification algorithms were trained
using the features extracted from the training set of the
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repository of the audio excerpts and subsequently tested
with the use of the features extracted from the testing
set of the above repository. The same principle applied
to CNN, but with the spectrograms used instead of the
features. The data between train and test sets were di-
vided in proportions of 74 to 26%, as illustrated above in
Table 1.
The performance of each algorithm was evaluated

using the discrimination “accuracy” metric, being the
ratio of the correctly discriminated excerpts in the
test set to their total number. In addition, for some
of the models, the confusion matrices were inspected.
While in many machine learning studies, such metrics
as precision, recall, and F scores are also included
(along with analysis of receiver operating characteris-
tic curves) [51], in this work they were omitted, as
the single “accuracy” metric combined with the in-
spection of the confusion matrices was deemed by
these authors sufficient to evaluate the performance
of the developed models.
All the data, consisting in total of 22,496 synthesized

excerpts, were divided into the train and test sets in pro-
portions of 74 to 26%, as already illustrated above in
Table 1 (16,576 data records were allocated for training
whereas the remaining 5920 records were assigned for
testing purposes). The standard 10-fold cross-validation
technique combined with a grid-search optimization
technique was used to train and optimize the models
using the “train” data set. Then, the best model was
tested on the held-out “test” set. In order to compare
the results statistically, each model was repeatedly
trained and tested seven times. In each repetition, the
split between the train and test sets was changed ran-
domly, maintaining the same proportion of “data re-
cords” between the sets (74 to 26%) and ensuring that
different music recordings are allocated to both sets.
The mean discrimination accuracy scores and associated
standard deviation values, calculated across repetitions,
are reported throughout the paper.

4.5 HRTF-dependent and HRTF-independent tests
Note that for each data split, the train and test feature
sets were music recording independent —in that the sets
contained the features that were extracted from the
unique music recordings. However, the train and test
sets were “HRTF dependent,” since the same HRTFs
were used to generate the audio excerpts in both sets.
Unless otherwise stated, the models described in this
paper were developed and subsequently tested under
HRTF-dependent conditions.
The disadvantage of HRTF-dependent testing is that it

may give “inflated” results due to an overfitting effect.
Moreover, such an approach does not allow for checking
how the model would perform under unknown HRTF

conditions. Therefore, to examine the “generalization”
property of the final models developed within this study,
in the concluding experiment described in Section 5.8,
HRTF-independent tests were performed. In the latter
case, the train and test audio repositories were mutually
exclusive (independent) in terms of the HRTF sets used
to generate the binaural excerpts. In other words, under
the HRTF-independent test conditions, the train and test
repositories were “unique” in terms of the HRTF sets.
The reason for employing only HRTF-dependent tests

during the development phase was related to the com-
putational time required to train, test, and optimize the
models. Under the HRTF-dependent conditions, only 7
models had to be developed and tested (a separate
model for each data split). By contrast, depending on the
strategy of HRTF-independent testing, the number of
models required for testing was much greater. For ex-
ample, when the technique of dividing 74 HRTF sets to
13 independent HRTF corpora was adopted, described
in Section 5.8, the number of models to be evaluated
was equal to 91 (7 data splits × 13 independent HRTF
corpora), which posed a considerably increased compu-
tational load.
It must be stressed that HRTF-independent tests,

also referred to as tests under HRTF “mismatched”
conditions, are still rare in the literature, as pointed
out by Wang et al. [29]. In this study, three different
techniques of HRTF-independent tests were carried
out (Section 5.8).

5 Experiments
5.1 Experiment 1: Evaluating the usefulness of literature-
inspired front-back cues
The first and novel group of features included in this
study was inspired by the literature in the area of spatial
hearing. The aim of the experiment described in this
section was to ascertain whether such features could be
exploited in an algorithm for front and back ensemble
discrimination in binaural recordings.

5.1.1 Front-back cues calculation
According to the pioneering work of Blauert [16], there
are five distinct frequency regions, referred to as
“boosted bands,” indicating local spectral maxima re-
sponsible for the perceived front or back direction of
broadband signals (such as music). They are labeled as
B1 ÷ B5 at the top of Fig. 3. For narrowband noise sig-
nals, Blauert [16] identified slightly different frequency
regions, naming them as “directional bands.” They are
signified as D1 ÷ D4 in Fig. 3.
To capture information present in Blauert’s boosted

bands, in this work a simple but effective method was
employed based on RMS level estimation. Signals x, y,
m, and s were first band-pass filtered using the cut-off
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frequencies given in Table 4 in the Appendix. To this
end, a finite-impulse response filter of the order of 512
was applied. The filter was designed using the “window”
method and implemented in MATLAB employing the
“filtfilt” function, allowing for a zero-phase filtering (zero
phase distortions). For reproducibility, the code has been
made publicly available at GitHub [54]. Then, RMS
levels of the filtered signals were estimated and used as
the features. As a result, 40 feature vectors were calcu-
lated (4 signals × 5 bands × 2 statistics). In a similar
manner, the features based on Blauert’s four directional
bands were also calculated (see Fig. 3), giving additional
32 vectors (4 signals × 4 bands × 2 statistics).
According to Hebrank and Wright [17], there are

three frequency regions conveying information about
front or back located sound sources, labeled as HW1,
HW2, and HW3 in Fig. 3. For these three bands, a simi-
lar procedure was also employed as before, extending
the feature matrix by further 24 vectors (4 signals × 3
bands × 2 statistics).
In contrast to the previously outlined studies, Langen-

dijk and Bronkhorst [20] asserted that listener-specific
“spectral variations” at high frequencies, in the range of
8–16 kHz (illustrated at the bottom of Fig. 3), constitute
important front-back localization cues. To account for
these cues, signals x, y, m, and s were initially band-pass
filtered (8–16 kHz) and then the standard spectral de-
scriptors [55] were extracted from the filtered signals
using MATLAB’s Audio Toolbox. The following features
were extracted: spectral centroid, spectral crest, spectral
decrease, spectral entropy, spectral flatness, spectral flux,
spectral kurtosis, spectral roll-off point, spectral skew-
ness, spectral slope, and spectral spread. As a result,
additional 88 feature vectors were generated (4 signals ×
11 descriptors × 2 statistics). In total, 184 feature vectors
were extracted using the literature-inspired front-back

cues described in this section. The frequency limits of
the frequency bands used in this study are provided in
Table 4 in the Appendix.

5.1.2 Discrimination method and its optimization
Since the aim of the experiment was to evaluate the use-
fulness of the front-back cues, not to compare the classi-
fiers, a single classification method was used, namely
Logit. This method was selected since, according to our
previous work [9], its generalization performance was
similar to that of CNN. The parameter C of the selected
classification algorithm (being an inverse of the
regularization coefficient, as used in the scikit-learn
package [56]) was “tuned” using a standard grid-search
procedure undertaken with a 10-fold cross-validation
technique. The values were selected from the set C ∈
{0.01, 0.1, 1}, with its elements established during the
pilot tests. The Logit algorithm was used with L1
regularization. Selecting L1 regularization, as opposed to
L2 one, takes advantage of the method’s native property
of feature selection [51].

5.1.3 Results
Figure 4 shows the results obtained using various combi-
nations of the literature-inspired front-back cues. Unsur-
prisingly, the features based on Blauert’s boosted bands
(BB) gave better results than those obtained employing
his directional bands (DB), as the latter were established
using narrowband signals rather than broadband ones
such as music [16]. It can also be noted that combining
the front-back cues in groups improves the results.
When all four front-back cues were used together (BB,
DB, HW, LB), Logit classifier was able to discriminate
front and back located music ensembles with the accur-
acy of reaching almost 90%.

Fig. 3 Frequency bands conducive for front-back discrimination
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An example confusion matrix obtained using a combin-
ation of all four groups of front-back cues (DB, LB, HW,
BB) and Logit classifier is presented in Fig. 5a (For
consistency, all the confusion matrices presented in Fig. 5
were obtained using Logit classifier). It can be seen that
out of the 5920 binaural excerpts included in the test set,
2621 recordings were discriminated correctly as represent-
ing frontally located music ensemble and 2707 excerpts
were identified correctly as representing back located en-
semble. It can also be seen that 339 of the recordings with
frontally located ensemble were incorrectly classified as
representing back-located ensemble, whereas 253 excerpts

with an ensemble located at the back were misclassified as
the excerpts with a frontally located ensemble.
A follow-up analysis of the classification errors revealed

that they were predominantly related to HRTFs used for the
convolution of the binaural excerpts rather than to the char-
acteristics of the music recordings. Out of 592 misclassified
locations, 101 were attributed to the excerpts obtained using
TH KÖLN [42] HRTF corpus. This corpus was unique in
our repository. It was the only corpus containing the mea-
surements obtained with the artificial head by Head Acous-
tic, involving some “unusual” scenarios (placing a baseball
cap or a virtual reality headset on top of the head).

Fig. 4 Mean classification accuracy scores obtained for the literature-inspired front-back cues using Logit classifier. Error bars denote standard deviations

Fig. 5 Examples of confusion matrices obtained for a literature-inspired front-back cues, b linear-frequency cepstral coefficients, c binaural cues,
and d combination of all features. The results were achieved using Logit classifier
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The main observation that can be drawn from the re-
sults is that even simple RMS estimators of bandlimited
signals, designed based on the spatial audio domain ex-
pert knowledge, provide the discrimination accuracy
ranging from 75 to almost 90%, considerably exceeding
a no-information rate which in this study was equal to
50%. The main outcome of this experiment is that all
the investigated front-back cues (BB, DB, HW, LB)
should be included in experiment 4 aiming to combine
and compare different groups of features, described later
in Section 5.4.

5.2 Experiment 2: Evaluating the usefulness of cepstral
coefficients
The experiment described in the previous section dem-
onstrated that the literature-inspired front-back cues
could be used for the discrimination between front and
back ensemble locations. The aim of the experiment de-
scribed in this section is to examine whether the cepstral
coefficients could also be exploited for the same task
and, if so, to check which type of the cepstral coefficients
(linear-frequency or Mel-frequency) gives better results.
Depending on the frequency scale used in calculations, it

is possible to distinguish between two types of cepstral co-
efficients, namely Mel-frequency cepstral coefficients
(MFCCs) and linear-frequency cepstral coefficients
(LFCCs). MFCCs are known to be efficient descriptors of
spectral envelopes, and for this reason, they are commonly
applied in various machine audition tasks including acous-
tic scene classification [52]. Therefore, one can hypothesize
that they may also well account for any spectral cues re-
sponsible for the discrimination of front and back located
music ensembles, which was, to an extent, confirmed by
one of our initial studies [9]. However, for some applica-
tions, linear-frequency cepstral coefficients (LFCCs) could
produce better classification results when distinct spectral
characteristics are distributed across higher frequencies
[57]. Therefore, for comparative purposes, both MFCCs
and LFCCs were included in the study. MFCCs and LFCCs
were used in the experiments interchangeably (they were
not merged together).

5.2.1 Cepstral coefficients calculation
In the literature, the number of cepstral coefficients used
for speech recognition is commonly limited to 13 [58].
However, the optimum number of coefficients intended
for ensemble location discrimination was unknown at
the outset of this experiment. Therefore, its value was
selected from the set of ncoeff ∈ (13, 20, 30, 40). The set of
considered values ncoeff was developed heuristically dur-
ing the pilot test. Both MFCCs and LFCCs were calcu-
lated in MATLAB using the Audio Toolbox.

Similar to the experiment described above, only a sin-
gle classification method was used, namely Logit. Its
optimization procedure was the same as before.

5.2.2 Results
The results of the discrimination of the binaural excerpts
using either MFCCs or LFCCs are illustrated in Fig. 6.
Both MFCCs and LFCCs appear to constitute useful fea-
tures allowing for the discrimination between front and
back located ensembles with the accuracy ranging from 89
to 93%, slightly outperforming the cues discussed in the
previous section. Most importantly, note that LFCCs give
better results than MFCCs. For example, when the num-
ber of selected coefficients is set to 30, the mean discrim-
ination score obtained for LFCCs is by 2.7 percentage
points greater than that achieved for MFCCs. According
to the statistical test of proportions, this difference is sig-
nificant at p = 7.3 × 10−8 level. Therefore, in the remain-
der of this study, only LFCCs were retained. The
recordings were discriminated with the accuracy of ap-
proximately 93% when the number of LFCCs was set to
30, as illustrated in the figure. Consequently, the above
number of coefficients was selected in the subsequent ex-
periments that employ the cepstral coefficients reported
in this paper. As a result of this choice, the cepstral coeffi-
cients were represented by 240 feature vectors (30 coeffi-
cients × 4 channels × 2 metrics).
An example of the confusion matrix obtained using 30

LFCCs and Logit classifier is presented in Fig. 5b. In
contrast to the outcomes of the error analysis performed
earlier in experiment 1, exploration of the misclassified
examples revealed that there was no single HRTF corpus
predominantly responsible for the observed errors. How-
ever, out of 382 observed errors, as much as 65 could be
attributed to the same music recording. Namely, it was
an opera recording with a relatively narrow spectral con-
tent compared to the remaining recordings. Considering
that LFCCs are good descriptors of spectral envelopes, it
could be tentatively hypothesized that in this case, they
introduced some bias towards the spectral characteristics
of the music recordings.
The main outcome of the experiment is that only

LFCCs should be included in experiment 4 aiming to
combine and compare different groups of features, de-
scribed later in Section 5.4. The number of coefficients
should be set to 30.

5.3 Experiment 3: Evaluating the usefulness of binaural
cues
The aim of the experiment described in this section was
to examine whether binaural cues can also be used in
the task of discrimination between the front and back
located music ensembles. The experimental details re-
lated to the discrimination method (Logit) and its
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optimization were omitted here as they were identical
to those employed in the previous two experiments.

5.3.1 Binaural cues calculation
In this study, three groups of binaural cues were ex-
tracted: ILD, ITD, and IC. To this end, left and right
channel signals (x and y) were band-pass filtered using a
42-channel gammatone filter bank, with the lowest and
highest frequencies set to 100 Hz and 16 kHz, respect-
ively. Then, the inner hair-cell envelope of the bandpass
filtered signals was extracted by half-wave rectification
of the signals followed by their low-pass filtering with a
cut-off frequency being equal to 1000 Hz, as proposed
by Dau [59]. Subsequently, the rate maps [60] were cal-
culated, which were then used to estimate the binaural
cues (ILD, ITD, and IC). In this way, 252 feature vectors
were extracted (42 channels × 3 types of coefficients × 2
statistics). They were calculated using the MATLAB im-
plementation of the auditory model developed within
the Two Ears project [30].

5.3.2 Results
Figure 7 shows the discrimination results obtained using
the binaural cues. Observe that ILD features give the
best results, approaching 90% (when used in isolation
from the other types of binaural cues), outperforming IC
cues, and ITD cues. Combining the cues improves the
results. When all three types of binaural cues were com-
bined (ILD, ITD, IC), Logit classifier managed to dis-
criminate the excerpts with an accuracy of 92.6%. An
example of the confusion matrix obtained using Logit
classifier for the combined binaural cues is presented in
Fig. 5c. The main outcome of the experiment is that all

three types of binaural cues (ILD, ITD, and IC) should
be employed in the experiment combining and compar-
ing different groups of features (experiment 4), which is
described in the next section.

5.4 Experiment 4: Comparing the features and identifying
the best-performing traditional classification algorithm
The goal of this experiment was twofold. First, it aimed
at combining and comparing the features identified in
the three previous experiments. Second, its purpose was
to select the best-performing traditional classifier, out of
the three classifiers considered in the study. Instead of
pursuing these two aims in separate experiments, it was
decided to undertake a single study looking into these
two aspects simultaneously. The reason for this decision
was the “interactions” between features and classifiers
observed in the pilot experiment (relative importance of
features, in terms of their discrimination accuracy, was
classifier specific).
According to the main outcomes of the previous ex-

periments, the following three groups of features were
“combined” (concatenated) in the model: 184 features
representing front-back cues from the first experiment
(Sec. 5.1), 240 features representing LFCCs from the sec-
ond experiment (Sec. 5.2), and 252 features based on
binaural cues from the third experiment (Sec. 5.3).

5.4.1 Discrimination methods and their optimization
As mentioned earlier, the three traditional classification
algorithms were considered in the study: Logit, SVM,
and XGBoost. The hyper-parameters of the employed
classification algorithms were “tuned” using a standard
grid-search procedure undertaken with a 10-fold cross-

Fig. 6 Mean discrimination accuracy scores obtained using MFCCs and LFCCs (Logit classifier). Error bars denote standard deviations
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validation technique. For the Logit method, the C value
(an inverse of the regularization coefficient [56]) was se-
lected from the set C ∈ {0.01, 0.1, 1}. The Logit algorithm
was used with L1 regularization. Two kernels of the SVM
algorithm were compared: linear and radial basis function
(RBF). When the RBF was applied as the kernel, the fol-
lowing hyper-parameter values were considered during
the grid search procedure: C ∈ {0.1, 1, 100} (regularization
parameter [56]) and γ = 1/nf (positive constant in RBF
kernel [51]), where nf was the total number of feature vec-
tors used in a given experiment. Due to its computational
efficiency, SVM method with a linear kernel was imple-
mented using a stochastic gradient descent (SGD) learning
technique with the “hinge” loss function. During the grid-
search procedure its regularization coefficient α was se-
lected from the following set: α ∈ {10−3, 10−4, 10−5}. The
number of estimators for the XGBoost algorithm was
fixed, being set to 200 (a value adjusted during the pilot
tests). Since after adjusting the number of estimators to
200 XGBoost algorithm already yielded a very high dis-
crimination accuracy with its default hyper-parameter
values, no further optimization of this algorithm was per-
formed. Consequently, the remaining hyper-parameters of
the above algorithm were set to their default values in the
respective software library [61].

5.4.2 Results
Figure 8 shows the results for all three groups of features
explored above, separately for all the classifiers. The
numbers in brackets placed under the labels along the
horizontal axis indicate the total number of feature

vectors within each feature group. For clarity, literature-
inspired front-back cues are abbreviated as FB in that
figure. They represent the combined set of BB, DB, HW,
and LB features analyzed earlier in experiment 1.
It can be seen in Fig. 8 that regardless of the classifica-

tion algorithm, FB features give the worst results. The
results obtained for LFCCs and binaural features depend
on the classification algorithm used. Logit and SVM-Lin
both yield similar results ranging from approximately 91
to 93%. However, when SVM-RBF classifier is used, the
results obtained for the binaural cues are markedly bet-
ter than those obtained for the LFCCs, reaching almost
98%. Combining the features tends to improve the re-
sults. However, when all the features are combined, the
results deteriorate slightly for the Logit and SVM-Lin
classification algorithms. An example of the confusion
matrix obtained for the combination of all features (All)
is presented in Fig. 5d (Logit classifier was used in this
example).
Overall, the results obtained using XGBoost and SVM-

RBF classifiers were superior compared to those obtained
with the Logit or SVM-Lin classification algorithm, except
for FB features. For the last mentioned condition, Logit
outperformed XGBoost classifier (p = 7 × 10−10).
Out of all conditions presented in Fig. 8, the best

results were obtained using XGBoost classifier with
LFCCs combined with binaural cues (LFCC + Bin-
aural) along with the combination of all features (All).
For these two “winning” conditions, the discrimin-
ation accuracy was similar, being equal to 98.39% and
98.34%, respectively. According to the statistical test

Fig. 7 Mean classification accuracy scores obtained for binaural cues (Logit classifier). Error bars denote standard deviations
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of proportions, this difference was not statistically sig-
nificant (p = 0.83). However, for these two conditions,
the mean scores attained for the XGBoost classifier
were greater than those obtained for the SVM-RBF
classification algorithm. The observed differences were
statistically significant, with p values being equal to
4.7 × 10−3 and 9 × 10−3, respectively. These results
show that the XGBoost method outperformed the
SVM-RBF algorithm.
The main outcome of this experiment is that all fea-

ture groups (FB, LFCC, and Binaural) should be used in
the next experiment (experiment 6), with XGBoost
employed as the classification algorithm. The discrimin-
ation accuracy obtained using the combination of the
feature groups is greater than the one obtained with the
feature groups used in isolation.

5.5 Experiment 5: Discrimination results using a deep
learning approach
The aim of this experiment was to check whether the
deep learning-based method, employing CNN, can be
used for the discrimination of the front and back located
ensembles in binaural recordings of music.

5.5.1 Spectrogram calculation
Similar to the work of Han et al. [28] in the area of the
automatic acoustic scene classification, four spectro-
grams were extracted from each binaural audio excerpt.
The spectrograms were calculated for x, y, m, and s sig-
nals, respectively. Since the sum (m) and difference (s)
signals are linear combinations of the left (x) and right
(y) signals, it might be argued that they are redundant,
however, they may improve the performance of the

Fig. 8 Mean accuracy scores obtained for combination of features using a Logit, b XGBoost, c SVM-Lin, and d SVM-RBF. Numbers in brackets
indicate the number of features. Error bars denote standard deviations
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model, as demonstrated in our previous work [8]. More-
over, this approach is consistent with the strategy of fea-
ture extraction in the case of the traditional algorithms,
described above, as the features were also calculated
from the left, right, sum, and difference signals.
Mel-frequency spectrograms are commonly exploited in

the deep learning algorithms used for speech recognition,
acoustic scene classification, or audio event recognition [28,
49, 62, 63]. While Mel-frequency spectrograms offer a bet-
ter resolution at low frequencies, it is unknown whether
such a type of spectrogram is still superior in terms of dis-
crimination between front and back ensemble locations in
HRTF-convolved binaural recordings of music. Therefore,
for comparative purposes, both Mel-frequency and linear-
frequency spectrograms were employed in this study. Note,
that the proposed comparison between Mel-frequency and
linear-frequency spectrograms resembles the comparison
between Mel-frequency and linear-frequency cepstral coef-
ficients calculation described earlier in the case of the trad-
itional machine learning approach.
The spectrograms were calculated using a frame length

of 40 ms with 50% overlap. Since the duration of each
audio excerpt was equal to 7 s, each spectrogram repre-
sented 349 time frames. A Hamming window was applied
to the signal in each frame. Similar to our previous study
regarding the spatial scene classification in binaural signals
[9], 150 frequency bands were used to calculate the spec-
trograms. This choice was verified in the first experiment
employing CNN described below in Section 5.5.4. The
low- and high-frequency limits of the spectrograms were
set to 100 Hz and 16 kHz, respectively. The dynamic
range of each spectrogram was limited (clipped) to 90 dB
relative to its peak value. It was assumed by the authors
that spectrogram components below 90 dB relative to
their peak level contained noise or spurious artifacts intro-
duced by the music recording equipment or by the HRTF
measurement procedures [35]. In theory, these undesired
components could be detected and exploited by deep
learning algorithms [64]. Therefore, they were filtered out
(clipped). In accordance with the typical practice in the
area of machine learning [28, 63], the spectrograms were
standardized (mean value equalized to zero and the vari-
ance normalized to unity) prior to their use in CNN. The
spectrograms were calculated in MATLAB using a VOI-
CEBOX toolbox [65].

5.5.2 Topology of the convolutional neural network
A well-proven AlexNet [50] topology was adapted to our
purposes. The layout of the network is depicted in Fig. 9.
Four spectrograms with an image resolution of 150 × 349
(number of frequency bands × number of time frames)
were fed to the input of the network. In the experiment
described in Section 5.6, the number of spectrograms Nch

was reduced and the results compared.

The network consisted of five convolutional units and
three classification units, as illustrated in Fig. 9. Its topology
was designed heuristically. Each convolutional unit con-
tained a 2D convolutional layer, followed by an activation
layer, a batch normalization layer, and a max pooling layer.
The parameters of the network, including the size of the
convolutional kernels along with their stride, the number of
filters, and a max pooling size, are presented in Fig. 9. As a
result of the processing undertaken in the four convolu-
tional layers, the image resolution of the spectrograms was
reduced from 150 × 340 to 5 × 5 pixels. The shrunken “im-
ages,” after flattening to a vector of a length of 3 200, were
then directed to the input of the cascade of the classifica-
tion units. Each classification unit consisted of a dropout
layer (to prevent the network from overfitting), fully con-
nected layer, and the activation layer. The dropout rate was
adjusted to 50%. The number of nodes in the fully con-
nected layers was set to 64, 32, 16, and 2, respectively, as
shown in Fig. 9. A rectified linear unit (ReLU) was used in
all the convolutional and dense layers, whereas a Softmax
function was applied to the output layer.

5.5.3 Optimization and performance evaluation
The initial version of the network, with the number of
trainable parameters exceeding 8 million, was trained and
optimized using a grid-search procedure with an incom-
plete 10-fold cross-validation technique (out 10 folds only
five ones were exploited due to long computational time).
In the above procedure, the training dataset was shuffled
randomly. Then, it was split into 10 folds. Subsequently, a
single fold was taken for validation whereas the remaining
nine folds were employed for training. The last mentioned
step was repeated five times, each time with a different fold
selected for validation (in the standard 10-fold cross-
validation procedure the last mentioned step is repeated 10
times). For each fold, the data between the train and valid-
ation sets were divided in the HRTF-independent manner
(90% of HRTFs were used for training and 10% for valid-
ation). The learning rate values were selected from the set
lr ∈ {10−3, 10−4, 10−5, 10−6}. The batch size values consid-
ered during the grid-search procedure were selected from
the set b ∈ {16, 32, 64, 128, 256}. In combination with the
above grid-search technique, the network topology was ad-
justed heuristically by trial and error. The reduction of the
network size from 8 million to approximately 400 thousand
trainable parameters, accomplished by reducing the num-
ber of layers, substantially improved its performance. The
final topology of the network, with the best hyper-
parameters, was already presented in Fig. 9 above.
After adjusting the topology and the hyper-parameters

of the network, described above, it was trained on the
whole training set and then tested using the test set. In
this procedure, the initial value of the learning rate was
set to 5 × 10−3. The learning rate was reduced adaptively
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with a rate drop period of 5 epochs and a rate drop fac-
tor of 0.5 (the learning rate was halved in value every 5
epochs). Batch size was set to 128. Cross-entropy was
used as a loss function. The training procedure was ter-
minated after 30 epochs.
In contrast to the traditional classification algorithms,

which were iteratively trained and tested seven times, unless
otherwise stated, CNN was trained and tested three times,
due to much longer computational time. In order to under-
take a “like-for-like” comparison, for both methods in each
iteration the same seed was applied in the routine under-
taking the train and test data splits. The mean

discrimination accuracy scores calculated across the itera-
tions are presented in the remainder of the paper. For each
iteration, the same splits between the train and test sets
were used for both the traditional algorithms and CNN.

5.5.4 Results
Figure 10 shows the results obtained using CNN with
two types of spectrograms at its input: linear-frequency
spectrograms (solid and dotted lines) and Mel-frequency
spectrograms (dashed line). To undertake this experi-
ment, some adjustments to the original CNN topology
(shown in Fig. 9) had to be made. For the frequency

Fig. 9 CNN topology used for the discrimination of front and back ensemble locations
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resolution reduced from 150 to 12 frequency bins, the
network was simplified by removing three convolutional
units. For the conditions where the number of frequency
bins was set to 25 or 50, the number of removed convo-
lutional units was equal to 2 and 1, respectively.
It can be seen in Fig. 10 that, similarly to the outcomes

of the experiment investigating the difference between
MFCCs and LFCCs described earlier in Section 5.2.2,
linear spectrograms provide better results compared to
their Mel-scale counterparts. Interestingly, the relation-
ship between the frequency resolution and the accuracy
does not appear monotonic. For example, for linear
spectrograms, the maximum discrimination accuracy is
obtained for the frequency resolution ranging from 100
to 200 frequency bins (the effect of the diminishing ac-
curacy for the frequency resolution exceeding 200 fre-
quency bins could probably be attributed to the over-
fitting effect). Therefore, linear frequency scale spectro-
grams with a frequency resolution set to 150 frequency
bins were exploited in the subsequent experiments de-
scribed in the remainder of this paper.
In addition to demonstrating the influence of the spec-

trogram types on the obtained results, Fig. 10 also shows
that the results depend on the number of channels (spec-
trograms) employed at the network input. The dotted line
represents the case when the number of spectrograms was
reduced to 2 (which were derived from the left and right
channels). The remaining two lines illustrate the results
for the original case with all 4 spectrograms utilized at the
network input. Surprisingly, the accuracy levels obtained
for the reduced 2-channel scenario tended to exceed those
obtained for the original 4-channel spectrograms for most
of the examined frequency resolutions.

The following conclusions can be drawn from this ex-
periment: (1) deep learning method, employing CNN, can
also be used for the discrimination of the front and back
located ensembles in binaural recordings of music; (2)
linear-frequency spectrograms should be exploited at the
CNN’s input, rather than the Mel-frequency ones, with
their frequency resolution set to 150 frequency bins; (3)
the effects of the number and types of spectrograms
should be further investigated, which was the topic of the
subsequent experiment, described in the next section.

5.6 Experiment 6: Investigating the effect of the number
and type of audio channels
The previous experiment, as a side outcome, indicated
that the reduction of input channels from 4 to 2 could im-
prove the results, which could be considered an intriguing
effect. The aim of this experiment, therefore, was to inves-
tigate the influence of the number and type of audio chan-
nels used at the input of both the best-performing
traditional algorithm (XGBoost) and the CNN algorithm.
The methodologies of the hyper-parameter optimization,

training, and testing the models will not be reiterated here,
as they were the same as before in the case of the XGBoost
algorithm and CNN, respectively. They were described earl-
ier in Sections 5.4.1 and 5.5.3.
Figure 11 illustrates the effect of selecting audio channels

on the obtained results for two best-performing methods:
XGBoost and CNN. Observe that for the traditional algo-
rithm (XGBoost) reducing the number of channels from 4
to 3 (LRM and LRS), or even down to 2 (LR), has almost no
effect on the results. This means that the complexity of the
model may be reduced without compromising the results.
Such modification should enhance the generalization

Fig. 10 Influence of the frequency resolution and type of the spectrograms on the discrimination results using CNN. Error bars denote
standard deviations
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property of the model, as simpler models tend to be more
generalizable [51]. For this reason, in the subsequent experi-
ments involving XGBoost classifier, it was decided to retain
only the features extracted from the left and right channels
(ignoring the features calculated fromm and s signals). Note,
that in the original dataset (before a feature set reduction)
there were 464 features extracted from the left and right
channels and 212 features obtained from the sum and differ-
ence channels. Consequently, the number of features used
by XGBoost classifier was reduced from 676 to 464, main-
taining very good performance, with the accuracy scores ex-
ceeding 98%.
In contrast to XGBoost classifier, the results obtained for

CNN show that the reduction of the number of channels
from 4 to 3, or even down to 2, improves the results. For
example, the mean accuracy score obtained for the two-
channel scenario (LR) was exceptionally good, with an ac-
curacy of 99.42%, outperforming the XGBoost algorithm by
1.12%. The observed difference was significant at p = 8.6 ×
10−9, according to the statistical test of proportions. There-
fore, in the subsequent experiments involving CNN, de-
scribed below, only spectrograms obtained from the left
and right channels were retained and used by the network.
Note, that using only the sum and difference channels

(MS) results in a relatively high discrimination accuracy,
ranging from 92 to 93%. Interestingly, for both XGBoost
and CNN classification algorithms, the reduction of the
number of channels to a single channel (left or right)
still results in the mean accuracy scores exceeding 90%
(see Fig. 11). This means that the proposed method is
still capable of undertaking a discrimination task at the
acceptable accuracy level even when “listening” to the
binaural recordings with a single “ear.”

An example of a confusion matrix obtained for CNN
with the number of spectrograms reduced to 2 (LR) is pre-
sented in Fig. 12a. The matrix demonstrates its remark-
able performance with only 6 misclassified recordings for
frontally located ensembles and 10 erroneously made clas-
sifications for back located ensembles, relative to the total
of 5920 recordings exploited in the test set. For reference,
an example confusion matrix for the XGBoost classifica-
tion algorithm is presented in Fig. 12b.
The main outcome of this experiment is that the previ-

ously developed models (XGBoost and CNN), exploiting
four audio channels (left, right, sum, and difference) can
be simplified by utilizing only the two audio channels (left
and right) without compromising their performance
(XGBoost) or even with improving the discrimination ac-
curacy (CNN). Therefore, the models used in the next two
experiments were adjusted accordingly.

5.7 Experiment 7: Quantification of the effect of audio
recording duration
The aim of this experiment was to investigate the effect
of audio recording duration on the discrimination accur-
acy. The duration of the audio excerpts used in all the
previously described experiments was constant, being
equal to 7 s. In this experiment, the duration was pro-
gressively decreased, while examining its impact on the
discrimination accuracy examined. In line with the out-
come of the previous experiment, the features (for the
traditional algorithms) and spectrograms (for CNN)
were calculated based only on the left and right channel
signals. The remaining experimental protocol was intact.
Figure 13 illustrates the influence of the duration of

the binaural audio recordings on the discrimination

Fig. 11 The effect of audio channels on the discrimination results. Error bars denote standard deviations.
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results. For clarity, the results obtained with Logit classi-
fier were omitted here, as they were similar to the results
achieved using the SVM-Lin classification algorithm. Ac-
cording to the results, signals with a minimum duration
of 3 s are required before the accuracy curves flatten.
Extending the duration beyond this value results in
diminishing improvements in accuracy. While reducing
the duration of the audio excerpts to 200 ms caused ex-
pected deterioration in the discrimination accuracy, for
XGBoost and CNN classifiers its level was still high,
amounting to approximately 95%, which could be con-
sidered to be a surprising outcome.
The main outcome of this experiment is confirmation

that a 7-s duration of the binaural audio excerpts selected

at the outset of the study is adequate for the discrimin-
ation method developed in this work. A minimum dur-
ation of 3 s is required for the above task. Moreover, CNN
showed a very high discrimination accuracy (99.42%), out-
performing the traditional method (XGBoost).

5.8 Experiment 8: Final model testing
The exceptionally good performance exhibited by the
CNN method, with a discrimination accuracy equal to
99.42%, may cast some doubts on its generalization
property, as this may be an indicator of the over-fitting
effect. For this reason, it is imperative to test its per-
formance not only under HRTF-dependent but also
under HRTF-independent conditions. The aim of the

Fig. 12 Examples of confusion matrices obtained for the best-performing methods: a CNN (LR), b XGBoost (LR)

Fig. 13 The effect of duration of the audio excerpts on the discrimination results. Error bars denote standard deviations
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experiment is to compare the performance of the “final”
models under HRTF-independent conditions.

5.8.1 Method
Under the HRTF-dependent test scenario, adopted in all the
above experiments, the original data set was split into the
train and test sets in such a way the tests were music record-
ing independent (different recordings were used in the train
and test sets). The procedure of the data splitting was as
already illustrated in Table 1 and described in detail in Sec-
tion 4.4 above. In the experiments described in this section,
the same procedure was taken in order to ensure that the
train and test sets are music recording independent. How-
ever, in contrast to the above experiments, the additional
“data filtering” procedures were taken, to ensure that the
train and test sets are not only music recording-independent
but also independent in terms of the HRTF sets used to gen-
erate such recordings. Note, that the abovementioned data
filtering procedures were performed “within” the train and
test sets. In other words, first, the original data set was split
into the train and test sets according to the same procedure
which was taken in the all above experiments, and, second,
the train and test sets were filtered in such a way that they
were HRTF-unique, which is specific to the experiments de-
scribed in this section. The reason for filtering the train and
test data, warranting that they were both music recording-
independent and HRTF-independent, was to enhance the
validity of the generalization performance testing. The three
different procedures for the data filtering were taken. They
are described below.
The first proposed technique of HRTF-independent test

is based on the assumption that each “corpus” of HRTFs
measured in a given institution is unique in terms of their
characteristics (HRTFs bear an individual electro-acoustical
“fingerprint,” specific to the head used, the distance be-
tween the head and the loudspeakers, the frequency re-
sponse of the microphones and the loudspeaker, spatial
resolution, acoustical properties at low frequencies, a type
of low-frequency extension, just to mention a few factors).
This method was undertaken iteratively 13 times. In each
iteration, a single corpus of HRTFs was “filtered out” from
the training set. For example, in the first iteration, HRTFs
No. 1 and 2, measured at AACHEN, were excluded from
the training set, while the test set included solely AACHEN
HRTFs. In the next iteration, HRTFs No. 3–9 measured at
ARI were excluded from the training set, whereas the test
set included solely ARI HRTFs, etc. In total, 13 corpora
were used in this method. They are outlined in Table 3 in
alphabetical order according to their acronym.
In the second technique of the HRTF-independent testing,

a given number of HRTFs, randomly selected from the ori-
ginal set of 74 HRTFs, was retained in the training set, while
the test set was reduced to HRTFs that were taken out of
from the training set. For example, if only the two following

HRTFs were retained in the training set, namely HRTFs No.
16 and 35 (effectively reducing the number of HRTFs in the
training set from 74 to only 2), then the original test set was
reduced from 74 to 72 HRTFs (HRTFs No. 16 and 35 were
“filtered out” from the test set). In this experiment the total
number of HRTFs nr retained in the training data set was
selected from the set of nr ∈ (2, 10, 20, 30, 50, 70). The HRTF
sets were selected using a random sampling technique with-
out replacement. In order to ensure the randomness of the
selection, the testing procedure was repeated seven times for
all the examined algorithms. For each repetition, the seed in
the pseudorandom generator was the same across the algo-
rithms, to maintain the consistency of the comparison.
In the third technique, the train set was reduced to the

human HRTFs, whereas the test set was limited to the
artificial ones. In other words, the models were trained on
the human HRTFs and tested on the artificial ones. Then,
the procedure was reversed, as the models were trained
on the artificial and tested on the human HRTFs, with the
results compared. The total number of human and artifi-
cial HRTFs used in the original set of 74 HRTFs was rela-
tively balanced, being equal to 36 and 38, respectively.

5.8.2 Results
Figure 14 shows the results obtained under the HRTF-
independent test using the first technique that was de-
scribed above. While for some HRTF corpora, such as ARI,
SADIE, and TU-BERLIN, both discrimination methods
(XGBoost and CNN) yielded high discrimination accuracy
levels (exceeding 95%), for TH-KÖLN corpus, the obtained
accuracy was much lower, ranging between 80 and 90%. A
possible reason for such low accuracy results obtained for
TH-KÖLN corpus is that it included the “unusual” HRTFs
measured using the artificial head manufactured by Head
Acoustics equipped with a baseball cap or the headset by
Oculus Rift.
The weighted mean accuracy score, compensated for an

imbalanced number of HRTFs across corpora, calculated
for the HRTF-independent test for the CNN and XGBoost
methods was equal to 93.65% and 94.51%, respectively.
According to the statistical test of proportions, the differ-
ence was significant (p = 0.047). Thus, this outcome indi-
cates that the XGBoost technique exhibits a slightly better
generalization performance compared to CNN.
For the CIPIC corpus, the XGBoost method gave mark-

edly better results compared to those obtained using CNN,
while the opposite outcome could be observed for the TH-
KÖLN corpus. Identifying the reasons for such an inter-
action would require undertaking a separate experiment,
which is beyond the scope of this study. However, it is rea-
sonable to suggest that there is a difference in information
captured by the hand-engineered features (used by
XGBoost) and by spectrograms (utilized by CNN). This dif-
ference could become evident when the models are tested
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under new or unusual HRTFs. Therefore, it might be hy-
pothesized that the observed effects could be attributed to
the way information is extracted from the binaural signals
and fed to the classifiers, rather than due to the differences
between the classification algorithms themselves.
The influence of the total number of randomly included

HRTFs in the training set on the discrimination results is il-
lustrated in Fig. 15. Note that this procedure also consti-
tutes a form of another HRTF-independent test, as the
HRTFs selected for training were at the same time excluded
from testing. For clarity, the results obtained for Logit clas-
sifier were omitted, since they were very similar to those
obtained using the SVM algorithm with the linear kernel
(SVM-Lin). According to the results, for the two best-
performing traditional methods (XGBoost and SVM-RBF),
at least 20 HRTFs must be included in the training set in
order to attain an accuracy level exceeding 90%. However,
for CNN, the minimum number of HRTFs to achieve a
similar level of accuracy is higher, being equal to 30. This
discrepancy could be explained by the property of CNN.
Compared to the traditional classification technique, CNN’s
performance might be substantially degraded when rela-
tively small data sets are used for training (for 20 HRTFs
the number of training excerpts is equal to 1600, whereas
for 10 HRTFs the above number is halved to 800).
The third HRTF-independent test applied in this study

aimed to verify what happens when the methods are
trained solely on human HRTFs and tested on the artificial
ones (and vice versa). The outcomes of the tests are pre-
sented in Table 2. For both scenarios XGBoost classifier
with hand-engineered features produces the best results,
with the mean accuracy scores being approximately equal
or slightly exceeding 90% (proving its relatively good
generalization property). When the models were trained on
the human HRTFs and tested on the artificial ones, the

XGBoost method exhibited a slightly better performance
compared to CNN with a difference of only 2 percentage
points. However, a more noticeable difference (almost 7
percentage points) was observed between the performance
of XGBoost and CNN when the models were trained on
the artificial HRTFs and tested on the human ones.

5.9 Follow-up data exploration
The aim of the additional analysis and tests described in
this section was to get a better understanding of how the
discrimination methods worked.

5.9.1 Exploring feature importance
In order to better understand the importance of the features,
as assessed by the best-performing traditional method
(XGBoost), a feature importance analysis was made, with
the outcomes illustrated in Fig. 16. The figure shows the
twelve most important features ranked according to their
“gain” (estimated by the XGBoost algorithm), representing
the fractional contribution of each feature to the model
based on the total gain of a given feature’s split [66]. The
mathematical formula for XGBoost gain can be found in
[67]. Observe that the mean value of the 4th LFCC coeffi-
cient for the left channel signal was ranked as the most
important feature. The next two most important fea-
tures are standard deviations of ILD measured at fre-
quency bands 30 and 31 of the gammatone filter bank.
These two channels have center frequencies equal to
approximately 5.5 kHz and 6 kHz, respectively. This
means that fluctuations of ILDs within those frequency
bands play an important role in the discrimination be-
tween front and back located ensembles. The 4th im-
portant feature ranked in Fig. 16 is the mean value of
the spectral roll-off point of the left channel, account-
ing for the audio bandwidth of the binaural excerpts.

Fig. 14 HRTF-independent test results for separate corpora of HRTFs obtained using the best performing traditional discrimination method (XGBoost) and
CNN. Graph shows mean discrimination accuracy scores with associated standard deviations. Acronyms of HRTF corpora are explained in Table 3 in
the Appendix
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The next two most important features are associated
with the 10th and 25th cepstral coefficients.

5.9.2 CNN visualization
In order to identify which parts of the spectrograms are
treated as the most important by CNN, a gradient attribu-
tion maps (GAM) [10] technique was performed. It was se-
lected due to a better frequency resolution compared to a
more popular gradient-weighted class activation mapping
(Grad-CAM) technique [68]. The results are presented in
Fig. 17 for four experimental repetitions (in each repetition
CNN was trained from its random initial conditions for dif-
ferent train-test data splits). The graphs represent the acti-
vation maps averaged across all the audio excerpts in both
training and testing sets. The interpretation of the obtained
results proved to be difficult due to many very small differ-
ences between the spectrograms. The visualization maps
also changed considerably between repetitions. However,
after averaging the maps across repetitions, interesting pic-
tures emerged (see Fig. 18). Namely, for both the front and
back located ensembles, a frequency region between 5 kHz
and 6 kHz was identified as the most important. This

observation supports a view that there exists a universal fre-
quency band that is used by CNN to undertake the dis-
crimination task. The latter supposition is also supported
by the observations made in the previous section, concern-
ing the importance of features, whereby frequency bands
centered at approximately 5.5 kHz and 6 kHz were identi-
fied to be important in the discrimination process.

6 Discussion
The distinct features of the developed method are that it in-
corporates a static-head approach and is assumption free
with regard to the number and type of music audio sources
in analyzed scenes, making it suitable for a wide range of
spatial audio applications. The developed method was thor-
oughly tested using a broad range of music recordings with
the number of individual sources ranging from 5 to 62, both
under the HRTF-dependent and HRTF-independent condi-
tions. The results presented in this paper cannot be com-
pared directly to those obtained in our previous work [8].
While in the present and former studies a similar deep
learning technique was used (CNN), there were fundamen-
tal methodological differences preventing the authors from

Fig. 15 Discrimination mean accuracy scores obtained under HRTF-independent test as a function of the total number of HRTFs used for
training. Error bars denote standard deviations

Table 2 Test results obtained under HRTF-independent test according to the type of HRTFs used (human versus artificial heads). The
table shows mean discrimination accuracy scores with associated standard deviations. Numbers in bold type represent the
maximum mean accuracy scores

HRTFs used
for training

HRTFs used
for testing

Discrimination scores [%]

XGBoost SVM-RBF SVM-Lin Logit CNN

Human Artificial 89.7 (1.0) 85.7 (1.1) 85.2 (1.5) 83.9 (1.7) 87.9 (1.8)

Artificial Human 92.3 (0.7) 91.1 (0.9) 84.4 (1.0) 84.7 (1.0) 85.6 (1.1)
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undertaking a consistent comparison. For example, in this
work, only two ensemble locations were discriminated (front
or back), while in the previous study three types of spatial
audio scenes were classified (ensemble in front, ensemble at
the back, and ensembles located concurrently in front and
at the back of a listener). Moreover, in contrast to this study
which was based on the “anechoic” head-related impulse re-
sponses (HRIRs), in our previous work, we used recordings
generated using BRIRs. Employing HRIR sets as opposed to
BRIR sets could be a confounding factor in terms of the
localization of audio sources under binaurally rendered con-
ditions. While Mel-frequency spectrograms were employed
in our former work, in this research project we proved that
using linear-frequency spectrograms at the input of CNN
yields better results. To understand how CNN works, in our
previous work we visually inspected filter activations at the
output of the convolutional layers, with rather inconclusive
results. In this paper, we explored the model using the
GAM technique, providing some evidence that the fre-
quency region between 5 and 6 kHz is most important in
terms of the “decision making” by CNN. Finally, while the
CNN model used in our previous experiment was tested
only under HRTF-dependent conditions, the model devel-
oped in this work was examined both under HRTF-
dependent and HRTF-independent conditions, which con-
stitutes an added value of the study and demonstrates the
importance of “generalizability” testing.
While machine learning algorithms do not have to

mimic human auditory system to discriminate between
recordings, as in principle they can exploit a different
approach compared to humans, according to the results

obtained using both the traditional and deep learning
methods, there is some evidence that machine learning
algorithms tend to predominantly exploit cues at a fre-
quency band centered at approximately 5 kHz when
undertaking the discrimination task. The above fre-
quency band is similar to the fourth boosted band and
the third directional band identified by Blauert [16] in
his studies that investigate spatial hearing in humans.
The ability of the model to disambiguate front and

back located ensembles with only one simulated ear may
appear to be intriguing. However, this outcome is in ac-
cordance with psychoacoustics as, to some extent,
humans are also able to disambiguate front and back
audio sources exploiting only one ear [69].
There are five limitations of this study which should be

acknowledged. First, the spatial distribution of individual
audio sources within each ensemble was restricted to the
horizontal plane only. Second, the ensemble widths were
restricted to ± 30°, with the symmetric boundaries between
front and back hemispheres. Inclusion of elevated audio
sources with varying limits of the ensembles within the ex-
perimental protocol are left for future experiments. Third,
the experimental progression shown in the outline in Fig. 2
is not the only one that could be adapted for such a study,
and, consequently, may not be the optimal one. For ex-
ample, investigating the effect of audio excerpt duration
“before” quantifying the effect of the number and type of
audio channels (swapping the order of the experiments)
could lead to slightly different results. Fourth, the effect of
the temporal resolution (the frame length) set during the
feature extraction and during the spectrograms calculations

Fig. 16 Feature importance for the twelve most prominent features as identified by XGBoost classification algorithm (“Std” denotes standard deviation)
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Fig. 17 Examples of the most important spectrogram regions identified using the GAM technique. The left and right columns represent the
average importance maps for the front and back ensembles, respectively. The rows illustrate the results obtained with the same CNN for four
separate experiment repetitions (R1, R2, R3, and R4)
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was not quantified in this study (this factor is left for
future experimentation). Fifth, some similarities be-
tween 74 HRTF sets used in this study might exist,
e.g., due to employing the same types of the artificial
heads, reducing the validity of “HRTF-independent”
tests. Since there are no widely accepted metrics of
independence between the HRTFs, it is left to the
reader to judge how similar the HRTFs were, based
on the detailed description of the HRTFs used in the
study provided in Table 3 in the Appendix. Neverthe-
less, it must be stressed that, to the best of the au-
thors’ knowledge, this study is one of the most
comprehensive in terms of the HRTF-independent
tests.

7 Conclusions
The aim of this study was to develop a method of dis-
criminating between front and back located music en-
sembles in binaural recordings and to quantify the
influence of the selected parameters on its performance.
According to the results obtained under HRTF-
dependent test conditions, CNN showed a very high dis-
crimination accuracy (99.4%), slightly outperforming the
traditional method (XGBoost). However, under the
HRTF-independent test scenario, CNN performed worse
than the traditional algorithm, highlighting the import-
ance of testing the algorithms under HRTF-independent
conditions and indicating that the traditional methods
may exhibit a better generalization property compared
to CNN. Even simple RMS estimators of bandlimited
signals, designed based on psychoacoustic literature,
provide a discrimination accuracy approaching almost
90%. The proposed method is still capable of undertak-
ing a discrimination task at the level of approximately

92% even when utilizing only one simulated ear (left or
right).
Linear-frequency spectrograms give better results

when used at the CNN input than Mel-frequency ones.
Likewise, linear-frequency cepstral coefficients provide
better discrimination results compared to Mel-frequency
cepstral coefficients when applied to the traditional clas-
sification algorithms. Audio excerpts with a minimum
duration of 3 s are adequate for the automatic discrimin-
ation of ensemble locations. Out of the selection of 74
HRTFs considered in this study, a minimum of 20
HRTFs were required during the development of the
traditional algorithms in order for them to achieve satis-
factory generalization performance. For CNN, the above
number is greater, amounting to a minimum of 30
HRTFs.
Linear-frequency cepstral coefficients, interaural level

differences, and audio bandwidth were identified as the
key descriptors facilitating the discrimination process
using the traditional approach. There is some evidence
that machine learning algorithms (both the traditional
ones and CNN) tend to predominantly exploit cues at a
frequency band centered at approximately 5 kHz while
undertaking the discrimination task.
The current study was limited to the anechoic condi-

tions. Adapting the methodology to reverberant environ-
ments constitutes a future research progression.
Prospective experiments may also investigate whether
the developed method could be integrated with the bin-
aural localization models to help reduce their
localization errors caused by the front-back confusion
effect. Moreover, upcoming work may involve extending
the method to encompass the quantification of ensemble
width, depth, and height.

Fig. 18 Gradient attribution maps averaged across experiment repetitions: a front ensemble, b back ensemble
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8 Appendix

Table 3 List of HRTF sets used to synthesize binaural audio excerpts

No. Type Head Radius [m] Source Acronym

1. Human Human subject 1.2 RWTH Aachen University [32] AACHEN

2. Artificial GRAS 45BB-4 KEMAR 1

3. Human Subject 2 1.2 Austrian Academy of Sciences [33] ARI

4. Human Subject 4 1.2

5. Human Subject 5 1.2

6. Human Subject 8 1.2

7. Human Subject 10 1.2

8. Artificial ARI Printed Head 1.2

9. Artificial Neumann KU 100 1.2

10. Human Subject 012 1 CIPIC Interface Laboratory, University of California [34] CIPIC

11. Human Subject 015 1

12. Human Subject 020 1

13. Human Subject 028 1

14. Human Subject 051 1

15. Human Subject 147 1

16. Human Subject 148 1

17. Artificial Neumann KU 100 1.95 IRCAM (2004) [35] CLUBFRITZ

18. Artificial Neumann KU 100 0.9 NASA (2007) [35]

19. Artificial Neumann KU 100 2 IRCAM (2007) [35]

20. Artificial Neumann KU 100 1.5 Helsinki University of Technology (2009) [35]

21. Artificial Neumann KU 100 1.3 NHK (2009) [35]

22. Artificial Neumann KU 100 1.3 NICT (2009) [35]

23. Artificial Neumann KU 100 1 Nagoya University (2009) [35]

24. Artificial FABIAN 1.47 Technical University Berlin, Huawei Technologies,
Munich Research Centre, Sennheiser Electronic [36]

HUTUBS

25. Human Subject pp2 1.47

26. Human Subject pp3 1.47

27. Human Subject pp4 1.47

28. Human Subject pp5 1.47

29. Human Subject pp6 1.47

30. Human Subject pp7 1.47

31. Human Subject 1003 1.95 IRCAM, AKG [37] LISTEN

32. Human Subject 1046 1.95

33. Human Subject 1054 1.95

34. Human Subject 1006 1.95

35. Human Subject 1002 1.95

36. Human Subject 1004 1.95

37. Human Subject 1005 1.95

38. Artificial KEMAR DB-4004 (DB-061) 1.4 MIT [38] MIT

39. Artificial KEMAR DB-4004 (DB-065) 1.4

40. Human Subject 001 1.5 Tohoku University [39] RIEC

41. Human Subject 002 1.5

42. Human Subject 003 1.5

43. Human Subject 004 1.5
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Table 3 List of HRTF sets used to synthesize binaural audio excerpts (Continued)
No. Type Head Radius [m] Source Acronym

44. Human Subject 005 1.5

45. Artificial Koken SAMRAI 1.5

46. Artificial KEMAR 1.5

47. Artificial Neumann KU 100 1.2 University of York [40] SADIE II

48. Artificial GRAS 45BC KEMAR 1.2

49. Human Subject H3 1.2

50. Human Subject H4 1.2

51. Human Subject H5 1.2

52. Human Subject H6 1.2

53. Human Subject H7 1.2

54. Artificial KEMAR 1 South China University of Technology [41] SCUT

55. Artificial KEMAR 0.5

56. Artificial Neumann KU 100 0.5 TH Köln [42] TH Köln

57. Artificial Neumann KU 100 0.75

58. Artificial Neumann KU 100 1

59. Artificial Neumann KU 100 1.5

60. Artificial Head Acoustics HMSII 2

61. Artificial Head Acoustics HMSII + baseball cap 2

62. Artificial Head Acoustics HMSII + Oculus Rift 2

63. Artificial FABIAN 1.7 TU Berlin [43, 44] TU Berlin

64. Artificial GRAS 45BA KEMAR 0.5

65. Artificial GRAS 45BA KEMAR 1

66. Artificial GRAS 45BA KEMAR 2

67. Artificial GRAS 45BA KEMAR 3

68. Artificial GRAS 45BB-4 KEMAR – subject A attachment 1 Aalborg University; University of Iceland [45, 46] VIKING

69. Artificial GRAS 45BB-4 KEMAR – subject B attachments 1

70. Artificial GRAS 45BB-4 KEMAR – subject C attachments 1

71. Artificial GRAS 45BB-4 KEMAR – subject D attachments 1

72. Artificial GRAS 45BB-4 KEMAR – subject E attachments 1

73. Artificial GRAS 45BB-4 KEMAR – subject F attachments 1

74. Artificial GRAS 45BB-4 KEMAR – subject G attachments 1
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