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Abstract

Most existing statistical models used to predict piano fingering apply explicit constraints among fingers and between
fingers and notes; however, they disregard the relationship among notes. Furthermore, the state transfer matrix of
HMM often makes the fingering of notes in compact scales unplayable without moving the hands. The direct
adoption of notes interferes with mapping between specific pitches and the corresponding fingering. Inspired by
human annotation and the note span constraints used in rule-based methods (in which fingering knowledge is
acquired from span), we developed a model by which to match pitch difference and finger sequences (PdF). Playable
fingering is achieved by combining learned finger-transfer knowledge with priori finger-transfer knowledge. The
playability of the model was evaluated using a novel index, referred to as the irrational fingering rate (IFR). Experiment
results demonstrate that the proposed model outperforms the third-order hidden Markov finger annotation model in

rate

terms of average match rate (by 4.06%) and highest match rate (by 2.87%). The proposed scheme also resolves the
unplayable-without-hand-movement problem in compact scales.

Keywords: Piano playable fingering, Learned finger transfer knowledge, BI-LSTM, Pitch difference, Irrational fingering

1 Introduction

Musical performance on keyboards is largely influenced
by hand movements, and especially the choice of finger.
The ability to determine appropriate fingering is a nec-
essary skill; however, it can be challenging for the novice
and virtuoso alike. The annotation used to describe fin-
gering is often derived via trial-and-error and therefore
beyond the ability of individuals lacking extensive experi-
ence. Automating the process of fingering estimation is an
emerging topic in the field of musical symbol processing.
An understanding of musical symbol information has led
to the development of instrument practice assistants[1],
education systems [2], and music content arrangements
[3].

Individuals differ in terms of the fingering strategies
they employ. As a result, no single fingering strategy can
be deemed optimal for every individual, regardless of hand
size and shape. Musicians also differ in terms of the skills
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they emphasize, including precision, speed, phrasing, and
dynamic articulation. The fact that sheet music can be
performed using any number of finger sequences makes
it fundamentally from the ground truth labels sought
in many estimation tasks. Our objective in the current
was to develop a reasonable fingering scheme (without
unfeasible fingering) for presentation in piano textbooks.

Most automatic fingering estimation strategies are
divided into rule-based and data-driven models. Rule-
based methods adopt anatomic constraints and the diffi-
culty in performing finger pairs as a cost function of finger
sequences in order to identify an optimal sequence [1,
4-8]. This approach is prone to conflict among the var-
ious rules for fingering, and setting weights by which to
measure constraints is not a trivial matter. Data-driven
schemes learn the parameters of note sequences and cor-
responding fingering through the use of statistical models
[9-12]. Note that this depends heavily on the quality and
size of the dataset and degree to which the model reflects
the relationship between the musical context and finger
sequence. The fact that statistical models can also account
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for anatomic constraints means that with sufficient data,
they should be able to outperform rule-based schemes in
terms of annotation accuracy [9].

Finger selection depends mainly on the interval between
neighboring pitch pairs [4]. This approach is meant
to reduce the degree of variation in musical symbol
sequences, and thereby reducing model complexity, less-
ening the constraints on dataset size, and improving
matching accuracy.

Finger transfer can also be constrained when the note
sequence is ascending or descending without hand move-
ment. Take for example, two descending notes on the right
hand, where it is possible to transition from finger 1 to
2; however, it is not possible without moving the hand to
transition from finger 2 to 3. In this paper, we refer to
impossible sequences as unplayable. When dealing with
unplayable fingering sequences, it is not possible to link
finger pairs using the conventional long short-term mem-
ory (LSTM) networks. Nonetheless, LSTM networks can
include long-range pitch interval information as well as
the relationship between the pitch interval and the finger-
ing. In the current study, we sought to improve model per-
formance by adding a new layer that uses finger transfer
knowledge.

To overcome the limitations imposed by small datasets,
we developed a data augmentation scheme based on
pitch-difference fingering (PdF) statistics from the exist-
ing dataset. In evaluating fingering sequences, we also
emphasized the importance of playability to ensure that
the results are indeed practical, as determined using a
novel metric referred to as fingering unplayability. Exper-
iment results demonstrated that our model improves the
match rate of the fingering estimation.

Our main contributions are as follows:

1. We developed a pitch-difference fingering (PdF)
model. Compared with the pitch sequence and finger-
ing (PF), the PdF is more conducive to network fitting in
establishing the relationship between notes and fingering.

2. We developed a novel approach to augment datasets
by portraying data through the use of a hidden Markov
model.

3. We introduce a novel metric by which to evaluate fin-
gering annotation results in terms of fingering playability.

The remainder of this paper is outlined as follows.
Section 2 presents a review of existing piano finger-
ing annotation methods. Section 3 outlines the proposed
method for piano fingering estimation. Evaluation results
are presented in Section 4, and a summary is presented in
Section 5.

2 Related works

Since 1997, researchers have addressed the problem of fin-
gering estimation using methods based on rules [1, 4—8]
or data [9-12].
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Parncutt et al. [4]developed a model for note segments
of finite length played by the right hand. They estab-
lished a rule-based approach to fingering logic with a
focus on maintaining a comfortable span between the
fingers and notes. For longer sequences, they employed
dynamic programming with a rule-based cost function by
which to derive the path with the lowest fingering cost.
Note that their approach requires the manual adjustment
of rule weights to achieve suitable results. Jacobs et al.
[5] improved that model by replacing semitone measure-
ments with the physical distance to reduce the likelihood
of erroneous rankings. Nellaker E et al. [6] introduced
an additional pause-based rule based on the 12 rules
established by Parncutt et al. Lin CC et al. [1] designed
a sliced fingering generation (SFG) fingering generation
algorithm, in which the score is split into cross-content
segments. They employed the rules suggested by Parn-
cutt et al. [4] to define the cost function in conjunction
with dynamic programming to generate piano fingering
in real time. Hart et al. [7] developed a dynamic pro-
gramming method for the right-hand segment as a state
transition constraint. Al Kasimi et al. [8] defined the hor-
izontal cost of adjacent notes and the vertical cost of
chords, wherein the grid graph generated by music frag-
ments is used to find a path. The effectiveness of their
approach has been demonstrated; however, their model
has compatibility issues and lacks criteria by which to per-
form quantitative evaluations. Rule-based methods based
on note spans rather than pitch inspired us to replace pitch
with pitch difference.

The use of rules or costs facilitates a logical under-
standing of fingering; however, the parameters must be
modified for every musical score.

Yonebayashi et al. [10] were the first to employ statis-
tical models of pitch and fingering, in which a hidden
Markov model (HMM) was used to model the fingering
sequence. The probability of a given fingering state occur-
ring depends on the fingering state in the previous time
and the note output in the current [10]. Note however that
independent observations do not allow for the inclusion
of adjacent pitches for use in constraining the probabil-
ity of finger transitions. Nakamura et al. [11] proposed
a “merged HMM” to automate the separation and label-
ing of undifferentiated left-hand and right-hand fractions.
Li Qiang et al. [12]combined fingering rules with a judg-
ment function to improve the optimization rules used in
the Viterbi algorithm. Nakamura et al. [9] constructed first
public piano fingering dataset and two hidden Markov
models with higher-order extensions.

Conventional statistical models enable the optimization
of parameters based on patterns observed in the data;
however, they focus exclusively on the local fingering con-
straints of continuous notes, with the result that much
of the important information (e.g., long-range fingering
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relationships) is disregarded. Furthermore, highly adapt-
ability models are prone to higher error rates when special
fingerings appear.

Nakamura et al. [9] constructed two deep neural net-
works (DNN), using pitch sequence and fingering (PF).
The input is a sequence of integer pitches and the
output is the corresponding fingering numbers. They
employed a feedforward (FF) network and a long short-
term memory (LSTM) network to estimate piano finger-
ings. The accuracy of this approach is slightly lower than
that of statistical models, due to the fact that their FF
and LSTM networks did not have constraints between
output layer units. Thus, their model disregards the
degree of dependency between fingerings, and there is no
way to distinguish between monophonic and polyphonic
notes, leading to finger reusing and finger crossing of
chords.

3 Methods

As shown in Fig. 1, the proposed PdF annotation network
has a recursive structure with three layers. The first layer
converts notes into pitch differences. The middle layer
takes pitch differences and chord information as inputs
for the BI-LSTM like network. The third layer implements
finger transfer rules. After training, priori knowledge
pertaining to fingering can be used eliminate impossi-
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ble fingering paths, avoid cross fingering in chords, and
ensure playability. The parenthesized superscripts in Fig. 1
indicate their time step.

3.1 Pitch difference representation to differentiate
between monophony from polyphony

For most people, the choice of fingering tends to focus
more on changes in pitch rather than the pitches them-
selves. The original pitches are first converted into pitch
differences. Note however that the conventional approach
to measuring the intervals (i.e., pitch distance) between
two notes gives no clue as to whether the notes are mono-
phonic or polyphonic, which can have a profound effect
on the choice of fingering. Thus, we sought to develop
methods by which to express the same interval in terms of
melody or harmony.

From a piano score with fingering label, we extracted
pitch information pertaining to each note as well as the
start time, offset time, hand information, and fingering.
After separating left-hand data from right-hand data, we
combine the pitch start and offset time and convert the
pitch into a MIDI number x®. The pitches are then
expanded in chronological order to form a sequence,
wherein the order of harmonic notes proceeds from low
pitch to high (Fig. 2). Finally, we calculate the pitch differ-
ence d¥ as follows:

x® x2

Fig. 1 Pitch-difference fingering annotation network
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where # represents the number of notes with the same
onset. For a single tone, n equals 0.

In the first time step, if the initial sound is a single tone,
then dt = 0; however, if it is polyphonous, then dt is the
number of notes in the polyphony multiplied by 100.

When the interval exceeds one octave (i.e., the MIDI dif-
ference is equal to or greater than 12), then the fingering is
relatively simple. The specific difference of MIDI numbers
has little effect on fingering estimation. In this situation,
d® represents the ascending or descending scale, and no
longer represents the specific MIDI difference, and is uni-
formly represented as 80. Before this is input into the
model, d¥) is integer encoded into a vector e®.

An example of conversion is presented in 2.

3.2 Mapping of pitch differences to fingering

This layer constitutes a BI-LSTM-like network, in which
the two LSTM parts capture the relationship between
pitch differences and fingerings, and the remaining part
is used to estimate the probabilities of given fingerings.
In the forward and backward LSTM network, the basic
unit is the LSTM cell, the internal gates of which can
account for relationships among different pitches over a
long-range to inform the process of estimating fingerings.
The long-range context is critical in situations involv-
ing cross-fingering in ascending or descending scales or
cases where fingers must be changed to enable the rapid
repetition of notes.

3.2.1 BI-LSTM
Forward and backward LSTMs are used to learn note-
finger relationships. For specific notes, fingering depends
on the current note and previous note as well as the notes
that follow [4]; therefore, we adopted a bi-directional
network to determine the relative positions of fingers.

The input of the LSTM cell is a splicing of the hidden
state in the previous time-step 4~ and the current pitch
difference e, The output is its hidden state #), For the
basic unit of the LSTM, as shown in Fig. 3. The three gates
used to realize the function of the LSTM are the forget
gate, input gate and output gate [13]. The internal func-
tion of fingering estimation can be embodied as follows.
The forget gate is used to control the degree to which the
previous difference between pitch and fingering affects
the current fingering estimate. The input gate controls the
degree to which the current difference in pitch affects fin-
gering. Cell state C?, also called long-term memory, is a
combination of processed information by forget and input
gate and previous memory C =1 The output gate retains
some input information as short-term memory. The hid-
den state is then updated in accordance with long-term
memory and short-term memory.

BI-LSTM combines forward and backward LSTM,
where backward LSTM refers to the forward
LSTM with flipped inputs. The output of BI-LSTM

(®) (t) . :
[h(forward)’h(backward)]ls a concatenation of the for-

ward and backward hidden vectors with the same size
hidden_size.

3.2.2 Feature linear compression

To facilitate characterization of fingering estimation
results, the hidden state vector of 2 x hidden_size is
mapped to k dimension using linear layer ¢, where k refers




Guan et al. EURASIP Journal on Audio, Speech, and Music Processing (2022) 20227 Page 50f 13

/// _________________________ Y
/ \
\

L) (D) l
cenl o

= |

|

| |

' Input @ :

: forgetigate gate :

i o o tanh j

| Output :

l\ G gate@ /j
ht-1) \_ )y h ®

e('?) ________________________

Fig. 3 Structure of the LSTM cell

to the number of fingering labels and A®) indicates the
probability of each fingering label occurring in the cur-
rent input. In our method, the left and right hands are
independent, and k is 5.

@) — ® @®)
A =c [h (forward)’ h(backward)] (2)
T
20 = (3,380,000 3)

A;t) indicates the probability of finger j occurring at time
¢, as estimated using the BI-LSTM model.

3.3 Learned fingering transfer knowledge

This layer is added to the output of the BI-LSTM. Note
that the BI-LSTM model is able to process long-range
contextual information pertaining to note sequences
and learn the correspondence between musical notes
and fingering; however, it cannot be used to represent
ergonomic constraints among fingers. We therefore intro-
duced learned fingering transfer knowledge and a priori
knowledge of fingering to constrain two adjacent finger-
ings in the output of BI-LSTM.

Finger transitions are related to the ascending and
descending of neighboring monophonies; therefore, we
introduced various fingering transfer matrices to the BI-
LSTM output based on the input type, as follows:

1

V%
=3

[(WTT + Wry) +sgn <d(t)> - (Wrp — WTU]
(4)

where Wr4 and Wr | are the finger transition probabil-
ity matrices of ascending and descending pitches, respec-
tively. Note that W74 and W, restrict only the fingering

used for the adjacent single tone. In the constraint matrix
Wr in Fig. 4, element Pj; indicates the probability of
transferring from finger f; to f;.

Following the addition of Wr, output Y is expressed as
follows:

YO = Wy ytD 4O )
Y = (y(l),y(z), . .y(")) (6)
Note that yl(l) = Agl) = A(1,1), ¥ can also be expressed
as the follows:
T
s = (yﬁt),yét),yg), : ..,y(k”) ()

where yl@ indicates the occurrence probability of the fin-
gering label with index i in the ¢th position of the score. At
time ¢, the most likely fingering ¢® for the current pitch
is derived as follows:

¢Y =arg max [yl(«t)] (8

3.4 Priori knowledge of finger transfer

Under the assumption that fingers (other than the thumb)
cannot cross over each other, then the kinematic char-
acteristic of the left-hand and right-hand fingers makes
some fingerings impossible without movement, as shown
in 1.

Table 1 lists the possible (v') and impossible (x) fin-
ger transitions for ascending scale by the left-hand and
descending scales by the right-hand when playing mono-
phonic note pair where the hand does not move. Note
that the descending scale (left-hand) and ascending scale
(right-hand) are diagonally mirror-symmetric.
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Fig. 4 Schematic diagram showing all possible finger transfers

Py

Decision function T is based on the data in Table 1, as
shown in (9). This also imposes restrictions on the finger-
ing of chords, due to the prohibition on finger crossing
and repetition. The right-hand maximum span [4] of 5
limits the scope of T in the monophonic type. Due to the
mirror-symmetry in the physiological structure of the two
hands, we can assume that the maximum span also applies
to the left hand.

In cases where the current fingering is impossible, the
probability of transition is set to 0; otherwise, we retain
the current output, as follows:

—6<d® <6 and
left : d® . (fm _ f(H)) -0
right : d® . (f(t) _f(t,l)) <0

% {sgn [5 —f=D -f(t)} + 1}

T— left — hand chord :
f(t) < f(t+1)
0 right —hand  chord :

f(t) zf(t+1)

1 other

)

As shown in Fig. 5, after adding 7, some fingering
transfer paths are trimmed.

In the prediction phase, a priori knowledge is used to
ensure that all proposed fingerings are indeed playable.
The score assigned to the candidate fingering y® is
derived as follows:

yO =T . Wyp .yt D 4@ (10)

At time t, we select the fingering with the highest proba-
bility as the result for the current pitch as follows:

¢¥ = arg max [y‘”] 11)
1

Table 1 Possible (v')and impossible(x) finger transitions for
ascending scale by the left-hand and descending scales by the
right-hand in which the hand does not move

=1 /f© 1 2 3 4 5
1 v v v v X
2 v v X X X
3 v v v X X
4 v v v v X
5 v v v v v
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Fig. 5 Schematic diagram showing fingering transfer path when T is
added

3.5 Data augmentation

Dataset augmentation is based on the HMM model in
[16]. As in the HMM-based piano fingering estimation
method, we treat fingerings as hidden states and pitch
differences as observation. Initial state 7 is the proba-
bility of the initial fingering. The transition probability
matrix A = A [ai ,j] statistically describes the dependence
between neighboring fingers. a;; is the element of A,
where a;; = P (fj|f;) represents the probability of finger
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Ji» given the preceding finger f;. The emission probability
matrix B = B [bi (pdm)] refers to the relationship between
fingering and pitch difference. b;(pd,,) is an element of B,
where b;(pd,,) = P (pdm [ﬁ) indicates the probability of
pitch difference pd,,, given finger f;. To ensure the playa-
bility of the generated chord fingerings, the fingerings
of chords in the original data are calculated as a whole.
When the frequency of f; to pd,, is greater than 5%, it is
counted as b;(pd,,); otherwise, b;(pd,,) is 0. The statistical
content does not include fingerings with long-term con-
nections, such as homophonic swapping. We also restrict
the continuous appearance of the same fingering. In other
words, when three consecutive single-tone fingerings are
generated, the initial fingering will be re-selected.

Figure 6 presents an example of dataset augmentation.
Figure 6 illustrates the fingering generation process for
the left-hand when the current finger is 3. The process is
as follows: First, select the next fingering in accordance
with the finger transition matrix. The next fingering is
selected as a polyphony fingering 1-5. Note that in the
figure, the 6 x 6 white grid represents the current and next
fingering numbers, where C represents all polyphonic fin-
gering combinations in the dataset. There are many such
combinations, the collection of which is denoted as C.
Note that these combinations exist as separate indexes
in the actual finger transformation matrix. In accordance
with the emission matrix, the selector adds corresponding
pitch difference information to the extended set sequence.
This process is repeated until the length of the fingering
sequence reaches a specified length.

Choose the next
fingering through the
state transition matrix

fingering

AN28 3WANSNIE pdipdopd; ... pdpd.
1 il
pitch difference 2 2
3 3
4 E 4 .
. 5 2 > 2
: C : c :
5 fingering transition emission :
. matrix 2 matrix :
& | v
- 2 = pitch- 200
#l fingering selector |-' 5 - diffsreica * e
T y selector
Random L
number Random
generation numbt?r
generation

Select pitch difference or
pitch difference combination
by transmitting matrix

Fig. 6 Principle of the dataset augmentation
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4 Evaluation

4.1 Setup

Experiment data was obtained from the Piano Finger-
ing (PIG) Dataset [9], which includes 150 scores and 309
music fingering data. We selected a 2-layer LSTM net-
work and a BI-LSTM network. Their hidden layer sizes
are both 32. The Adam optimizer was used for training
[14]. In order to reflect the comparability of the results, we
used the same test set as [9]. To facilitate comparisons of
the results, the dataset was divided in accordance with the
methods outlined by Nakamura et al. [10]. We used a mis-
cellaneous subset comprising 120 pieces by 24 composers
as the training set, and the remaining 30 scores were used
as the test set.

We also used a proprietary dataset to evaluate the gen-
eralizability of learned fingering transfer knowledge. This
data set included 28 pieces by Bach and 7 pieces from the
Chinese Conservatory of Music Social Art Level Exami-
nation Level 1-3. There was no overlap between the two
datasets.

The proposed data augmentation method presented in
the previous section was used to generate 50 data points
with sequence lengths between 150 and 300. Unless oth-
erwise stated, all results marked with “our model” were
used the model in Fig. 1 and training data include the
augmented set and miscellaneous subset.

4.2 Evaluation measures

4.2.1 Match rate

Theoretically, the effectiveness of an algorithm depends
on the likelihood of coincidence between the labeling
result and label. The formula used to calculate the match
rate is as follows:

a=1—|LpAL;+ Ry ARy /n (12)

where 7 indicates the total length of the music score, Ly,
and Ry, respectively indicate the manual annotation of the
left hand and right hand, L, and R, respectively indicate
the algorithm annotation of the left hand and right hand,
and symbol A is an exclusive OR operation. The effec-
tiveness of the proposed method was evaluated using the
method in [9]. In PIG dataset, a given score may be asso-
ciated with more than one fingering; therefore, we obtain
the average match rate between the model result and each
actual fingering, which is expressed as the general match
rate Mgen. We can also focus on the ground truth closest
to the estimation and define the highest match rate My;g,.
The score data size is N, and after adding different finger-
ing tags, the training data is extended to Ngen. The general
match rate and the highest match rate are calculated as
follows:

Zi,j Qi

Mgen =
gen
Neen

(13)
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> maxa,;
]

N
where «;; indicates the match rate of a prediction to the
jth fingering ground truth in the ith score.

Mhigh = (14)

4.2.2 lrrational fingering rate

The percentage of fingerings that cannot be performed is
referred to as the irrational fingering rate (IFR), which is
calculated as follows:

ni &) £(0) £-1)
IFR:(Z f=2w(d;fft’ft )>/N (15)

i

W (d(t),f(t),f(t—1)> _
—6<d? <6 and
left : d® . <f(r> _ fa—n) -0

Josgn [/ .10 —55] +1)
right : d®) - (f(t) _f(t71)> -0

left — hand chord :
f(t) < f(t+1)
1 right —hand  chord :

f(t) > f(t+1)

0 other

(16)

where ¢ is derived from Table 1 use in calculating erro-
neous transfer fingerings.

4.3 Results and discussion

4.3.1 Evaluation on Pitch difference modeling strategy

We compared the pitch difference modeling strategy with
the note modeling strategy, the results of which are pre-
sented in Fig. 7. In note modeling, right-hand data from
the PIG dataset [9] included 555 types of monophony or
polyphony, whereas the left-hand data included 564 types.
In pitch difference modeling, the right-hand data included
108 types of monophony or polyphony, and the left-hand
data included 101 types. In the case where the match-
ing network is LSTM, the Mge, of the PdF (B in Fig. 7)
modeling strategy was 12.76% higher than that of PF (A),
Mhpigh was 12.98% higher, and IFR was 4.03% lower. In the
case where the matching network is BI-LSTM, compared
with PF(C) the Mgen of the PAF(D) modeling strategy is
increased by 11.33%, Mpgh is increased by 12.46%, and
the IFR is reduced by 2.54%. Pitch difference informa-
tion is more directly related to fingering than is pitch
information, as is the case when manually determining
fingering.

4.3.2 Contribution of Bidirectional network
Figure 7 presents the contribution of the bidirectional net-
work to Mgen and Mpigh (A and C or B and D). When
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Fig. 7 Results of the ablation study

humans determine fingerings, they must consider the cur-
rent note as well as the notes well as those that precede
and follow it. The IFR values demonstrate that by consid-
ering the context, it is possible to mediate the generation
of unplayable fingerings, thereby allowing the model to
better understand the correspondence between notes and
fingering.

4.3.3 Contribution of adding learned fingering transfer
knowledge
The contribution of finger relationship knowledge was
assessed by comparing the performance of BI-LSTM
with learned transfer constraint and BI-LSTM-CRF (see
Fig. 7G, E). In BI-LSTM-CRE, placing the CRF at the
backend of BI-LSTM proved effective in part-of-speech
tagging [15]. CRF fits the logical relationship between tags
in order to establish the connection between BI-LSTM
network outputs. However, in fingering estimation task, it
does not make sense to consider the relationship between
fingering labels while ignoring specific notes (i.e., the type
of input). As shown in Table 1, the logical relationship of
fingering is related to whether the pitch is ascending or
descending. Experiments demonstrated that the fingering
transfer layer is more effective than adding a CRFE.
Furthermore, the generalizability of the learned finger-
ing transfer layer was evaluated by estimating the fin-
gerings in the proprietary dataset using the PIG as a
training set. The match rate of the BI-LSTM network was
51.06%, whereas the match rate of BI-LSTM with the fin-
gering transfer knowledge layer was 52.26%. These results
demonstrated that transfer knowledge learned from PIG
data is applicable to other datasets.

4.3.4 Contribution of data augmentation
Deep learning-based models depend heavily on the quan-
tity and quality of training data. Extracting key factors
from training data while retaining as much information as
possible can help to reveal relationships between the origi-
nal notes and fingerings. One effective strategy to alleviate
model overfitting is to augment the available data.
Augmentation respectively increased Mgen and Mg by
0.79% and 0.63% as shown in Fig. 7D, F. These results
confirmed our assertion that increasing the amount of
available data would make it easier for the network to
establish relationship between fingering and pitch.

4.3.5 Contribution of priori knowledge

As shown in experiment G in Fig. 7, the inclusion
of fingering transfer knowledge enhanced the practi-
cal value of the results; however, we still encountered
a number of fingerings that would require additional
hand shifts or render the piece unplayable. As shown
in experiment H in Fig. 7, the addition of priori knowl-
edge reduced IFR to 0. As long as there is enough
data for training, the model can learn the correct fin-
gering transfer knowledge by itself, such that the priori
knowledge and learned transfer knowledge can be com-
bined. Limited to data size at present, ensuring that the
annotation results are playable requires the addition of
constraints.

4.3.6 Results of ablation study

The PdF strategy, the inclusion of learned and pri-
ori finger transfer knowledge, and dataset augmentation
all contributed to improving the performance of the
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Fig. 8 Comparison of annotation results under a descending scale of the right-hand (English Suite No. 3 — Prelude)

fingering estimation system. The modeling strategy made
the largest contribution, increasing accuracy by more than
10% (see Fig. 7C, D). Accordingly, the learning of fin-
ger transfer regulations improved model performance by
roughly 5% (see Fig. 7D, G). Dataset augmentation also
improves model performance (see Fig. 7D, F).

4.4 Example result and error analysis

We discuss some example results to demonstrate the
capabilities and limitations of our method. Figures 8, 9,
and 10 respectively demonstrate the estimation perfor-
mance of models with different refining factors in terms
of descending scales, chords, and repeated notes. The

A: PF model

B: PdF model

C: with augmented
set

D: with CRF

E: with learned finger
transfer layer

F: our model

Fig. 9 Comparison of annotation results from a chord of a left-hand fragment in Polonaise Op. 40 No. 1
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red circles indicate estimated fingerings and the half-
transparent gray circles indicate the ground truth fin-
gerings by multiple players. Note that the results in the
examples are based on BI-LSTM.

Figure 8 presents the annotation results for a descend-
ing scale. The continuous use of finger 3 (see the blue box
in the results of the PF model), could affect the fluency of
performance. Here, the learned fingering transfer knowl-
edge prioritized finger 5 to finger 3 instead of the 5 to 4, as
seen in the orange box, which also affected the final result.
The final estimation results differed somewhat from the
ground truth; however, this fingering may still appear in
the actual performance.

Figure 9 presents the example results of chord annota-
tion. The PF model continually caused chord estimation
errors due to a lack of time information; however, the
chord estimates obtained using the PdF strategy were rea-
sonable. Unnecessary finger-crossing appeared among the
single notes behind the chords after adding the augmented
dataset, due perhaps to the learning of unnecessary fea-
tures. The inclusion of a fingering transfer layer produced
unreasonable finger translations. The proposed model
mediated the erroneous transfer of fingers and unplayable
chords; however, it failed to eliminate unnecessary finger-
crossings or finger repeats.

Figure 10 illustrates a performance of the right-hand
score excerpted from Ballade No. 2, in which one tone
appears repeatedly. In cases where many fingering com-
binations are available for repeated notes, performers can
choose fingerings based entirely on their playing habits
and convenience; thus, there is a wider choice of finger-
ings than another excerpt. Theoretically, the PAF model
discards the actual pitch and represents the continuously
repeated tones as 0. This unified representation allows the
network to efficiently and quickly obtain the fingering fea-
tures of repeated notes and at the same time eliminates the
interference of different pitches on continuous fingering.
Nonetheless, our model did not perform well in learning
fingering annotation for repeated pitches, and the esti-
mates obtained using CRF were the closest to the ground
truth. The results show that our model does not fully learn
the fingering features of this type of segment, for example,
it should reduce or avoid reusing the same finger. Despite
the differences between the results of our model and the
ground truth, the results are generally playable.

4.5 Comparison of existing models in terms of accuracy

Comparisons were conducted between the proposed
model and the state-of-the-art 3rd HMM, LSTM, and
FF [9] in Fig. 11; the results of which are presented in
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Fig. 11 Comparison of labeling results from the various algorithms

our model ®our model without augmented set ® DNN(LSTM)
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Fig. 11. Overall, the proposed model outperformed the
other methods in terms of Mgen and Mpgh. Compared
with the current best-performing 3rd HMM, our method
improves Mgen by 6.06% and Mpgh by 5.81%. Without the
augmented set, the match rates were increased by 4.06%
and 2.97%, respectively.

5 Conclusion

This paper presents a piano fingering estimation method
emphasizing pitch differences in conjunction with finger
transfer knowledge. In the recognition process, priori
knowledge strengthens constraints on finger transfers. In
this way, it is possible to maximize the likelihood that the
estimated fingerings will be playable from a practical per-
spective. We also generated an augmented dataset based
on the distribution of the training data with the aim of
alleviating the problem of overfitting due to a small training
set.

Experiment results show that pitch difference with time
and interval information is more conducive to finger-
ing estimation than is note-related information. The BI-
LSTM network with fingering transfer constraints pro-
vided fingering results that were very close to those
obtained manually. The use of fingering constraints also
helped to ensure the playability of the resulting fingerings.
In addition, data augmentation helped the network to
capture the note and finger relationship more effectively.

The proposed method outperformed the third-order
hidden Markov method in terms of matching rate as well
as playability. Nonetheless, our method also has a number
of limitations as follows:

(a) In the future, long-range finger transfer information
will have to be included to reflect the complex relation-
ships among fingers.

(b) Our model does not consider pauses or hand coop-
eration, such that decision function 7" may eliminate some
reasonable fingering paths in these situations with the
result that match rate is sacrificed for playable fingerings.

(c) The polymorphic aspect of fingering leads to some-
what arbitrary finger sequences, regardless of whether the
sequences are derived by a human of computational algo-
rithm. The proposed method is unable to provide a variety
of fingering choices for the same score.

(d) Despite data augmentation, the size of our dataset
was still insufficient to reveal the relationship between
notes and finger sequences.

These problems will have to be addressed in future
research.
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