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Abstract

In lossless audio compression, the predictive residuals must remain sparse when entropy coding is applied. The sign
algorithm (SA) is a conventional method for minimizing the magnitudes of residuals; however, this approach yields
poor convergence performance compared with the least mean square algorithm. To overcome this convergence
performance degradation, we propose novel adaptive algorithms based on a natural gradient: the natural-gradient
sign algorithm (NGSA) and normalized NGSA. We also propose an efficient natural-gradient update method based on
the AR(p) model, which requiresO(p) multiply–add operations at every adaptation step. In experiments conducted
using toy and real music data, the proposed algorithms achieve superior convergence performance to the SA.
Furthermore, we propose a novel lossless audio codec based on the NGSA, called the natural-gradient autoregressive
unlossy audio compressor (NARU), which is open-source and implemented in C. In a comparative experiment with
existing, well-known codecs, NARU exhibits superior compression performance. These results suggest that the
proposed methods are appropriate for practical applications.
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1 Introduction
Greater storage capacity is required to further enrich dig-
ital audio content [1]. Therefore, lossless audio coding,
which allows audio data compression without information
loss, is vital for various applications, such as lossless music
delivery, editing, and recording [2]. Figure 1 depicts the
general structure of a lossless audio codec [3]. First, the
codec converts the audio signal to a residual via predic-
tion using a mathematical model. Second, it compresses
the residual through entropy coding. If the model pro-
vides an accurate prediction, the residual signal is sparse
and, thus, high compression performance is achieved. The
Shorten lossless codec [4] was one of the first codecs with
the structure shown in Fig. 1, and several codecs that fol-
low the same structure have been implemented since. For
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example, MPEG4-ALS [5], ALAC [6], and FLAC [7] use
linear predictive coding (LPC) as the predictive model,
whereas WavPack [8], TTA [9], and Monkey’s Audio [10]
use adaptive filters. LPC is generally formulated based
on the assumption that the residual follows a Gaussian
distribution; hence, FLAC and MPEG4-ALS are based
on Gaussian distribution. In contrast, Wavpack, TTA,
and Monkey’s Audio are based on Laplacian distribution,
using adaptive algorithms.
In entropy coding, the Golomb–Rice code [11] is gen-

erally employed, as this code is optimal when the resid-
ual follows a Laplace distribution. Therefore, a residual
assumption for LPC is mismatched. To overcome this
problem, Kameoka et al. [12] improved the compression
rate by formulating an LPC under a Laplace distribution.
The sign algorithm (SA) [13] is a practical choice for the
adaptive algorithm when the residual follows a Laplace
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Fig. 1 General structure of lossless audio codec

distribution; however, the SA converges at a consider-
ably slower rate than that of the least mean square (LMS)
algorithm [14].
To overcome this performance gap, several SA variants

such as the convex combination [15] and the logarith-
mic cost function [16] have been proposed. However,
these attempts have not yielded superior convergence per-
formance to the normalized LMS (NLMS). Notably, the
algorithm proposed by Gay and Douglas [17] outperforms
the NLMS through the use of a natural gradient [18].
In this study, we improve the SA convergence perfor-

mance using a natural gradient. We propose two novel
adaptive algorithms: the natural-gradient sign algorithm
(NGSA) and normalized NGSA (NNGSA) [19]. These
algorithms employ O(p) multiply–add operations to cal-
culate the natural gradient at every step based on the
p-th order autoregressive model assumption for the input
data. The proposed algorithms achieve superior conver-
gence performance to the SA. Furthermore, we propose
a novel lossless audio codec based on the NGSA, called
the natural-gradient autoregressive unlossy audio com-
pressor (NARU) (Taiyo Mineo, Hayaru Shouno: NARU:
Natural-gradient AutoRegressive Unlossy Audio Com-
pressor, submitted), which is implemented and published
under the MIT license. NARU exhibits superior com-
pression performance to existing codecs such as FLAC,
WavPack, TTA, andMPEG4-ALS. Moreover, its decoding
speed is faster than that of Monkey’s Audio without strict
optimization.

The remainder of this paper is organized as follows:
Section 2 provides an overview of the relevant mathemati-
cal theories; Section 3 presents the proposedmethods and
the NARU codec structure; Section 4 reports computer-
based experiments to demonstrate the performance of the
proposed algorithms and codec; and Sections 5 and 6
present the discussion and conclusion, respectively.

2 Theoretical background
2.1 Adaptive filter
An overview of an adaptive filter is shown in Fig. 2.
The input signal x[ n] and observation noise v[ n] are
discrete-time signal sequences. v[ n] is a noise adding for
unknown system outputs. In this study, x[ n] is assumed
to have weak stationarity and to be an ergodic pro-
cess. Let h[ n]=[ h1[ n] , ..., hN [ n] ]T be the adaptive filter
coefficients, where T represents the matrix transposition.
This study employs a finite impulse response (FIR) filter.
Hence, the filter output is denoted as h[ n]T x[ n], where
x[ n]=[ x[ n−N+1] , ..., x[ n] ]T represents the input vector.
We denote the coefficient vector for an unknown system
as h∗. Filter adaptation is performed by updating the h[ n]
coefficients based on the observed signal

d[ n] := h∗Tx[ n]+v[ n] , (1)

and the residual

ε[ n] := d[ n]−h[ n]T x[ n] . (2)

Fig. 2 Adaptive filter
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2.2 Sign algorithm (SA)
The SA is derived using the maximum likelihood method
under the assumption that ε[ n] follows a Laplace distri-
bution. The probability density function of the Laplace
distribution is

p(ε[ n] | h) = 1
2σ

exp
[
−|ε[ n] |

σ

]
, (3)

where σ > 0 represents the deviation. The likelihood L(h)

and log-likelihood log L(h) functions for M independent
and identically distributed (i.i.d.) samples are expressed as

L(h) = 1
(2σ)M

M∏
k=1

exp
[
−|ε[ k] |

σ

]
, (4)

log L(h) = −M log(2σ) − 1
σ

M∑
k=1

|ε[ k] |. (5)

We letM = 1 because the SA adapts at each step. Tomaxi-
mize the likelihood, we partially differentiate log L(h)with
respect to h

∂ log L(h)

∂h
= 1

σ
sgn(ε[ n] )x[ n] , (6)

where sgn(·) denotes the sign function, which is defined as

sgn(x) =
⎧⎨
⎩

1 (x > 0)
0 (x = 0)

−1 (x < 0)
. (7)

The SA adaptation rule is expressed as

h[ n + 1]= h[ n]+μsgn(ε[ n] )x[ n] , (8)

where μ > 0 denotes the step-size parameter.

2.3 Autoregressive model
To simplify the inverse calculation for an autocorrelation
matrix for the input signal, we introduce an autoregressive
model. Here, AR(p) indicates the autoregressive model
with order p that satisfies the following equation for
signal s:

s[ n]=
p∑

i=1
ψis[ n − i]+ν[ n] , ψi ∈ R (i = 1, ..., p), (9)

where ν[ n] is a sample from an independent standard nor-
mal distribution. The ith row and jth column element of
the inverse autocovariance matrix for the AR(p) process
K−1

p is calculated explicitly as [20]

(
K−1

p

)
ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑j
k=1 ψi−kψj−k , 1 ≤ i ≤ p + 1∑L−i+1
k=1 ψL−i+1−kψL−j+1−k , L − p ≤ j ≤ L

0, i ≥ j + p + 1∑j
k=i−p ψi−kψj−k , otherwise

,

(10)

where i ≥ j, ψ0 = 1, and L is the matrix size satisfying
L > 2p.

3 Proposedmethods
3.1 Natural-gradient sign algorithm (NGSA)
The natural gradient is derived from the multiplication of
the inverse of a Fisher information matrix F−1 and a gra-
dient of the cost function [18]. The matrix F is calculated
using the covariance of the gradient for the log-likelihood
function (Eq. (6)), as follows:

F := E
[{

∂ log L(h)

∂h

}{
∂ log L(h)

∂h

}T
]

(11)

= E
[{

sgn(ε[ n] )
σ

}2
x[ n] x[ n]T

]
(12)

= 1
σ 2 E

[
x[ n] x[ n]T

]
(a.s.) (13)

= 1
σ 2R, (14)

where R is the autocorrelation matrix of the input signal.
Note that Eq. (13) holds because

{
sgn(x)

}2 = 1 is satisfied
if x �= 0. Using Eq. (14), we obtain the NGSA as follows:

h[ n + 1]= h[ n]+μNGSAsgn(ε[ n] )R−1x[ n] , (15)

where μNGSA denotes the step-size parameter and R is
assumed to be a regular matrix. In addition, the NGSA
can be derived by replacing ε[ n] with sgn(ε[ n] ) in the
LMS/Newton algorithm [21], which is an approximation
of the Newton method for the LMS algorithm.
TheNGSA adaptation rule (Eq. (15)) satisfies the follow-

ing inequality:

lim
n→∞

1
n

n∑
k=1

E [|ε[ k] |] ≤ εmin + μNGSA
h

λmin
, (16)

where εmin = E [|v[ n] |], h = (1/2)E
[‖x[ n]‖22], and

λmin denotes the minimum eigenvalue of R. The proof of
Eq. (16) follows that provided in [14] (see Appendix 1:
“NGSA inequality”).
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3.2 Normalized natural-gradient sign algorithm (NNGSA)
The NGSA encounters difficulties in determining μNGSA
because its optimal settings vary according to the input
signal. To overcome this difficulty, we introduce a variable
step-size adaptation method that minimizes the posterior
residual criterion; this approach is identical to that of the
NLMS [22].
Let μ[ n] and ε+[ n] be the adaptive step size and the

posterior residual at time n, respectively. Then, ε+[ n] is
calculated as

ε+[ n] := d[ n]−h[ n + 1]T x[ n] (17)

= d[ n]− {
h[ n]+μ[ n] sgn(ε[ n] )R−1x[ n]

}T x[ n]
(18)

= ε[ n]−μ[ n] sgn(ε[ n] )x[ n]T R−1x[ n] . (19)

We let ε+[ n]= 0; then, solving Eq. (19) for μ[ n], we
obtain

μ[ n]= |ε[ n] |
x[ n]T R−1x[ n]

. (20)

Substituting Eq. (20) into Eq. (15), we obtain the NNGSA
as follows:

h[ n + 1]= h[ n]+ μNNGSAε[ n]
x[ n]T R−1x[ n]

R−1x[ n] , (21)

where μNNGSA > 0 denotes the scale parameter. If
μNNGSA < 2 holds and h[ n] and x[ n] are statistically
independent, this adaptation rule achieves a first-order
convergence rate. The proof of this proposition follows
that of the NLMS provided in [22] (see Appendix 1:
“NNGSA convergence condition”).
The NNGSA can be interpreted as a variable step-

size modification of the LMS/Newton algorithm [23]. In
[24], the authors state that [23] is a generalization of the
recursive least squares (RLS) algorithm. Furthermore, it is

evident that Eq. (21) is identical to the NLMS if R = I,
where I denotes the identity matrix.

3.3 Geometric interpretation of NNGSA
The adaptation rule in Eq. (21) is used to solve the follow-
ing optimization problem:

argmin
h

(h − h[ n] )TR(h − h[ n] ),

subject to d[ n]= hTx[ n] .
(22)

The Lagrange multiplier can be used to solve the afore-
mentioned problem. Therefore, Eq. (21) projects h[ n]
onto the hyperplane W = {h | d[ n]= hTx[ n] }, the
metric of which is defined as R (see Fig. 3). Moreover,
according to information geometry [25], the Kullback–
Leibler divergence KL[ ·‖·] for models associated with the
neighborhoods of parameter h[ n] can be calculated as

KL[ p(ε[ n] | h[ n] )‖p(ε[ n] | h)]

≈ 1
2
(h − h[ n] )TF(h − h[ n] ) (23)

= 1
2σ 2 (h − h[ n] )TR(h − h[ n] ). (24)

Thus, Eq. (21) can be considered the m-projection from
model p(ε[ n] | h[ n] ) to the statistical manifold S =
{p(ε[ n] | h) | d[ n]= hTx[ n] }, the elements of which have
the minimum posterior residual.

3.4 Efficient natural-gradient update method
The natural gradient R−1x[ n] must be calculated at every
step. The Sherman–Morrison formula is typically used to
reduce RLS complexity; however, this algorithm involves
O(N2) operations, which generate high cost in practi-
cal applications [26]. Therefore, we propose an efficient
method to solve this problem.

Fig. 3 Geometric interpretation of NNGSA. The NNGSA update procedure (Eq. (21)) projects h[ n] onto hyperplaneW, having the metric R
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We assume that the input signals follow the AR(p)
process. The natural gradient at time n, i.e., m[ n]=
[m1[ n] , ...,mN [ n] ]T := K−1

p x[ n], can be updated as

K−1
p x[ n + 1] =

⎡
⎢⎢⎢⎢⎢⎣

m2[ n]
m3[ n]

...
mN [ n]

0

⎤
⎥⎥⎥⎥⎥⎦

+ m1[ n]

⎡
⎢⎢⎢⎢⎢⎣

ψ1
ψ2
...

ψp
0N−p

⎤
⎥⎥⎥⎥⎥⎦

− mN [ n + 1]

⎡
⎢⎢⎢⎢⎢⎣

0N−p−1
ψp
...

ψ1
−1

⎤
⎥⎥⎥⎥⎥⎦
,

mN [ n + 1] = x[ n + 1]−
p∑

i=1
ψix[ n + 1 − i] ,

(25)

where 0N is anN×1 zero vector. Equation (25) is followed
by a direct calculation (see Appendix 1: “Derivation of
efficient natural-gradient update method”). Furthermore,
the Mahalanobis norm x[ n]T K−1

p x[ n] can be updated as
follows:

x[ n + 1]T K−1
p x[ n + 1]

= x[ n]T K−1
p x[ n]−m1[ n]2 +mN [ n + 1]2 . (26)

Equation (25) requires 3p multiply–add (subtract) calcu-
lations, and Eq. (26) requires 2. Hence, we can update
the natural gradient in O(p) operations. Besides, Eq. (25)
requiresO(N) space complexity since its referring to pre-
vious step gradient m[ n]. Equation (25) is essentially the
same as that of [27], in which a lattice filter (with partial
autocorrelation coefficients) is used for gradient updating.
The present method is suitable for norm updating.
Algorithm 1 describes the NNGSA coding procedure

under the AR(p) assumption.

3.5 Application to LMS/Newton algorithm
We can apply the proposed procedure to the
LMS/Newton algorithm:

h[ n + 1] = h[ n]+μLMSNR−1
p x[ n] , (27)

R−1
p := σ−1

p K−1
p , (28)

Algorithm 1 NNGSA with AR(p) assumption
Require: Desired output d[ n], Input x[ n], Number of inputs
M, Filter orderN, Scale size μ, Autoregressive order p, Small
constant c > 0

Ensure: Residual ε[ n]
Calculate ψi (i = 1, ..., p) using Levinson–Durbin algorithm [28]
m ← 0, h ← 0, w ← 0
for n = 1, · · · ,M do

x[ n]←[ x[ n−N + 1] , ..., x[ n] ]T x[ n]= 0 s.t. n ≤ 0
ε[ n]← d[ n]−hTx[ n]
w ← w − (m)21
for i = 1, · · · , p do

(m)i+1 ← (m)i+1 + ψi(m)1
end for
for i = 1, · · · ,N − 1 do

(m)i ← (m)i+1
end for
(m)N ← x[ n]−∑p

i=1 ψix[ n − j]
for i = 1, · · · , p do

(m)N−i ← (m)N−i − ψi(m)N
end for
w ← w + (m)2N
h ← h + (με[ n] /max{w, c})m

end for

where μLMSN > 0 denotes the step-size parameter and
σp is a constant that depends on p. For p = 1, Eq. (27)
achieves first-order convergence if

μLMSN <
2(1 − ψ1)

N(1 + ψ1)
. (29)

The proof of this proposition follows that for the LMS
provided in [21], and employs the eigenvalue range of
R1 [29] (see Appendix 1: “Convergence condition for
LMS/Newton algorithm”).

3.6 Codec structure
This section describes the NARU encoder and decoder.

3.6.1 Encoder
The NARU encoding procedure is illustrated in Fig. 4.
Below, we describe each component of the NARU encod-
ing procedure.

Fig. 4 NARU encoder structure
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Mid-side conversion
The mid-side conversion eliminates the inter-channel
correlation from the stereo signal. This conversion is
expressed as follows:

M = L + R
2

, (30)

S = L − R, (31)

where L,R,M, and S are the signals of the left, right,
mid, and side channels, respectively.

Pre-emphasis
The pre-emphasis is the first-order FIR filter with a
fixed coefficient, which is expressed as follows:

y[ n]= x[ n]−η x[ n − 1] , (32)

where η denotes a constant that satisfies η ≈ 1, and
x[ n] and y[ n] are the filter input and output at time
n, respectively. This filter reduces the static offset of
the input signal. Hence, we can prevent R from being
ill-conditioned [28]. Here, we choose η = 31/32 =
0.96875 because its division is implemented by a 5-bit
arithmetic right shift.

NGSA filter
The NGSA filter is the core predictive model of this
codec and is the highest-order (N ≤ 64) FIR filter.
Here, we adopt a rule that follows Algorithm 1 and set
d[ n] := x[ n+ 1] in Eq. (2) so that the filter equalizes to
become the input signal.

SA filter
We cascade the SA filter after the NGSA filter, as this
cascaded filter scheme [30] exhibits superior compres-
sion performance. This filter has a lower filter order
than the NGSA (N ≤ 8) and follows the same rule as
the SA (Eq. (8)).

Recursive Golomb coding
This stage converts the residual signal to a compressed
bitstream. We employ recursive Golomb coding [31] as
the entropy coder; this is a refinement of the Golomb–
Rice code and has exhibited acceptable performance in
WavPack and TTA.

3.6.2 Decoder
The decoder structure is shown in Fig. 5. As apparent from
the figure, the decoding procedure is simply the inverse of

the encoding procedure: the SA filter andNGSA filter pro-
duce the same predictions as for encoding at each instance
and, hence, the input signal is perfectly reconstructed.
Additionally, the de-emphasis follows

x[ n] = y[ n]+η x[ n − 1] , (33)

and the left–right conversion is expressed as

L = M + S
2
, (34)

R = M − S
2
. (35)

3.7 Codec implementation
As part of this study, the developed codec was imple-
mented. To ensure speed and portability, we implemented
the codec in the C programming language [32]. All encod-
ing/decoding procedures were implemented via fixed-
point operations so that the decoder reconstructed the
input signal perfectly. We published this implementation
under the MIT license.
The fixed-point numbers were represented by 32-bit

signed integers with 15 fractional bits. Note that, at
present, the codec supports 16-bit linear pulse code mod-
ulation (PCM) Wav (Waveform Audio File Format) files
only, to prevent multiplication overflow and to maintain
implementation simplicity. We assume that the appropri-
ate bit-width rounding is available for 24-bit Wav.

4 Experiment results
This section reports the evaluation results for the pro-
posed algorithms and codec.

4.1 Adaptive algorithm comparison
4.1.1 Toy-data experiments
We observed the convergence performance under the fol-
lowing artificial settings. The elements of the unknown
parameter h∗ were randomly chosen with a uniform dis-
tribution of [−1, 1], the filter order N was set to 5, and
the observation noise v[ n] was white Gaussian noise with
−20, −40, and −60 dB variances. These settings were
adopted from [16]. We calculated the mean square devi-
ation (MSD) criteria ‖h∗ − h‖2 from 200 independent
trials. In addition, we set p = 1 and the following step sizes
for the proposed algorithms: μNGSA = 0.01, μNNGSA =
0.1, and μLMSN = 0.01. We implemented the algorithms

Fig. 5 NARU decoder structure
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in Python 3.8.1 and performed simulations using an Intel®
Core-i7 2.8 GHz Dual Core CPU with 16 GB RAM.
First, we tracked the MSD learning curves for x[ n] with

a variance of 0 dB. Figure 6 shows a comparison between
the results obtained for the proposed algorithms and the
SA, NLMS, and RLS (see Fig. 9 in Appendix 2 for −20
and −60 dB results). We set various step sizes for the
SA and NLMS and employed various forgetting factors λ

for the RLS. Figure 6 shows that the NGSA and NNGSA
achieved almost the same performance as the SA and
NLMS, respectively. This is because R−1

1 ≈ I holds for
i.i.d. noise input.
Second, we observed the case in which the Gaussian

noise is correlated with x[ n]← x[ n]+x[ n − 1]×0.8.
Figure 7 shows the correlation results (see Fig. 10 in
Appendix 2 for −20 and −60 dB results). The SA and
NLMS exhibited poorer convergence performance than
for the non-correlated noise input (Fig. 6). Moreover,
the steady-state errors for the proposed algorithms also
deteriorated. This is because R was close to being ill-
conditioned, and the right-hand side of Eq. (16) was large.

4.1.2 Real-data experiments
We observed the absolute error (AE) for filter prediction
using real music data from the Real World Comput-
ing (RWC) music dataset [33]. In this experiment, we
assumed that the input data was composed of an audio

data signal only and that the reference output and obser-
vation noise was zero (silence). We set the same config-
urations for the proposed algorithms as in the toy-data
experiments. Figure 8 shows the AE curves obtained for
the first second (at a 44100 Hz sampling rate) for the
left channel of the tune “When the Saints Go Marching
In.” From Fig. 8, the NNGSA and LMS/Newton exhibited
superior performance to the NLMS and approximately
the same performance as the RLS. However, the NGSA
with AR(1) exhibited considerably poorer performance.
We assume that this poor performance stemmed from a
greater steady-state error for the NGSA, which arose from
long-term (≈ 10000 samples) signal stationarity.

4.2 Codec evaluation
We observed the compression performance under the fol-
lowing settings, treating the following existing codecs as
competitors:

FLAC version 1.3.2
with “highest compression” option (-8).

WavPack version 5.4.0
with “very high quality” option (-hh).

TTA version 2.3
with default setting.

Monkey’s Audio version 6.14
with “extra high” option (-c4000).

Fig. 6 Learning curves for white-Gaussian-noise input
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Fig. 7 Learning curves for correlated noise input

Fig. 8 AE comparison for real music data
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MPEG4-ALS RM23
with default setting. We did not use the optimum com-
pression option (-7) as the required encoding time was
unrealistic.

NARU
The NGSA filter order was set to 64, the AR order was
1, and the SA filter order was 8.

There were two evaluation criteria:

compression ratio

= compressed size (byte)
original wav file size (byte)

× 100 [%] (36)

decoding speed

= decoding time (sec)
wav file length (sec)

× 100 [%] (37)

We employed the RWC music dataset [33] detailed in
Table 1 and measured the root mean square (RMS) ampli-
tude for each music data element. All the music data
elements were formatted as Wav files, with 16-bit/sample,
a stereo-channel setting, and a 44100 Hz sampling rate.
The experiments were conducted on aWindows 10OS PC
having an Intel® Core™ i7-9750H 2.6 GHz CPU with 32 GB
RAM.
The compression ratio and decoding speed results are

presented in Tables 2 and 3, respectively.

5 Discussion
The proposed algorithms clearly achieved superior con-
vergence performance to the SA and NLMS for cor-
related signal inputs. Furthermore, the NNGSA and
LMS/Newton algorithms exhibited similar performance
to the RLS, as indicated in [24]. The NNGSA is not
superior to NLMS and RLS in both aspects of conver-
gence speed and steady-state error. However, the NNGSA
showed superior performance than the NLMS in highly
correlated signals (Fig. 7). In general, digital audio sig-
nals exhibit high autocorrelation in small order. Hence, we
suggested that the NNGSA showed superior convergence
speed than theNLMS for empirical data. Furthermore, the

NNGSA time complexity for update gradient is O(p) per
adaptation; hence, its complexity is faster than RLS, which
employs the Sharman–Morrison formula (O(N2)). There-
fore, we concluded that the NNGSA was a more accurate
predictive algorithm than the SA and practical application
to a lossless audio codec.
However, the proposed algorithms suffer from two

major problems with regard to practical applications.
First, matrix R must be singular and dependent on
input signals. For example, a static offset will be zero
mean, variance, and autocorrelations by pre-emphasis.
One approach to resolving this problem is to introduce
regularization, which would involve calculation of the
inverse matrix for R+γ I (γ > 0) instead of R. Second, the
AR coefficients ψi (i = 1, ..., p) must be calculated before
the adaptation process, which can generate difficulties for
streaming data processing.
As apparent from Tables 2 and 3, although Monkey’s

Audio yielded the best average compression performance,
it also exhibited the lowest decoding speed. This is
because Monkey’s Audio uses a rich prediction/coding
scheme, with a convolutional neural network for predic-
tion and arithmetic coding. In addition, FLAC yielded an
inverse trend, i.e., it exhibited the highest decoding speed
and poorest compression performance.
NARU exhibited superior compression performance to

FLAC, WavPack, TTA, and MPEG4-ALS. This method
showed strength in the classical and jazz categories,
whereas WavPack exhibited superior performance for
popular music. We believe that NARU excels for quieter
music, as classical and jazz music tends to have lower
signal amplitudes than popular music (see Table 1).

6 Conclusions
We proposed two novel adaptive algorithms that intro-
duce a natural gradient to the SA. The adaptive step-size
algorithm, NNGSA, exhibits certain similarities with well-
known algorithms such as NLMS and RLS. Furthermore,
we demonstrated the superior performance of the pro-
posed algorithms compared with the SA via toy-data and
real-music-data experiments. In a future study, we will
introduce an iterative method for estimation of the AR

Table 1 Dataset description

Category Identifier (category suffix) # of tracks Total size (MB) Average RMS (dB)

Classical RWC-MDB-C-2001 (M01-M04) 34 2157.0 −25.4

Music genre RWC-MDB-G-2001 (M01-M04) 48 1862.3 −19.3

Jazz RWC-MDB-J-2001 (M01-M04) 50 2260.0 −19.6

Popular music RWC-MDB-P-2001 (M01-M04) 64 2587.9 −13.0

Royalty-free RWC-MDB-R-2001 (M01) 15 331.9 −15.5

Total - 211 9199.0 −18.2
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Table 2 Compression ratio (Eq. (36)) comparison

Category
Codec

FLAC WavPack TTA MPEG4-ALS Monkey’s NARU

Classical 44.22 43.91 43.96 43.67 41.28 43.30

Music genre 58.43 57.64 58.20 58.17 56.21 57.69

Jazz 48.12 47.43 47.64 47.51 45.51 47.27

Popular music 67.91 67.18 67.72 67.70 65.71 67.54

Royalty-free 61.03 60.47 61.00 60.82 58.59 60.25

Total 56.76 56.10 56.49 56.39 54.32 56.07

coefficients and expansion methods for affine projection
algorithms [22].
We also proposed a novel lossless audio codec scheme

based on the NGSA, namely NARU, which exhibited
superior compression performance to existing codecs
such as FLAC, WavPack, TTA, and MPEG4-ALS. The
NARU decoding speed was lower than those of the other
codecs, excluding Monkey’s Audio. We found that the
filter prediction and coefficient updating processes occu-
pied the majority of the CPU time. Thus, we expect an
acceleration of this process through optimization, e.g.,
though loop unrolling and explicit use of SIMD instruc-
tions. Finally, it is remarkable that NARU achieves com-
petitive performance compared to other state-of-the-art
codecs despite its simple implementation.
In future work, we will add support for a high-resolution

bit (24-bit or higher) Wav and perform further opti-
mization for practical applications, including hardware
support. We also plan to employ multichannel decorrela-
tion methods [34] to compression rate improvement for
multichannel audio.
We believe that the proposed methods are acceptable

to other signal processing tasks, e.g., noise cancellation,
audio enhancement, and system identification.

Appendix 1: Proposition proofs
For convenience in the following proofs, we employ the
residual vector θ [ n] between an unknown parameter h∗
and a current parameter h[ n], as

θ [ n] := h∗ − h[ n] , (38)

and we define an exponent for the autocorrelation matrix
R as

Rα := Q�αQT, α ∈ Q, (39)

where Q is an orthogonal matrix and � is a diagonal
matrix for which the diagonal elements are eigenvalues of
R.

NGSA inequality
When Eq. (15) is employed,

θ [ n + 1] = θ [ n]−μsgn(ε[ n] )R−1x[ n] , (40)

whereμ := μNGSA. Multiplying both sides by R
1
2 from the

left, and taking the square of the L2 norm ‖·‖22, we obtain

‖R 1
2 θ [ n + 1]‖22

= ‖R 1
2 θ [ n]‖22 − 2μsgn(ε[ n] )θ [ n]T x[ n]

+ μ2‖R− 1
2 x[ n]‖22 (41)

≤ ‖R 1
2 θ [ n]‖22 − 2μ|ε[ n] | + 2μ|v[ n] | + μ2 ‖x[ n]‖22

λmin
.

(42)

Taking the mean of Eq. (42) yields

E
[
‖R 1

2 θ [ n + 1]‖22
]

≤ E
[
‖R 1

2 θ [ n]‖22
]

− 2μE [|ε[ n] |] + 2μεmin

+ 2μ2 h
λmin

(43)

≤ . . .

≤ r − 2μ
n∑

k=1
E [|ε[ k] |] + 2nμεmin + 2nμ2 h

λmin
,

(44)

Table 3 Decoding speed (Eq. (37)) comparison

Category
Codec

FLAC WavPack TTA MPEG4-ALS Monkey’s NARU

Total average 0.11 0.41 0.31 0.43 1.06 0.68
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where r = E
[
‖R 1

2 θ [ 1]‖22
]
. Dividing both sides by 2nμ and

rearranging, we obtain

1
n

n∑
k=1

E [|ε[ k] |] ≤ εmin + μ
h

λmin
+ r

2nμ
. (45)

Hence, we obtain Eq. (16) by n → ∞.

NNGSA convergence condition
In the case where Eq. (21) is employed,

θ [ n + 1]= h∗ − h[ n]− με[ n]
x[ n]T R−1x[ n]

R−1x[ n] (46)

= (I − μP[ n] )θ [ n]+ με∗[ n]
x[ n]T R−1x[ n]

R−1x[ n] , (47)

where ε∗[ n]= d[ n]−h∗Tx[ n], P[ n]= R−1x[n]x[n]T
x[n]TR−1x[n] and

μ := μNNGSA. Taking the mean of Eq. (47), we obtain

E [θ [ n + 1]] = E [(I − μP[ n] )θ [ n]] , (48)

as the mean gradient for the unknown parameter is 0.
Furthermore, h[ n] and x[ n] are statistically independent,
such that

E [θ [ n + 1]] = E [I − μP[ n]] E [θ [ n]] . (49)

We can denote E [P[ n]] as

E [P[ n]] = Q�− 1
2Rq�

1
2QT, (50)

where q[ n]= �− 1
2QTx[ n] ,Rq = E

[
q[n]q[n]T
q[n]Tq[n]

]
. Further-

more,

Rq = Qq�qQT
q (51)

holds as Rq is symmetric, where Qq is an orthogonal
matrix and �q is the diagonal matrix in which the ele-
ments are eigenvalues of Rq. Hence, Eq. (49) is rewritten
as

E [I − μP[ n]] = Q�− 1
2Qq(I − μ�q)QT

q�
1
2QT. (52)

Therefore, to satisfy limn→∞ E [θ [ n]] = 0,

|1 − μλqi| < 1 (i = 1, ...,N) (53)

is required, where λqi is the eigenvalue of Rq. Here, Rq is a
positive semi-definite matrix and

tr[�q]= tr[Rq]= 1 (54)

holds. Hence, the eigenvalue range is

0 ≤ λqi ≤ 1 (i = 1, ...,N). (55)

Therefore, the convergence condition is obtained when
maxi∈{1,...,N} λqi = 1.

Derivation of efficient natural-gradient update method
Employing Eq. (10), the elements of m[ n] can be calcu-
lated as

m1[ n]= xn−N+1 − ψ1xn−N+2 − ... − ψpxn−N+p+1,
m2[ n]= −ψ1xn−N+1 + (1 + ψ2

1 )ψ1xn−N+2

+ ... + (ψ1ψp − ψp−1)xn−N+p+1 − ψpxn−N+p+2,
...
mp+1[ n]= −ψpxn−N+1 + (ψ1ψp − ψp−1)xn−N+2

+ ... + (1 + ψ2
1 + ... + ψ2

p )xn−N+p+1

+ ... + (ψ1ψp − ψp−1)xn−N+2p − ψpxn−N+2p+1,
mp+2[ n]= −ψpxn−N+2 + (ψ1ψp − ψp−1)xn−N+3

+ ... + (1 + ψ2
1 + ... + ψ2

p )xn−N+p+2

+ ... + (ψ1ψp − ψp−1)xn−N+2p+1 − ψpxn−N+2p+2,
...
mN−p[ n]= −ψpxn−2p + (ψ1ψp − ψp−1)xn−2p+1

+ ... + (1 + ψ2
1 + ... + ψ2

p )xn−p

+ ... + (ψ1ψp − ψp−1)xn−1 − ψpxn,
mN−p+1[ n]= −ψpxn−2p+1 + (ψ1ψp − ψp−1)xn−2p+2

+ ... + (1 + ψ2
1 + ... + ψ2

p )xn−p+1

+ ... + (ψ1ψp−1 − ψp−2)xn−1 − ψpxn,
...
mN−1[ n]= −ψpxn−p+1 + (ψ1ψp − ψp−1)xn−p

+ ... + (1 + ψ2
1 )xn−1 − ψ1xn,

mN [ n]= −ψpxn−p − ψp−1xn−p+1 − ... − ψ1xn−1 + xn.
(56)
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Hence, we can denotem[ n + 1] as follows:

m1[ n + 1]= m2[ n]+ψ1m1[ n] ,
m2[ n + 1]= m3[ n]+ψ2m1[ n] ,
...
mp[ n + 1]= mp+1[ n]+ψpm1[ n] ,
mp+1[ n + 1]= mp+2[ n] ,
...
mN−p−1[ n + 1]= mN−p[ n] ,
mN−p[ n + 1]= mN−p+1[ n]−ψpmN [ n + 1] ,
...
mN−1[ n + 1]= mN [ n]−ψ1mN [ n + 1] ,
mN [ n + 1]= −ψpxn−p+1 − ... − ψ1xn + xn+1,

(57)

and the Mahalanobis norm x[ n]T K−1
p x[ n]= m[ n]T x[ n]

can be updated as follows:

x[ n + 1]T K−1
p x[ n + 1]= m[ n + 1]T x[ n + 1] (58)

=
N∑
i=2

mi[ n] xn−N+i + m1[ n]
p∑

i=1
ψixn−N+1+i

− mN [ n + 1]
p∑

i=1
ψixn+1−i + mN [ n + 1] xn+1

(59)
= m[ n]T x[ n]

+ m1[ n]
(

−xn−N+1 +
p∑

i=1
ψixn−N+1+i

)

− mN [ n + 1]
( p∑

i=1
ψixn+1−i − xn+1

)
(60)

= x[ n]T K−1
p x[ n]−m1[ n]2 +mN [ n + 1]2 . (61)

Convergence condition for LMS/Newton algorithm
In the case that Eq. (27) is used,

h[ n + 1]
= h[ n]+μR−1

1 (d[ n] x[ n]−x[ n] x[ n]T h[ n] ), (62)

where μ := μLMSN. Taking the mean of both sides, we
obtain

E [h[ n + 1]]
= E [h[ n]]

+ μR−1
1

(
E [d[ n] x[ n]] − E

[
x[ n] x[ n]T h[ n]

])
(63)

= E [h[ n]]
+ μR−1

1 (E [d[ n] x[ n]] − E
[
x[ n] x[ n]T

]
E [h[ n]])

(64)
= E [h[ n]] + μR−1

1 (Rh∗ − RE [h[ n]]) (65)
= E [h[ n]] + μR−1

1 RE [θ [ n]] . (66)

Here, Eq. (64) exploits the statistical independence
between x[ n] and h[ n], and Eq. (65) utilizes the Wiener–
Hopf solution. Subtracting h∗ from both sides, we have

E [θ [ n + 1]] = (I − μR−1
1 R)E [θ [ n]] . (67)

Hence, for h[ n] to converge to h∗,

0 < μ <
2

ηmax
(68)

is required [21], where ηmax is the maximum eigenvalue
of R−1

1 R. Furthermore, the eigenvalue range of R1 satisfies
[29] the following:

λk = σ 2(1 − ψ2
1 )

1 − 2ψ1 cos θk + ψ2
1
,

(k − 1)π
N + 1

< θk <
kπ

N + 1
.

(k = 1, ...,N), (69)

More roughly, eigenvalues λk (k = 1, ...,N) satisfy

σ 2(1 − ψ1)

1 + ψ1
< λk <

σ 2(1 + ψ1)

1 − ψ1
. (70)

Therefore, employing the Rayleigh quotient,

ηmax = max
x �=0

xTRx
xTR1x

= max
x �=0

xTRx
xTx

xTx
xTR1x

(71)

≤
(
max
x �=0

xTRx
xTx

)(
min
x�=0

xTR1x
xTx

)−1
(72)

< Nσ 2
{

σ 2(1 − ψ1)

1 + ψ1

}−1
(73)

= N(1 + ψ1)

1 − ψ1
. (74)

Here, Eq. (73) exploits the fact that the maximum eigen-
value of R is smaller than tr[R]= Nσ 2.
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Appendix 2: Toy-data experiment results for other configurations
Figures 9 and 10 show learning curves for toy-data experiments for −20 and −60 dB variance configurations.

Fig. 9 Learning curves for white-Gaussian-noise input (above: −20 dB, below: −60 dB)
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Fig. 10 Learning curves for correlated noise input (above: −20 dB, below: −60 dB)
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