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Abstract

In this study, we propose a methodology for separating a singing voice from musical accompaniment in a
monaural musical mixture. The proposed method uses robust principal component analysis (RPCA), followed by
postprocessing, including median filter, morphology, and high-pass filter, to decompose the mixture. Subsequently,
a deep recurrent neural network comprising two jointly optimized parallel-stacked recurrent neural networks
(sRNNs) with mask layers and trained on limited data and computation is applied to the decomposed components
to optimize the final estimated separated singing voice and background music to further correct misclassified or
residual singing and background music in the initial separation. The experimental results of MIR-1K, ccMixter, and
MUSDB18 datasets and the comparison with ten existing techniques indicate that the proposed method achieves
competitive performance in monaural singing voice separation. On MUSDB18, the proposed method reaches the
comparable separation quality in less training data and lower computational cost compared to the other state-of-
the-art technique.

Keywords: Singing separation, Robust principal component analysis, Deep recurrent neural network, Stacked
recurrent neural network

1 Introduction
In a natural environment rich in sound emanating from
multiple sources, a target sound reaching our ears is
usually mixed with other acoustic interference. The
sources of background acoustic interference, including
car noise, street noise, music, other people’s voices [1],
and even reverberations [2], corrupt the target sound,
complicate signal processing, pose severe challenges for
the hearing impaired, and degrade the performance of
automatic sound recognition systems. In musical pieces,
instead of background noise, singing voices are often
mixed with musical accompaniments. Generally, a song
is a combination of human vocal singing and music
played using string and percussion instruments. Vocal
melody has a unique pitch contour, whereas background
music is a repetitive rhythm created using a variety of
instruments. With respect to a singing voice, which is

generally the focus, musical accompaniment can be con-
sidered interference or noise because in most cases, the
singing voice in a song is the most impressive part to lis-
teners and it conveys abundant important information
useful in a wide variety of research; for instance, deter-
mining the lyrics [3], language [4], singer [5, 6], and
emotion [7] conveyed by a song. Therefore, techniques
for separating singing voices from accompaniments are
important for various music information retrieval (MIR)
applications, such as automatic lyric recognition [3] and
alignment [8], melody extraction [9], song language
identification [4], singer identification [5, 6], content-
based music retrieval, and annotation [10]. Such applica-
tions are indispensable in systems such as karaoke gam-
ing, query-by-humming, active music listening [11], and
audio remixing.
However, the separation of singing voice from musical

accompaniment is genuinely challenging. Human lis-
teners generally have the remarkable ability to segregate
sound streams from a mixture of sounds in day-to-day
life, but this remains a highly demanding job for
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machines, especially in the monaural case because it
lacks the spatial cues that can be acquired when two or
more microphones are used. Furthermore, the experi-
ence of speech separation may not straightforwardly
apply to singing separation. Singing voice and speech,
both human sounds, have many similarities, but they are
also dissimilar. Therefore, the difficulties encountered in
the separation of singing and speech from their respect-
ive backgrounds are different. The most important dif-
ference between singing and speech in terms of their
separation from a background is the nature of the other
coexisting sounds. The background interference mixed
with speech may be harmonic or nonharmonic, narrow-
band, or broadband and generally uncorrelated to the
speech. However, the musical accompaniment in a song
is usually harmonic and broadband, correlated to the
singing, and does not fit the general assumptions of
noise, such as whiteness or stationarity. Hence, trad-
itional noise-suppression methods are unsuitable.
Additionally, singing voices usually contain clear and

strong harmonic structures and rapidly changing har-
monics, such as vibratos or slides, and musical accom-
paniment can be considered the sum of percussive
sounds and harmonics. Simple harmonic extraction
techniques are not useful for polyphonic mixtures and
rapidly changing harmonics because the extraction re-
sults are inaccurate and harmonic instruments (not only
singing) also contain harmonics. Moreover, onset and
offset cues, which are generally useful in auditory scene
analysis because different sounds normally start and end
at different times, are not useful either because the start-
ing and ending times of singing voices and musical ac-
companiments usually coincide. In addition, in singing,
lyrics are expressed by changing notes according to the
melody, which makes singing an interpretation of a pre-
defined musical score. Therefore, pitch in singing tends
to be piecewise constant, with abrupt pitch changes and
different types of fluctuations. The pitch range of singing
could be as high as 1000 or 1400 Hz for soprano singers
[12], compared with the normal range of 80 to 400 Hz
for speech. Hence, pitch-extraction techniques are com-
monly inaccurate, and in songs, distinguishing between
voiced and unvoiced is problematic.
The separation of singing can be classified into several

categories on the basis of the underlying methodologies,
namely probabilistic [13, 14], spectrogram factorization
[15–24], pitch-based [25–27], repetition-based [28, 29],
low-rank and sparse decomposition [30, 31], harmonic/
percussive sound separation (HPSS) [32–34], deep
neural network (DNN)-based [35–48], and hybrid or fu-
sion approaches.
Among them, by assuming and utilizing the underlying

properties of singing and musical accompaniment,
Huang et al. [30] performed a robust principal

component analysis (RPCA) to decompose the magni-
tude spectrogram of a song into low-rank and sparse
matrices, which correspond to the music accompani-
ment and singing voice, respectively. Studies have dem-
onstrated that such decomposition methods outperform
sophisticated pitch-based methods [31]. However, the
assumptions of low-rank and sparsity may not be true in
all cases. For example, the sound of drums is sparse but
not low-rank, and the vocal part of a song can some-
times be low-rank [31].
The state-of-the-art method is to use a DNN, which

learns a model from a large amount of data and has
been demonstrated to be particularly successful in the
separation of singing voice [35–48]. The research on
DNNs includes joint optimization of deep recurrent
neural networks (DRNNs) with a masking layer [35–37],
the combination of DNNs with spatial covariance matri-
ces [38], deep regression neural networks [39], proximal
DRNN (P-DRNN) [40], bi-directional deep LSTM [41],
enhanced feature network (EFN) [42], convolutional re-
current neural network (CRNN) [43], and variants of the
convolutional neural network (CNN), such as improved
MMDenseNet [44], deep U-Net [45], Wave-U-Net [46],
evolving multi-resolution pooling CNN (E-MRP-CNN)
[47], and extended multiscale DenseNet [48].
In addition to the aforementioned categories of

methods, hybrids or fusions of existing building blocks
have emerged. Among them, some integrate pitch or F0
information to improve separation. For example, Virta-
nen et al. [49] proposed a hybrid method that combines
pitch-based inference and nonnegative spectrogram
factorization. Rafii et al. [50] combined the repetition-
based method — repeating pattern extraction technique
with a similarity matrix (REPET-SIM), which is a
generalization of REPET and uses a similarity matrix to
identify the repeating elements of the background music,
with a pitch-based method. Ikemiya et al. [51, 52] uti-
lized the mutual dependency of F0 estimation and
source separation to improve singing voice separation by
combining a time-frequency mask based on RPCA with
a mask based on harmonic structures. Other cascading
[53] and fusion methods [54] have been proposed as
well.
In the real world, learning involves observing large

numbers of objects in the world and drawing inferences
about their categories, and this is coupled with occa-
sional experiences of supervised learning [55]. In other
words, information gleaned from data may create some
underlying assumptions or rules and extends the know-
ledge obtained from labeled data, which helps to im-
prove category learning [56]. Although the manner in
which humans combine different ways of learning and
jointly exploit different data remains unclear [55], we
may assume that humans use underlying knowledge
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derived from observation and inferences plus supervised
learning for pattern recognition. In our daily experi-
ences, we glean information from a large amount of data
to arrive at a reasonable central tendency and draw
boundaries between different categories. The hidden
structure discovered by the process can be leveraged to
obtain a deep insight into the informational content, and
the insight can lead to assumptions of the underlying
properties, and as a result, no prior training is required.
The RPCA approach [30] is a famous example. We,
therefore, chose RPCA as a pre-processing method.
Then, the following supervised learning can further ad-
just the results of RPCA to increase their accuracy.
Therefore, our intention is to effectively combine as-

sumptions of the underlying properties with supervised
learning to improve the separation of singing voice and
background music given by a monaural mixture. Because
labeled data are always difficult to obtain and are usually
insufficient, employing approaches without prior training
for initial separation and then employing supervised
learning with limited data based on the initial separation
rather than on the original input can help improve the
separation quality. Benefit from the initial separation
without prior training, our method may achieve good re-
sults without data augmentation if the amount of data is
not too low and therefore can greatly reduce the compu-
tational load. Hence, we propose using RPCA based on
the underlying low-rank and sparse properties of accom-
paniments and vocals, respectively, to achieve the initial
separation and apply supervised DRNN to limited data
to further separate the results of RPCA in order to fur-
ther correct misclassified or residual singing and back-
ground music from the initial separation.
The remainder of this paper is organized as follows.

Section 2 introduces the proposed RPCA-DRNN model,
including RPCA, postprocessing (median filter, morph-
ology, and high-pass filter), and the architecture of the
DRNN. Section 3 describes the datasets, objective and
subjective measures, and experiment results. A compari-
son of the proposed method with the reference methods
is given as well. Finally, conclusions are provided in the
final section.

2 Proposed RPCA-DRNN method
Music is usually composed of multiple mixed sounds,
such as human vocals and various instrumental sounds.
Huang et al. [30] reported that the magnitude spectro-
gram of a song can be regarded as the superposition of a
sparse matrix and a low-rank matrix and can be decom-
posed by RPCA. The sparse matrix and low-rank matrix
decomposed appear to be corresponding to the singing
voice and accompaniment. Hence, based on the assump-
tions of the correspondence of singing with sparse
matrix, and low-rank with accompaniment, RPCA can

be applied to the singing/accompaniment separation
problem. Without any pretraining, its results are super-
ior to those of sophisticated pitch-based methods [31].
However, the underlying low-rank and sparsity as-

sumptions may not be true in all cases. The decomposed
sparse matrix may contain instrumental sounds (e.g.,
percussion) besides singing voice, and the decomposed
low-rank matrix may contain vocal besides instrumental
sounds. Upon listening to the separated singing voice, it
is apparent that there is some residual background
music. Likewise, some part of the singing voice is mis-
classified as background music. Therefore, additional
methods or techniques are needed to reclassify the
RPCA output to increase the separation accuracy.
We propose an RPCA-DRNN method that employs an

RPCA with postprocessing to perform the initial separ-
ation and a supervised DRNN to perform the subse-
quent separation. The mixed signal is input into the
RPCA and separated into the sparse and low-rank matri-
ces. Then, postprocessing, including median filter,
morphology, and high-pass filter, is applied. The DRNN
that follows comprises two jointly optimized parallel-
stacked recurrent neural networks (sRNNs) with mask
layers. The resulting sparse and low-rank matrices ob-
tained after RPCA and postprocessing are sent to their
corresponding sRNNs. One sRNN further separates the
sparse matrix into the estimated singing and musical ac-
companiment parts because there is a residual back-
ground music component in the initial separated sparse
matrix. Similarly, the other sRNN further separates the
low-rank matrix into the estimated singing and musical
accompaniment parts because there is a residual singing
vocal component in the low-rank matrix. The final esti-
mated singing is the sum of the singing part estimated
from the sparse matrix and the residual singing part esti-
mated from the low-rank matrix, and it is compared
with the original clean singing voice. Correspondingly,
the final estimated musical accompaniment is the sum
of the residual musical accompaniment part estimated
from the sparse matrix and the musical accompaniment
part estimated from the low-rank matrix, and it is com-
pared with the original clean musical accompaniment.
By reducing the error between the estimated singing and
clean singing parts and that between the estimated mu-
sical accompaniment and clean musical accompaniment
parts, we can jointly optimize the DRNN and obtain the
final model. The time-domain waveform of singing/
music is reconstructed by applying inverse short-time
Fourier transform (ISTFT) to the estimated magnitude
spectrum of singing/music along with the phase
spectrum of the sparse/low-rank matrix.
In the following subsections, details of the techniques

associated with each part of the proposed method are
discussed.
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2.1 RPCA
The convex program RPCA was proposed by Candès
et al. [57] to recover a low-rank matrix L from highly
corrupted measurements C = L + S, where S is a sparse
matrix and has arbitrary magnitude. The convex
optimization problem is defined as

minimize∥L∥� þ λ∥S∥1 ð1Þ

subject to Lþ S ¼ C;

where ‖∙‖∗ and ‖∙‖1 denote the nuclear norm and l1-
norm (i.e., the sum of the singular values and the sum of
absolute values of the matrix entries, respectively). The
dimensions of L, S, and C are m × n, and λ is a positive
tradeoff parameter that can be selected based on prior
knowledge about solutions to practical problems [57].

Generally, λ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm; nÞp

, which works well for in-
coherent matrices [54].
Musical accompaniment generally has an underlying

repeating structure and can be considered a low-rank
signal L. By contrast, singing voices with more variation
have a higher rank and are comparatively sparse in the
time and frequency domains; they can be considered
sparse signals S [30]. Then, C, L, S, m, and n can be con-
sidered as the spectrum of mixture, accompaniment,
singing, and the number of frequency bins and frames.
Therefore, RPCA can be used to separate singing vocals
from a mixture without training.
The separation is performed as follows. First, short-

time Fourier transform (STFT) is used to obtain the
spectrogram of the mixture C. Then, the inexact aug-
mented Lagrange multiplier (ALM) method [58] is used
to obtain L and S.
To improve the quality of the separation results, a bin-

ary time-frequency masking is further applied in [30].
The binary time-frequency mask Mb is defined as

Mb i; jð Þ ¼ 1; S i; jð Þj j > κ� L i; jð Þj j
0; otherwise

�
ð2Þ

i = 1…m and j = 1…n. κ is the threshold of the magni-
tude ratio of sparse to low-rank. When the ratio is
greater than the threshold, the binary mask is classified
as 1.
However, the use of a soft mask in REPET can mar-

ginally improve the quality of the overall results (only
statistically significant for the source-to-artifact ratio
(SAR) of a singing voice), except for the source-to-
interference ratio (SIR) of the singing voice [59]. More-
over, the experiments of [29] revealed that the use of a
soft mask is perceptually better than the use of a binary
mask. Therefore, the following soft mask Ms is adopted
in the proposed method:

Ms i; jð Þ ¼ S i; jð Þj j
S i; jð Þj j þ gain� L i; jð Þj j ð3Þ

RPCA is a method that does not need any training or la-
beled data, and hence, it is convenient to use. Neverthe-
less, the sparse and low-rank assumptions are rather
strong assumptions, and they may not be suitable for
every situation. For example, the sound of drums is sparse
and can be classified as a singing voice, and the vocal part
can sometimes be classified as low-rank. The decomposed
low-rank matrix might be a mixture of singing and instru-
mental sounds, and the decomposed sparse matrix might
be a mixture of vocal and percussion sounds [31]. It is
even more bothering for separation when the low-rank
matrix contains a non-vocal, harmonic instrument (such
as electric guitar and string instrument). From the study
of Yang [60], the sparse signals generated by RPCA also
often contain percussive components. It is because per-
cussive sound can be considered as a periodic stream that
is sparse in time-domain [61]. Moreover, RPCA does not
consider other information, such as pitch or structure in-
formation. The output of RPCA—the separated singing—
still contains some background music, and the separated
music still contains singing. Thus, the quality of such
RPCA separation is limited, and other methods must be
employed to improve the results.

2.2 Postprocessing
The soft mask generated from RPCA is postprocessed to
improve the separation performance. The postprocessing
is applied to the soft mask instead of L and S, so the sum
of the obtained low-rank and sparse matrices are still
equal to the mixture. The postprocessing includes median
filtering, morphology, and high-pass filtering, as depicted
in Fig. 1. Between the spectrum of clean singing and the
resultant singing spectrum obtained using RPCA, the
former is more spotless and has a clearer structure. By
contrast, the spectrum of estimated singing contains noise,
has a broken structure, and has very-low-frequency parts
that seldom appear in vocals. Hence, postprocessing is
needed to further improve the mask.

2.2.1 Median filter
Median filter, a widely used nonlinear digital filtering
technique in image processing and sound separation,

Fig. 1 Postprocessing
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especially for separating harmonic from percussive
sounds [62], is applied to remove noise from the soft
mask Ms. As the low-rank hypothesis barely holds for
drum sounds, a median filter is applied to enhance the
separation. The procedure of the two-dimensional me-
dian filter is to run through the time-frequency unit of
the mask unit-by-unit and replace each unit with the
median value of the neighboring dm by dn units belong-
ing to a window sliding over the mask unit-by-unit. The
soft mask after the processing of the median filter is
Msm.

2.2.2 Morphology
Morphology [63] is a set of popular operations in image
processing that is employed to process images based on
predefined kernels or structuring elements. Two very
common morphology operators, erosion and dilation [63],
with predefined structuring elements, are applied to the
soft mask Msm to enhance the possible singing spectrum
pattern. By creating a structuring element of a certain size
and shape, operations sensitive to specific shapes can be
constructed. A structuring element defines common
shapes, such as lines or circles, and is represented by a
matrix of 0 s and 1 s, where 1 symbolizes the neighbor-
hood. The center of the structuring element slides
through the pixel being processed. First, normalization is
performed to transform the soft mask into a grayscale
image. Then, grayscale erosion is performed, followed by
grayscale dilation. The erosion operation outputs the
minimum neighborhood value of the pixels that fall within
the predefined structuring elements. The dilation oper-
ation, by contrast, outputs the maximum neighborhood
value. Considering the original singing spectrogram con-
tains horizontal line-like structures as in Fig. 2a, and the
horizontal line structures in the singing spectrogram after
RPCA with soft mask and median filter as in Fig. 2b are
broken, a line-structuring element of length len and de-
gree θ, as shown in Fig. 3a, is applied to both the erosion
and dilation operations. Figure 3b is a schematic diagram
of erosion and dilation by using a line-structuring element
of length 10 and degree 5 on a binary example. From Fig.
3b, observing the places circled, after the erosion and dila-
tion, the small gap on the horizontal line is patched up.
With DK representing the domain of the kernel (the struc-
turing element) K, grayscale erosion is defined and per-
formed as follows:

ðMsm⊖KÞði; jÞ ¼ minfMsmði
þ i0; jþ j0Þjði0; j0Þ∈DKg; ð4Þ

which is equivalent to a local-minimum operator. ⊖ is
an erosion operator.

Fig. 2 A An example of original singing spectrogram. B Singing
spectrogram after RPCA with soft mask and median filter. c Singing
spectrogram after applying morphology to the soft mask Msm
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By contrast, grayscale dilation is equivalent to a local-
maximum operator and is defined as follows:

ðMsm⊕KÞ
� ði; jÞ

¼ max

(
Msmði−i0; j− j0Þjði0; j0Þ∈DK

)
:

ð5Þ

⊕ is a dilation operator.
By using the erosion and dilation operations, the skel-

eton of the horizontal line structure of the singing
spectrum can be reconstructed. Observing the singing
spectrogram after applying morphology as in Fig. 2c, the
line structures are rebuilt.

2.2.3 High-pass filter
Liutkus et al. [59] demonstrated that the application of a
high-pass filter at the cutoff frequency of 100 Hz to the
estimated singing voice yields overall statistically super-
ior results, except for SAR. Therefore, we adopt the
same filtering scheme in the postprocessing of the vocal
estimate because the frequency of a singing voice is
rarely lower than 100 Hz.

2.3 DRNN
Although the RPCA with postprocessing can separate a
mixture into singing voice and background music

through the processed mask, the estimated singing voice
is doped with background music. Similarly, the esti-
mated background music is doped with vocal melody.
Therefore, it is necessary to use other techniques to gen-
erate a model for suitably reclassifying the doped part as
either singing voice or background music.
Neural networks can effectively perform this separ-

ation. Among neural networks, recurrent neural net-
works (RNNs), which introduce the memory from
previous time steps, are widely used to model the tem-
poral information in time-series signals, such as audio or
speech [64]. However, in the current time step, there is
only one layer between the input information and the
output. If hierarchical processing or multiple time scales
are needed for processing the time series, RNNs do not
support such operations. To solve the problem, a DRNN
is proposed for performing hierarchical processing and
capturing the structure of the time series [65].
The architecture of the DRNN [37], which is concep-

tually a combination of DNN and RNN, is a multilayer
perceptron in which each layer is equivalent to an
RNN—each layer has temporal feedback loops. Hermans
and Schrauwen [65] demonstrated that a DRNN gener-
ates diverse time scales at different levels. Therefore, it
can capture a time series more inherently. The architec-
ture of the DRNN can be represented with hidden
layers. Temporally recurrent connections can happen in
all layers, as in the sRNN [66], or in a single layer. We
used an sRNN in the experiments conducted herein.

Fig. 3 Application of a a line-structuring element to b the erosion and dilation operations
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However, using recurrent connections at a single layer is
a possible choice as well.

2.3.1 sRNN
sRNNs, which have multiple levels of transition func-
tions, can be presented as follows:

hlt ¼ f h hl−1t ; hlt−1
� � ¼ ∅l U

lhlt−1 þWlhl−1t

� �
; ð6Þ

where hlt is the hidden activation of the lth layer at
time t, and h0t is equal to the input ; fh is a state transi-
tion function; ∅l(∙) is an element-wise nonlinear function
in the lth layer; Wl is the weight matrix of the lth layer,
which is multiplied with the activation of the l-1 layer

hl−1t ; and Ul is the weight matrix of the recurrent con-
nection in the lth layer, which is multiplied with the ac-

tivation of layer l at time t-1 hlt−1.

2.3.2 Gated recurrent unit
Instead of using a traditional nonlinear function unit,
such as sigmoid, tanh, or rectified linear unit (ReLU) in
the sRNN, we use the gated recurrent unit (GRU) as the
hidden unit. The GRU [67] is a variant of the long
short-term memory (LSTM) unit, and it combines the
forget and input gates into a single update gate and is
simpler to compute and implement. Chung et al. [68] re-
ported that in polyphonic music modeling and speech
signal modeling, the performance of the GRU is

comparable to that of an LSTM unit and superior to that
of the traditional unit tanh.

2.3.3 Proposed model architecture
The architecture of the proposed method is depicted in
Fig. 4. A DRNN comprising two jointly optimized paral-
lel sRNNs with mask layers, which are not trainable and
just arithmetic operations on the network outputs, is
used to further improve the results of RPCA with post-
processing. The inputs to the DRNN are St and Lt, which
are the sparse and low-rank magnitude spectra obtained
from the RPCA output after postprocessing at time t.
The output predictions V̂ StϵRF and B̂StϵRF represent

the predicted magnitude spectra of the singing voice and
residual background music separated from S, respect-
ively, and B̂LtϵRF and V̂ L;tϵRF represent the predicted
magnitude spectra of the background music and residual
singing voice separated from L, respectively, where F is
the dimension of the magnitude spectra. The ReLU is
used as the activation function in the output layer owing
to its advantages of efficient computation, scale invari-
ance, superior gradient propagation, biological plausibil-
ity, and sparse activation.
Huang et al. [35] used a time-frequency mask to fur-

ther smooth the separation outcomes and enforce the
constraint that the sum of the separated components is
equal to the original unseparated signal. They incorpo-
rated the mask as a layer in the neural network to make
sure that the DRNN is optimized based on the masked

Fig. 4 Architecture of the proposed method
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output. Hence, a mask layer is added to each sRNN, as
in the architecture depicted in Fig. 4. The predicted
magnitude spectra of the singing voice ~VSt and the re-
sidual background music ~BSt separated from St by in-
corporating the mask concept can be respectively
expressed as follows:

~VSt ¼ jV̂ St j
jB̂St j þ jV̂ St j

⊙St ; ð7Þ

~Bst ¼ jB̂st j
jB̂st j þ jV̂ stj

⊙St : ð8Þ

Likewise, the predicted magnitude spectra of the back-
ground music ~BLt and the residual singing voice ~VLt sep-
arated from Lt by incorporating the mask concept can,
respectively, be expressed as follows:

~VLt ¼ jV̂ Lt j
jB̂Ltj þ jV̂ Lt j

⊙Lt ; ð9Þ

~BLt ¼ j B̂Lt j
jB̂Ltjþ j V̂ Lt j

⊙Lt : ð10Þ

The final estimated singing ~V t is the sum of ~VSt and
~VLt , as expressed in (11), and it is compared with the
original clean singing voice. The final estimated musical
accompaniment is the sum of ~BSt and ~BLt , as expressed
in (12), and it is compared with the original clean mu-
sical accompaniment. Therefore, an extra layer to per-
form the summation is added, as depicted in Fig. 4.

~Vt ¼ ~VSt þ ~VLt ð11Þ
~Bt ¼ ~BSt þ ~BLt ð12Þ

2.3.4 Discriminative training
The neural network is optimized by minimizing the sum
of the squared errors between the estimated and clean
singing voices and those between the estimated and
clean background musical accompaniments. Moreover,
two discriminative terms [35] are added to further
penalize the interferences from other sources.
The loss function is defined as follows:

JDISCRIM ¼ 1
2

XT
t¼1

ð ~V t−Vt

�� ��2−ωdis V t−~Bt

�� ��2
þ ~Bt−Bt

�� ��2−ωdis Bt− ~Vt

�� ��2Þ ð13Þ

where T represents the length of an input sequence,
and 0 ≤ ωdis ≤ 1. The output targets Vt ϵ ℝFand Bt ϵ ℝF

represent the clean magnitude spectra of the singing
voice and background music at time t, respectively. In

(13), k ~V t−Vtk2 and k~Bt−Btk2 are subloss terms to
penalize the deviation between the final estimated and

clean singing voices and that between the final estimated
and clean background musical accompaniments; more-

over, −ωdiskVt−~Btk2 and −ωdiskBt− ~V tk2 are discrimina-
tive terms to further penalize the interference from
other sources. The term ωdis is a weight to control the
prominence of the discriminative terms.

3 Experiment results and evaluations
Three datasets, including MIR-1K [15], an amateur
Chinese karaoke set, ccMixter [69], gathered from
ccmixter.org, and MUSDB18 [70], a professionally pro-
duced set, were used, and ten existing source separation
techniques were evaluated and compared in our
experiments.

3.1 Dataset
MIR-1K, ccMixter, and MUSDB18 are used in our experi-
ments. The MIR-1K dataset was developed by Jyh-shing
Roger Jang [15]. This dataset consists of 110 Chinese kara-
oke songs performed by 11 male and 8 female amateurs.
These songs are split into 1000 song clips with durations
ranging from 4 to 13 s. The sampling rate is 16 kHz, and
each sample occupies 16 bits. Each clip is composed of
singing voices and background music in different chan-
nels. The mixture is generated by mixing the singing voice
and background music with the same energy—with a
signal-to-noise ratio equaling 0 dB. One hundred and
seventy-five clips with a total length of 23min 36 s sung
by one male and one female singer were used as the train-
ing set. The remaining 825 clips with a total length of 1 h
49min 49 s and sung by ten male and seven female singers
were used as the test set. Because the training dataset was
not large and may have lacked variety, we repeatedly
shifted the background music by 10,000 samples in each
instance and mixed the shifted background music with
the singing voice to create a more diverse mixture. After
the above-described circular shift, the total length of the
clips in the training dataset was 5 h 8min 7 s.
The ccMixter dataset [69] contains 50 full-length tracks

with many different musical genres. Each track ranges from
1m 17 s to 7m 36 s. The total length is 3 h 12m 48 s. In
training and testing, 40 and 10 tracks are used, and the
lengths are 2 h 33m 34 s and 39m 13 s, respectively. The
sampling rate 16 kHz, down-sampled from 44.1 kHz, is used.
The MUSDB18 dataset was developed by Rafii et al.

[70] and released by the 2018 community-based signal
separation evaluation campaign (SiSEC 2018), which
aims to compare the performance of source separation
systems on the same data and metrics. The songs in
MUSDB18 are stereophonic mixture. Each song contains
four instrumental categories, namely vocals, bass, drums,
and others. The MUSDB18 dataset contains a total of
150 songs of different genres, with 100 of them used for
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training and 50 for testing. The total length of
MUSDB18 is 11 h 14min 15 s, of which the total length
of training is 7 h 46 min 24 s and the total length of test-
ing is 3 h 27 min 50 s. The sampling rate is 44.1 Hz. In
monaural singing voice separation, sources other than
vocal will be treated as accompaniment. We estimate
vocal and accompaniment from left and right channels
of the mixtures of MUSDB18, respectively.

3.2 Evaluated techniques
In the experiment of MIR-1K, ten source separation
techniques were evaluated, including the proposed
method, RPCA with the proposed postprocessing, and
eight popular reference methods, namely RPCA [30],
sRNN, multiple low-rank representation (MLRR) [31],
robust low-rank nonnegative matrix factorization
(RNMF) [24], modified group delay (MOD-GD) [37], U-
Net [45], EFN [42], and CRNN with an attention
(CRNN-A) [43]. In the experiment of MUSDB18, three
source separation techniques were evaluated, including
the proposed methods RPCA-DRNN and its light and
feather versions, Open-Unmix [41], and E-MRP-CNN
[47]. The thirteen evaluated techniques and versions are
defined as follows.
RPCA_b: implemented reference method; the RPCA

technique with a binary time-frequency mask (with κ =
1). The window size and hop size in STFT are 1024 and

256. λ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm; nÞp

.

sRNN: implemented reference method; the sRNN tech-
nique with model architecture, as shown in Fig. 5. In the
last two layers of sRNN, two branches are used, so we can
optimize the output of the network to be as close as pos-
sible to clean vocals and clean accompaniment at the
same time. The GRU is used as the hidden unit. Joint
mask optimization, as presented in (7–10), and discrim-
inative training (ωdis = 0.5), as described in Section 2, are
applied as well. The sRNN architecture contains three
hidden layers, with 1000 neurons per layer. The input
spectrum is calculated by carrying out a 1024-point STFT
with a hop size of 256. The Adam optimization [68] is
used. The batch size is 64. The learning rate is 0.0001.
The global step 100,000 is used as a stop criterium.
MLRR: reference method proposed in [31]. MLRR

considers both the vocal and instrumental spectrograms
as low-rank matrices and uses the learned dictionaries
for decomposition. The results were directly reported
from the literature.
RNMF: reference method proposed in [24]. RNMF is a

nonnegative variant of RPCA. The results were directly
reported from [35].
MOD-GD: reference method proposed in [37]. MOD-

GD function for learning the time-frequency masks of
the sources is used. The results were directly reported
from the literature of the 2-DRNN architecture.
U-Net: reference method proposed in [45]. U-Net is a

convolutional network initially developed for biomedical
image. The results were directly reported from [43].

Fig. 5 The sRNN model
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EFN: reference method proposed in [42]. EFN is an
end-to-end framework to extract effective representa-
tions of the magnitude spectra. The results were directly
reported from the literature of the model with GRU.
CRNN-A: reimplemented reference method proposed

in [43]. CRNN-A uses a CNN as the front-end of an
RNN. The objective result was directly reported from
the literature and the subjective result was obtained
from our implementation.
Open-Unmix: reference method proposed in [41].

Open-Unmix is based on the bi-directional LSTM
model. It used stronger data augmentation methods on
MUSDB18 than E-MRP-CNN [47]. Normalization and
input/output scalar is also used. The results were dir-
ectly reported from the literature.
E-MRP-CNN: reference method proposed in [47]. E-

MRP-CNN automatically searches for effective MRP-
CNN structures using genetic algorithms. Gain and slid-
ing data augmentation is used on MUSDB18. The ratio
of the augmentation is four times of the original data.
The results were directly reported from the literature of
model S-17-1-MUS.
RPCA-DRNN: the proposed method that uses RPCA

with soft mask, medium filter, morphology, and high-
pass filter followed by a DRNN that contains two paral-
lel sRNNs to further correct the residual singing voice
and music output. The window size and hop size in

STFT are 1024 and 256, respectively. λ ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm; nÞp

, and κ = 1 in RPCA. The expression dm =
dn = 3 is set in the median filter. A line-structuring elem-
ent of length 10 and degree 5 is applied to both the ero-
sion and dilation operations to recover the horizontal
line structures. The choice is made from experiments.
The cutoff frequency of the high-pass filter is set to 100
Hz. The weight ωdis in discriminative training equals 0.5.
To enable a fair comparison with the sRNN reference
method, there are three hidden layers with 500 neurons
per layer for each sRNN. The Adam optimization [71] is
used. The batch size is 64. The learning rate is 0.0001.
The global step 100,000 is used as a stop criterium. In
the experiment of MIR-1K, 1024-point STFT with a hop
size of 256 and circular shifting data augmentation are
applied. In the experiment of MUSDB18, to be com-
pared with Open-Unmix and E-MRP-CNN, the window
size and hop size of STFT are 5644 and 1411. No data
augmentation is applied.
RPCA-DRNNl: a light version of RPCA-DRNN, which

uses only 20 songs of MUSDB18 without data augmen-
tation for training. The total length of the training data
was 53min 45 s, about 0.115 times of the length of the
original training dataset of MUSDB18.
RPCA-DRNNf: a feather version of RPCA-DRNN,

which uses only 5 songs of MUSDB18 with data

augmentation for training. After the circular shift aug-
mentation, the total length was 54min 28 s.

3.3 Objective measures
There are four fundamental metrics, namely source-to-
distortion ratio (SDR), image-to-spatial distortion ratio
(ISR), source-to-interference ratio (SIR), and source-to-
artifact ratio (SAR) [72–74], and a derived metric,
namely normalized SDR (NSDR) [13]. To compare the
performance with other existing source separation sys-
tems on the same data and metrics, we used the overall
performance metrics, namely global NSDR (GNSDR),
global SIR (GSIR), and global SAR (GSAR) [35, 47], to
objectively measure the performance of the evaluation
methods considered in the experiment of MIR-1K and
ccMixter. Based on the same reason, BSS Eval version 4
[74] of SDR, ISR, SIR, SAR, the evaluation metrics re-
leased by SiSEC, is used in the experiment of MUSDB18,
which is a dataset also released by SiSEC.
Assume an estimated source signal in separation is ŝðt

Þ . This signal is the same as the clean source signal s(t)
plus the spatial distortion espat(t) [75], the interference
error einterf(t), and the artifact error eartif(t), as presented
in (14).

ŝ tð Þ ¼ s tð Þ þ espat tð Þ þ einterf tð Þ þ eartif tð Þ: ð14Þ

The metrics SDR, SIR, and SAR are defined as follows:

SDR ŝ; sð Þ ¼ 10 log10
sk k2

espat þ einterf þ eartif
�� ��2 ð15Þ

ISR ŝ; sð Þ ¼ 10 log10
sk k2

espat
�� ��2 ; ð16Þ

SIR ŝ; sð Þ ¼ 10 log10
sþ espat

�� ��2
einterf

�� ��2 ; ð17Þ

SAR ŝ; sð Þ ¼ 10 log10
sþ espat þ einterf

�� ��2
eartif

�� ��2 ; ð18Þ

where ‖∙‖ represents the Euclidean norm.
The other metrics derived from SDR, SAR, and SIR

are NSDR, GNSDR, GSIR, and GSAR. NSDR [13] calcu-
lates the difference in SDR between the mixture and the
separated singing voice as in (19). It can be considered
as the improvement of SDR owing to the adoption of
the separation technique. GNSDR, GSIR, and GSAR [35]
are the length-weighted means of NSDR, SIR, and SAR,
respectively, as expressed in (19–22).

NSDR v̂k ; vk ; ckð Þ ¼ SDR v̂k ; vkð Þ−SDR ck ; vkð Þ; ð19Þ
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GNSDR ¼

X
k

lkNSDR v̂k ; vk ; ckð ÞX
k

lk
; ð20Þ

GSAR ¼

X
k

lkSAR v̂k ; vkð ÞX
k

lk
; ð21Þ

GSIR ¼

X
k

lkSIR v̂k ; vkð ÞX
k

lk
; ð22Þ

where k is the song index and v̂k , vk, ck, and lk are the
estimated singing voice, clean singing voice, mixture,
and song length of the kth song, respectively. GNSDR,
GSIR, and GSAR are adopted as objective measures in
the experiment. From (15–22), the higher the values of
SDR, ISR, SIR, SAR, NSDR, GNSDR, GSIR, and GSAR
are, the better is the separation performance.

3.4 Subjective measures
The objective measures GNSDR, GSIR, and GSAR help
to objectively compare the separation quality of our pro-
posed methods and the reference methods. Higher
values of GNSDR, GSIR, and GSAR for the estimated
separated singing voice represent closeness to the ori-
ginal clean singing voice. However, the estimated sepa-
rated singing voice with the highest objective measure
scores is not necessarily perceived as the cleanest separ-
ation. Therefore, subjective measures, by asking listeners
to consider interference (the residue of background
music) and artifacts in the separated singing voice, are
applied. Two subjective measures, namely mean opinion
score (MOS) [76] and comparison mean opinion score
(CMOS) [76], are adopted to this end.
The MOS is commonly used in audio and video ana-

lysis. The absolute category rating scale is often used,
typically in the range of 1–5, which represents the rat-
ings of bad, poor, fair, good, and excellent. Given the dif-
ficulty of absolute grading of subjective perceptions of
the MOS for separated singing, the CMOS measure pre-
scribed in Annex E of the ITU-T Recommendation
P.800 [76] is additionally used as another subjective
measure to evaluate the separation quality. In CMOS,
listeners listen to and compare the target separated sing-
ing voice with the reference voice. Scores ranging from
− 3 to + 3, totaling seven levels of assessment, can be
assigned. To reduce the difficulty associated with distin-
guishing subtle differences and grading for evaluators,
we reduced the number of assessment levels to 5, where
the scores − 2, − 1, 0, 1, and 2 for the singing voice

represent the ratings of worse, slightly worse, equal,
slightly better, and better, respectively, than the refer-
ence sound.

3.5 Experiment results of ablation study
To compare the performances of each part of RPCA-
DRNN, an ablation study that removes some part of the
system was built. Three datasets including MIR-1K,
ccMixter, and MUSDB18 are used. Table 1 lists all the
combinations of different parts of RPCA-DRNN. These
combinations will be included in our ablation experi-
ment and the experiment results are shown in Table 2.
Observing the experiment results of Table 2 (parts a

and b), adding any postprocessing helps reduce the total
error (the sum of the interference and artifact error).
Among the three steps of postprocessing (median filter,
morphology, and high-pass filter), high-pass filter re-
duces the total error most. It can be observed that
RPCA_s_h performed better in GNSDR than RPCA_s_m
and RPCA_s_M, and RPCA_s_h-DRNN performed bet-
ter in GNSDR than RPCA_s_m-DRNN and RPCA_s_M-
DRNN. In addition, the combinations without high-pass
filter performed worst in reducing the total error. It can
be observed that RPCA_s_m_M was worse in GNSDR
than RPCA_s_m_h and RPCA_s_M_h, and RPCA_s_m_
M-DRNN was worse in GNSDR than RPCA_s_m_h-
DRNN and RPCA_s_M_h-DRNN. sRNN outperformed
all the combinations without DRNN in GNSDR. At last,
the proposed RPCA-DRNN beats all the combinations
in GNSDR and GSAR, and beats RPCA_b-DRNN and
RPCA_s-DRNN in all the objective measures. Therefore,
RPCA-DRNN performs better than conventional RPCA
and sRNN, and taking the postprocessing on the soft
mask does improve the separated quality.
Besides, observing the experiment results of Table 2

(part c) on MUSDB18, the combinations without high-
pass filter performed worst in SDR, ISR, SIR, and SAR.
It can be observed that RPCA_s_m_M-DRNN was worse
in all of the four measures than RPCA_s_m_h-DRNN
and RPCA_s_M_h-DRNN. At last, the proposed RPCA-
DRNN beats all in all of the four measures. Therefore,
on MUSDB18, it is confirmed again that RPCA-DRNN
performs better than sRNN and high-pass filter is the
most influential part in postprocessing.

3.6 Experiment results of MIR-1K
Songs from the test set were used in the objective and
subjective tests. Both the separated singing voice and ac-
companiment are evaluated. Ten techniques, namely
RPCA_b, RPCA_p, sRNN, MLRR, RNMF, MOD-GD, U-
Net, EFN, CRNN-A, and RPCA-DRNN, were compared
in our objective experiment. Accordingly, ten varieties of
separated singing voices were evaluated in the objective
voice quality assessment. The comparison of the
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proposed method RPCA-DRNN with RPCA_b, RPCA_p,
sRNN, MLRR, RNMF, Mod-GD, U-Net, EFN, and
CRNN-A in terms of the objective measures GNSDR,
GSIR, and GSAR is summarized in Table 3. The results
indicate that the proposed method RPCA-DRNN is su-
perior to all of the reference methods in GNSDR and
GSAR. Therefore, RPCA-DRNN can reduce the total
error most, but respectively speaking, it is more success-
ful in reducing artifact than interference error. The box
plots of the comparison of the proposed method RPCA-
DRNN with RPCA_b, RPCA_p, sRNN, and CRNN-A are
presented in Fig. 6, which shows a clearer statistical
insight.
RPCA-DRNN, CRNN-A, and sRNN were further com-

pared in a subjective assessment. In the subjective test,
there were ten listeners. All of them are music enthusi-
asts but are not familiar with source separation or audio
engineering. Each listener was allotted ten sets of RPCA-
DRNN, CRNN-A, and sRNN separated singing voice
clips from different songs in the test set. In total, there
were 100 testing sets of singing voice clips. The ordering
of the target and reference voices was changed randomly
and was not revealed to the evaluators. The listeners
were asked to evaluate the separation performance and
provide MOS scores. Table 4 shows the percentage dis-
tribution of the MOS scores assigned to the singing
voices separated using sRNN, CRNN-A, and the pro-
posed RPCA-DRNN. Sixty-seven percent, 51%, and 43%
of the singing voice clips separated using RPCA-DRNN,
CRNN-A, and sRNN were rated good or excellent, re-
spectively. Thus, it is clear that the percentages of good
and excellent scores of RPCA-DRNN were higher than

those of CRNN-A and sRNN (67% vs. 51% and 43%).
Furthermore, the average MOS of RPCA-DRNN was
3.79, whereas those of CRNN-A and sRNN were 3.54
and 3.46. Therefore, the subjective performance of the
proposed RPCA-DRNN method in terms of the MOS
scores was superior to that of the CRNN-A and sRNN.
A further analysis of the separated singing voice clips

was then conducted by performing a CMOS test to
measure the subjective quality of separation. Two tar-
get–reference pairs, RPCA-DRNN vs. sRNN and RPCA-
DRNN vs. CRNN-A, were used. The same ten listeners
and 100 testing sets as those in the MOS test were used,
but different testing sets were allocated to each listener.
The percentages of RPCA-DRNN-separated clips
assigned “worse,” “slightly worse,” “equal,” “slightly bet-
ter,” and “better” CMOS scores compared with the per-
centages of each class of score for sRNN and CRNN-A
separated clips assigned are listed in Table 5. The results
in Table 5 indicate that RPCA-DRNN was preferred
compared to sRNN and CRNN-A. For sRNN, based on
the vote percentages, RPCA-DRNN was preferred
(slightly better and better) for 70% of testing pairs, but
18% of the listeners perceived its output to be indistin-
guishable from that of sRNN. By contrast, sRNN was
preferred by only 12% of the listeners. For CRNN-A,
RPCA-DRNN was voted 75% equal, slightly better or
better.
To ensure that the results of our subjective auditory

tests in Table 5 are statistically significant and in support
of our argument, we examined the p-values of the bino-
mial statistic in addition to the preferred percentage.
Given that five options were available to the listeners

Table 1 Combinations of different parts of RPCA-DRNN

Method Definition

RPCA_s RPCA with soft mask

RPCA_s_m RPCA with soft mask and medium filter

RPCA_s_M RPCA with soft mask and morphology

RPCA_s_h RPCA with soft mask and high-pass filter

RPCA_s_m_M RPCA with soft mask, medium filter, and morphology

RPCA_s_m_h RPCA with soft mask, medium filter, and high-pass filter

RPCA_s_M_h RPCA with soft mask, morphology, and high-pass filter

RPCA_p RPCA with soft mask, medium filter, morphology, and high-pass filter

RPCA_b-DRNN RPCA with binary mask and DRNN

RPCA_s-DRNN RPCA with soft mask and DRNN

RPCA_s_m-DRNN RPCA with soft mask, medium filter, and DRNN

RPCA_s_M-DRNN RPCA with soft mask, morphology, and DRNN

RPCA_s_h-DRNN RPCA with soft mask, high-pass filter, and DRNN

RPCA_s_m_M-DRNN RPCA with soft mask, medium filter, morphology, and DRNN

RPCA_s_m_h-DRNN RPCA with soft mask, medium filter, high-pass filter, and DRNN

RPCA_s_M_h-DRNN RPCA with soft mask, morphology, high-pass filter, and DRNN
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Table 2 Experiment results of the ablation study using (a) MIR-1K, (b) ccMixter, and (c) MUSDB18

Vocal Accompaniment

(a)

Method GNSDR GSIR GSAR GNSDR GSIR GSAR

RPCA_b 2.72 3.10 5.90 2.87 10.02 4.88

RPCA_s 2.94 1.55 9.97 2.80 7.80 11.21

RPCA_s_m 3.12 1.85 9.63 4.01 5.25 10.71

RPCA_s_M 3.18 6.82 3.24 4.41 10.21 5.25

RPCA_s_h 4.16 3.53 9.36 5.24 6.67 9.67

RPCA_s_m_M 3.41 2.56 8.54 5.02 9.40 5.70

RPCA_s_m_h 4.36 3.83 9.26 5.87 7.47 10.66

RPCA_s_M_h 4.33 5.52 6.71 5.21 9.71 8.02

RPCA_p 4.76 4.44 8.19 4.91 14.03 5.80

RPCA_b-DRNN 5.17 5.88 6.10 5.54 10.98 5.02

RPCA_s-DRNN 5.43 7.38 7.01 5.57 9.23 9.54

RPCA_s_m-DRNN 6.44 6.81 7.56 6.37 7.40 9.88

RPCA_s_M-DRNN 6.01 8.16 6.96 6.04 9.70 7.61

RPCA_s_h-DRNN 7.14 7.46 9.41 6.85 8.13 11.83

RPCA_s_m_M-DRNN 7.07 6.29 9.37 6.26 6.88 10.44

RPCA_s_m_h-DRNN 7.26 6.45 8.37 6.94 8.30 9.25

RPCA_s_M_h-DRNN 7.40 6.88 9.91 7.28 11.48 9.88

sRNN 6.43 7.69 6.82 6.20 8.76 6.46

RPCA-DRNN 8.46 7.72 10.83 8.02 12.32 11.99

(b)

RPCA_b 1.89 1.02 6.52 3.48 9.12 4.62

RPCA_s 2.04 1.10 9.22 4.28 9.47 8.31

RPCA_s_m 2.99 1.57 8.91 5.13 9.12 9.47

RPCA_s_M 2.98 5.77 3.66 4.65 11.71 7.97

RPCA_s_h 4.35 2.01 6.31 5.81 8.81 11.44

RPCA_s_m_M 4.06 3.30 8.32 5.02 6.69 12.10

RPCA_s_m_h 4.54 2.19 7.90 5.96 8.92 12.72

RPCA_s_M_h 4.29 7.17 3.84 6.19 12.49 8.42

RPCA_p 5.53 4.98 6.23 7.15 8.59 11.48

RPCA_b-DRNN 2.75 3.68 7.81 4.03 10.68 5.01

RPCA_s-DRNN 2.94 3.91 8.51 4.19 12.29 4.85

RPCA_s_m-DRNN 4.87 5.66 9.20 6.09 7.22 11.35

RPCA_s_M-DRNN 5.01 2.55 5.92 6.28 11.06 9.31

RPCA_s_h-DRNN 6.53 3.76 7.27 6.82 9.28 10.95

RPCA_s_m_M-DRNN 5.15 4.57 6.45 7.31 12.03 9.34

RPCA_s_m_h-DRNN 6.76 4.10 7.24 7.70 10.73 11.04

RPCA_s_M_h-DRNN 6.72 5.51 4.26 7.72 11.02 10.82

sRNN 6.86 8.11 6.56 7.23 10.15 10.74

RPCA-DRNN 7.57 8.69 9.77 8.55 12.77 12.92

(c)

Method SDR ISR SIR SAR SDR ISR SIR SAR

RPCA_s_m_M-DRNN 5.80 10.57 17.13 5.36 6.98 13.44 19.16 11.72
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(worse, slightly worse, equal, slightly better, better), we
assumed the probability of choosing any answer as 1/5
to calculate the p-values. For example, in 48 of 100 trials,
RPCA-DRNN was voted as better than sRNN. Conse-
quently, the p-value of the binomial statistic was less
than 5.3e−10. The p-value of the preferred rates of
RPCA-DRNN is considerably lower than 0.05, which is,
by convention [77], considered statistically significant
with a confidence level of 95%. This means that there is
an extremely low chance that the observed differences
among the listeners’ choices were due to chance, and the
listeners did have preferences. For comparing with

CRNN-A, RPCA-DRNN was voted as 31% better than
CRNN-A. Consequently, the p-value of the binomial
statistic was less than 0.0084, and the p-values of the
preferred rates of RPCA-DRNN for individual listeners
are also considerably lower than 0.05.
The estimated training duration for the training set,

inference duration for the testing set, and carbon foot-
print of training of the proposed and reference methods
are shown in Table 6. The power of the graphics pro-
cessing unit (GPU) (one 1080Ti) used is about 250W.
The carbon footprint is obtained under the assumption
that 1 kWh of electricity discharges 0.62 kg of carbon di-
oxide and only the GPU power consumption is
considered.

3.7 Experiment results of MUSDB18
In the experiment of MUSDB18, sounds other than
vocal, such as bass, drums, and others, are considered as
accompaniment. Vocal and accompaniment are esti-
mated respectively from the left-channel and right-
channel. Both the separated singing voice and accom-
paniment are evaluated.
Table 7 compares the results of RPCA-DRNN, RPCA-

DRNNl, RPCA-DRNNf, sRNN, Open-Unmix, and E-
MRP-CNN. For readers interested in the separation per-
formance of other techniques using MUSDB18 up to
2018, they can reference the results of the 2018 signal
separation evaluation campaign [74]. RPCA-DRNN is
superior to sRNN both in vocal and accompaniment
separation. Besides, in vocal separation, RPCA-DRNN is
superior to Open-Unmix and E-MRP-CNN in SIR
(19.53 to 12.19 and 13.40) and slightly better in SAR
(6.87 to 5.98 and 6.32) and SDR (6.41 to 5.57 and 6.36),
but slightly worse in ISR (12.32 to 14.07 and 13.61). In
accompaniment separation, RPCA-DRNN is superior to
Open-Unmix and E-MRP-CNN in SIR (24.77 to 19.62
and 16.18) and slightly better in SAR (15.78 to 12.54 and
14.41), but worse in SDR (8.70 to 11.06 and 12.99) and
ISR (18.37 to 19.06 and 23.00). Since our proposed
method is for monaural separation, the spatial distortion
is not under consideration. The worst performance on
reducing spatial distortion makes low ISR. For separated
vocals, from the definition of SDR, when the spatial dis-
tortion of RPCA-DRNN is bigger, it can be observed
that the reduced sum of interference and artifact error
by RPCA-DRNN is more than the reduced sum by

Table 2 Experiment results of the ablation study using (a) MIR-1K, (b) ccMixter, and (c) MUSDB18 (Continued)

Vocal Accompaniment

RPCA_s_m_h-DRNN 6.07 11.36 17.93 5.38 7.79 14.51 19.85 14.93

RPCA_s_M_h-DRNN 5.95 11.12 18.14 5.91 7.15 14.19 20.21 14.71

sRNN 5.58 10.48 15.58 5.42 6.69 11.04 16.74 11.66

RPCA-DRNN 6.41 12.32 19.53 6.87 8.70 18.37 24.77 15.78

Table 3 Comparison of the GNSDR, GSIR, and GSAR scores of
the proposed RPCA-DRNN method with RPCA_b, RPCA_p,
sRNN, MLRR, RNMF, MOD-GD, U-Net, EFN, and CRNN-A on MIR-
1K

Vocal

Model method GNSDR GSIR GSAR

RPCA_b 2.72 3.10 5.90

RPCA_p 4.76 4.44 8.19

sRNN 6.43 7.69 6.82

MLRR 3.85 5.63 10.70

RNMF 4.97 7.66 10.03

MOD-GD 7.50 13.73 9.45

U-Net 7.43 11.79 10.42

EFN 7.76 12.97 10.16

CRNN-A 7.89 13.75 10.17

RPCA-DRNN 8.46 7.72 10.83

Accompaniment

Model method GNSDR GSIR GSAR

RPCA_b 2.87 10.02 4.88

RPCA_p 4.91 14.03 5.80

sRNN 6.20 8.76 6.46

MLRR 4.19 7.80 8.22

RNMF - - -

MOD-GD - - -

U-Net - - -

EFN 7.86 13.54 9.87

CRNN-A 7.12 9.62 11.97

RPCA-DRNN 8.02 12.32 11.99
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Open-Unmix and E-MRP-CNN. For separated accom-
paniment, since the spatial distortion of RPCA-DRNN is
more than the other two, the performance of SDR of
RPCA-DRNN is also low. Note that E-MRP-CNN used
gain and sliding augmentation method, and the ratio of
the augmented data of E-MRP-CNN to the original data
is 1:4. Open-Unmix used even stronger data augmenta-
tion methods. It also used normalization and input/out-
put scalar, while the proposed RPCA-DRNN did not use
any data augmentation in the experiment of MUSDB18.
Besides, the performance of the light and feather ver-
sions of RPCA-DRNN is still very competitive even in
much less, and very limited training data. Including the
augmented data, RPCA-DRNN only uses 0.25 times, and
RPCA-DRNNl and RPCA-DRNNf only use about 0.03
times of the data amount E-MRP-CNN used. If we ex-
clude the augmented data, RPCA-DRNNf only uses 0.05

times the original training data. The box plots of the
comparison of the proposed method RPCA-DRNN with
E-MRP-CNN is presented in Fig. 7, which presents more
statistical details. The data of E-MRP-CNN is from [47].
From Fig. 7, compared to E-MRP-CNN, RPCA-DRNN is
better in SIR and slightly better in SDR, ISR, and SAR in
vocal separation, and better in SIR, slightly better in
SAR, worse in SDR, and slightly worse in ISR in accom-
paniment separation.
RPCA-DRNN was further compared with Open-

Unmix and E-MRP-CNN in a subjective assessment.
Twenty listeners were attended. All of them are music
enthusiasts but are not familiar with source separation
or audio engineering. Four of them were former band
members. Each listener was randomly assigned 5 songs
from 6 songs. For each song, listeners were allocated the
three separated singing from Open-Unmix, E-MRP-
CNN, and RPCA-DRNN in random order. Table 8
shows the percentage distribution of the MOS scores.
All the three methods are evaluated as good and

Fig. 6 Box plots of the NSDR, SIR, and SAR of the separated a vocal and b accompaniment of RPCA-DRNN and RPCA_b, RPCA_p, sRNN, and
CRNN-A on MIR-1K

Table 4 Percentages of bad, poor, fair, good, and excellent
MOS scores assigned to singing voice clips separated using
sRNN, CRNN-A, and RPCA-DRNN on MIR-1K

sRNN

MOS Bad Poor Fair Good Excellent

Percentage 0 13% 44% 27% 16%

CRNN-A

MOS Bad Poor Fair Good Excellent

Percentage 0 11% 38% 37% 14%

RPCA-DRNN

MOS Bad Poor Fair Good Excellent

Percentage 0 11% 22% 44% 23%

Table 5 Percentages of RPCA-DRNN-separated clips assigned
“worse,” “slightly worse,” “equal,” “slightly better,” and “better”
CMOS scores compared with percentages of such scores for
sRNN and CRNN-A on MIR-1K

vs. sRNN

Worse Slightly worse Equal Slightly better Better

Percentage 0 12% 18% 22% 48%

vs. CRNN-A

Worse Slightly worse Equal Slightly better Better

Percentage 5 20% 28% 16% 31%
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excellent. The percentages of excellent scores of RPCA-
DRNN were higher than those of Open-Unmix and E-
MRP-CNN (38% vs. 32% and 36%). The average MOS of
RPCA-DRNN, Open-Unmix, and E-MRP-CNN were
4.38, 4.32, and 4.36, respectively. RPCA-DRNN obtained
the highest average MOS.
A further analysis of the separated singing voice was

then conducted by performing a CMOS test. The
RPCA-DRNN vs. Open-Unmix and RPCA-DRNN vs. E-
MRP-CNN were evaluated. The same 20 listeners and 6
songs as those in the MOS test were used, and 5 songs
(two pairs in each song) were allocated to each listener
randomly. Table 9 lists the CMOS results. RPCA-DRNN
was voted as 88% and 91% equal or slightly better than
Open-Unmix and E-MRP-CNN. For both the pairs
(RPCA-DRNN vs. Open-Unmix and RPCA-DRNN vs.
E-MRP-CNN), the p-value of the binomial statistic was
less than 2.2e−16. It is considerably lower than 0.05,
which is considered statistically significant with a confi-
dence level of 95%. Compared to Open-Unmix, the per-
centage of slightly better of RPCA-DRNN is higher than
slightly worse, and compared to E-MRP-CNN, the

percentage of slightly better and slightly worse of RPCA-
DRNN are the same. Therefore, RPCA-DRNN achieves
better performance compared to Open-Unmix and com-
petitive performance with E-MRP-CNN in CMOS in
monaural singing voice separation.
The training duration for the training set, inference

duration for the testing set, the GPU (power) used, and
carbon footprint of training on MUSDB18 of RPCA-
DRNN, RPCA-DRNNl, RPCA-DRNNf, sRNN, and E-
MRP-CNN are shown in Table 10. The power of one
1080Ti and one 3090 is about 250W and 350W. The
carbon footprint of training is under the assumption that
1 kWh of electricity discharges 0.62 kg of carbon dioxide
and only the GPU power consumption is considered.
The estimation of E-MRP-CNN counts only the most
time-consuming evolution process and is based on the
total power consumption 1560W of 6 GPUs they used,
including two 1080Ti, one 2080Ti, one Titan RTX, one
Titan V, and one Titan XP, under the condition of 100
generations with 2 h running for each evolution, while
RPCA-DRNN counts the total computation. In such
case, the carbon footprint of E-MRP-CNN is about 2.5
times of RPCA-DRNN on one 1080Ti, 5.7 times of
RPCA-DRNN on one 3090, and 32.2 times of RPCA-
DRNNl and RPCA-DRNNf on one 3090. Therefore, the
proposed RPCA-DRNN provides competitive perform-
ance at a lower training cost. Besides, the light and fea-
ther versions of RPCA-DRNN, which achieve better
separation quality than sRNN, have only half the carbon
footprint than sRNN.

4 Conclusions
We proposed a method based on our daily learning ex-
periences that first uses the underlying knowledge and
characteristics gleaned or inferenced and adopts method
without prior training to separate sources on the basis of
reasonable tendencies and assumptions and then uses
supervised learning to jointly exploit labeled data to fur-
ther improve the separation results. A method combin-
ing RPCA and supervised DRNN was employed in an
experiment to improve the separation of singing voice
from musical accompaniment in monophonic mixtures.
First, RPCA was used to roughly separate the mixture
into sparse voice and low-rank music. Second, postpro-
cessing, including median filtering, morphology, and
high-pass filtering, was performed to smooth and

Table 6 The training duration, inference duration, and carbon footprint of training on MIR-1K of RPCA-DRNN and reference
methods

Training duration (h) Inference duration (h) Carbon footprint of training (kg of carbon dioxide)

sRNN 112 0.5 17

CRNN-A 144 0.5 22

RPCA-DRNN 224 0.5 35

Table 7 Comparison of the SDR, ISR, SIR, and SAR scores of the
proposed RPCA-DRNN methods with sRNN, Open-Unmix, and E-
MRP-CNN on MUSDB18

Vocal

Method SDR ISR SIR SAR

sRNN 5.58 10.48 15.58 5.42

Open-Unmix 5.57 14.07 12.19 5.98

E-MRP-CNN 6.36 13.61 13.40 6.32

RPCA-DRNNf 5.96 13.56 15.84 5.65

RPCA-DRNNl 6.26 11.47 18.19 6.24

RPCA-DRNN 6.41 12.32 19.53 6.87

Accompaniment

Method SDR ISR SIR SAR

sRNN 6.69 11.04 16.74 11.66

Open-Unmix 11.06 19.06 19.62 12.54

E-MRP-CNN 12.99 23.00 16.18 14.41

RPCA-DRNNf 7.70 16.27 20.60 13.33

RPCA-DRNNl 8.53 17.26 22.62 14.77

RPCA-DRNN 8.70 18.37 24.77 15.78
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enhance the spectral structure of estimated singing and
filter out unnecessary parts. Then, supervised DRNN
was utilized to achieve further separation. The

misclassified or residual singing and background music
from the initial separation was further corrected to im-
prove the results.

Fig. 7 Box plots of SDR, ISR, SIR, and SAR of the separated a vocal and b accompaniment of RPCA-DRNN and E-MRP-CNN on MUSDB18
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Based on the objective scores on MIR-1K, the pro-
posed method was found to be superior to RPCA, sRNN,
MLRR, RNMF, MOD-GD, U-Net, EFN, and CRNN-A in
terms of GNSDR and GSAR. Moreover, when the total
numbers of neurons are the same, RPCA-DRNN with
two smaller nets outperformed sRNN with one larger
net in the subjective tests in terms of MOS and CMOS
scores, because RPCA-DRNN is a solution combining
underlying knowledge and supervised learning, and the
DRNN of RPCA-DRNN is only for further correcting
the residual singing voice and music from the output of
RPCA with soft mask, medium filter, morphology, and
high-pass filter. The variation of the inputs of the
DRNNs of RPCA-DRNN is relatively small compared to
the input of sRNN, which is the original sound mixture.
RPCA-DRNN was also voted 75% equal, slightly better
or better than CRNN-A. In addition, based on the ob-
jective scores on MUSDB18, RPCA-DRNN is superior to
Open-Unmix and E-MRP-CNN in SDR, SIR, and SAR in
vocal separation, and superior to Open-Unmix and E-
MRP-CNN in SIR and SAR in accompaniment separ-
ation. This result is obtained under the condition of no
data augmentation applied in the proposed RPCA-
DRNN, while both Open-Unmix and E-MRP-CNN use
data augmentation. The subjective test also confirms the
preference of RPCA-DRNN. Besides, the performance of

the light and feather versions of RPCA-DRNN is still
very competitive even in very few and limited training
data.
Therefore, the combination of the underlying proper-

ties inferenced and supervised learning, which is charac-
teristic of humans’ daily learning experiences, improved
the separation of a singing voice from background music
in the case of a monaural mixture. Benefitting from the
initial RPCA separation without prior training, the pro-
posed method achieves competitive results even with
limited data or without data augmentation and hence
can greatly reduce the computational load.
The main limitation of RPCA-DRNN is that at least

one GPU card with 1080Ti or higher is needed for train-
ing. The database with less training data (e.g., MIR-1K
with 23min 36 s training data) is recommended to use
data augmentation, and the database with enough train-
ing data (e.g., MUSDB18 with 7 h 46min 24 s training
data or 53 min 45 s in RPCA-DRNNl) can still get a good
result without data augmentation.
In the future, we will try with other neural network ar-

chitectures, data augmentation methods that generate
realistic mixtures, and use the proposed method in ap-
plications such as singing voice analysis and resynthesis
systems. The proposed system can also be revised for
more source separation by adding additional DRNNs.
Moreover, adapting the method to stereo source separ-
ation by handling the spatial relation of the sound in dif-
ferent channels is also an interesting future work.
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Open-Unmix

MOS Bad Poor Fair Good Excellent

Percentage 0 0 0 68% 32%

E-MRP-CNN

MOS Bad Poor Fair Good Excellent

Percentage 0 0 0 64% 36%

RPCA-DRNN

MOS Bad Poor Fair Good Excellent

Percentage 0 0 0 62% 38%

Table 9 Percentages of RPCA-DRNN-separated clips assigned
“worse,” “slightly worse,” “equal,” “slightly better,” and “better”
CMOS scores compared with percentages of such scores for
Open-Unmix and E-MRP-CNN on MUSDB18

vs. Open-Unmix

Worse Slightly worse Equal Slightly better Better

Percentage 0 12% 72% 16% 0%

vs. E-MRP-CNN

Worse Slightly worse Equal Slightly better Better

Percentage 0 9% 82% 9% 0%
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