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Abstract

By means of spatial clustering and time-frequency masking, a mixture of multiple speakers and noise can be
separated into the underlying signal components. The parameters of a model, such as a complex angular central
Gaussian mixture model (cACGMM), can be determined based on the given signal mixture itself. Then, no misfit
between training and testing conditions arises, as opposed to approaches that require labeled datasets to be trained.
Whereas the separation can be performed in a completely unsupervised way, it may be beneficial to take advantage
of a priori knowledge. The parameter estimation is sensitive to the initialization, and it is necessary to address the
frequency permutation problem. In this paper, we therefore consider three techniques to overcome these limitations
using direction of arrival (DOA) estimates. First, we propose an initialization with simple DOA-based masks. Secondly,
we derive speaker specific time annotations from the same masks in order to constrain the cACGMM. Thirdly, we
employ an approach where the mixture components are specific to each DOA instead of each speaker. We conduct
experiments with sudden DOA changes, as well as a gradually moving speaker. The results demonstrate that
particularly the DOA-based initialization is effective to overcome both of the described limitations. In this case, even
methods based on normally unavailable oracle information are not observed to be more beneficial to the
permutation resolution or the initialization. Lastly, we also show that the proposed DOA-guided source separation
works quite robustly in the presence of adverse conditions and realistic DOA estimation errors.
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1 Introduction
The extraction of clean speech from a mixture with
unwanted components, such as background noise, is an
important task in the context of applications like speech
enhancement for human-to-human communication and
automatic speech recognition. If the mixture contains
multiple concurrently active speakers, however, algo-
rithms that rely solely on spectro-temporal information
may fail due to the similarity of the underlying source sig-
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nal characteristics. In this case, spatial information, which
is available when a microphone array is used, may be
exploited to distinguish between the signal components.
Because speech is characterized by a high degree

of sparsity in the short-time Fourier transform (STFT)
domain, an effective separation can be realized with the
help of masks that identify the dominant signal com-
ponent in each time-frequency (TF) bin [1]. Supervised
learning approaches, particularly based on deep neural
networks (DNNs), are commonly employed to obtain such
TF masks. For example, permutation invariant training
(PIT) [2] can be incorporated to enable the separation of
multiple talkers in this case. Other approaches distinguish
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the sources based on their directions of arrival (DOAs),
either by estimating these along with the corresponding
masks [3, 4], or by assumingDOA estimates to be available
in advance [5, 6]. Rather than first computing TF masks,
[7] proposes a beamforming-based speaker separation
with an implicitly performed broadband DOA estima-
tion. Deep clustering, which was originally proposed for
single-channelmixtures [8] but has since been extended to
microphone arrays as well [9], represents another class of
approaches. A DNN is trained to return high-dimensional
embeddings before the application of a clustering algo-
rithm such as k-means. Deep attractor networks [10] are
an extension of deep clustering, where the embeddings
are optimized by minimizing the reconstruction error,
thereby making the training end-to-end.
The main drawback of these supervised methods is the

need for a (large) set of labeled training data, i.e., noisy
mixtures and the corresponding clean source signals. If
the clean signals are not available, or if there is a mismatch
between training and testing conditions, the resulting per-
formance may be suboptimal. In contrast, (spatial) clus-
tering approaches that directly model the given signals (or
features extracted therefrom) by a mixture of components
that each follow a different distribution, do not require
such representative training sets. The parameters of this
mixturemodel are determined e. g., using the expectation-
maximization (EM) algorithm, from which posteriors that
serve as TF masks can then be extracted. In this work,
specifically, we describe the normalized vector of micro-
phone signals in the STFT domain with a complex angular
central Gaussian mixture model (cACGMM), as originally
proposed in [11]. The normalization effectively discards
the single-channel (magnitude) information, so that only
the inter-channel differences, which represent the spatial
information, are retained.
Two main problems are characteristic of the spatial

clustering approach, regardless of the specific choice of
the mixture model. Typically, the separation is performed
independently for each frequency. This leads to the well-
known frequency permutation problem, where the same
component index may correspond to a different speaker
for every frequency bin. Secondly, the iterative model
parameter estimation is sensitive to the initialization.
To address the frequency permutation problem, cross-

frequency information may be incorporated. This can
be done by resolving the permutation ambiguity in the
end, or within the parameter estimation itself. Particu-
larly the method proposed in [12], which is based on the
correlation of the posteriors between frequency bins, is
commonly employed to perform a manual permutation
alignment. One way to introduce a dependence between
the optimization problems otherwise solved for each fre-
quency independently is the use of time-variant but fre-
quency independent mixture weights, in order to enforce

a consistent permutation [13]. However, this link between
different frequencies might not be sufficient to prevent
the occurrence of permutation errors. For this reason, a
more advanced approach is adopted in [14], where the
DOAs are integrated as hidden variables into the model
for the spatial covariance matrices of the employed com-
plex Gaussian mixture model. As all parameters are esti-
mated jointly, no prior knowledge of the source locations
is required. The exploitation of prior knowledge can, how-
ever, be an effective alternative when the requirement of a
completely blind source separation is relaxed. The source
separation (GSS) approach proposed in [15], for example,
incorporates time annotations into themixturemodel that
indicate when each source is active.
On the other hand, it is reported in [16, 17] that the

availability of suitable initial masks alone can be sufficient
tomitigate the need for additional measures to address the
permutation problem. These can be used to initialize the
EM algorithm accordingly (weak integration, e. g., [16]), or
by incorporating them into the model in the form of fixed
mixture weights (tight integration, e. g., [17, 18]). A simi-
lar notion is adopted in [19], where embeddings acquired
by means of deep clustering are integrated into the model
instead of initial masks.
The fact that initial masks can be used to address both

shortcomings, frequency permutation problem and sen-
sitivity to initialization, makes them a valuable tool. A
wide variety of techniques have been proposed in this
context. For example, a scheme to initialize the mixing
matrix of a blind source separation problem was pro-
posed in [20]. More recently, particularly the use of spatial
clustering in conjunction with DNN-based methods for
initial mask estimation has received a lot of attention.
TF masks for the integration into the mixture model
are obtained with a bidirectional long short-term mem-
ory (LSTM) network in [18]. Both [16] and [21] take
advantage of spatial clustering methods to train neural
networks in an unsupervised way, as well as to compute
the final masks in the end. In [17], a convolutional neu-
ral network (CNN) with utterance-level PIT is employed
prior to the mixture model-based mask estimation. For
all of these approaches alike, it is reported that the ulti-
mate spatial clustering step improves the performance
compared to using the output of the respective DNNs
directly.
Thus, although spatial clustering can be used in a com-

pletely unsupervised fashion, we note that the incorpo-
ration of a priori knowledge can improve the speaker
separation significantly. In this work, we focus on the GSS
approach [15], which takes advantage of time annotations
to address the permutation problem. Whereas ground
truth annotations are already available for the CHiME-5
dataset [22], to which the GSS was originally applied, this
is not the case in general.



Bohlender et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2022) 2022:16 Page 3 of 21

In this paper, we therefore propose to use broadband
DOA estimates to guide the cACGMM-based source
separation. We generically refer to such approaches as
DOA-GSS. The usefulness of DOA information in the
context of otherwise blind source separation algorithms
has previously been demonstrated, e. g., for independent
component analysis in [23], where an initial unmixing
matrix is obtained by means of null beamforming. For the
GSS approach, in particular, the advantage of using DOA
estimates, instead of estimating time annotations directly,
is that they are helpful in the acquisition of initial masks
as well.
Specifically, the aim of this work is to determine how

DOA knowledge can be exploitedmost effectively. For this
purpose, we consider three different methods: (i) the ini-
tialization of the EM algorithm with DOA-based masks,
(ii) the inclusion of time annotations derived from the
same initial masks, and (iii) the use of DOA-based (rather
than speaker-based) mixture components to reflect that
the cACGMM models spatial signal characteristics. In
the evaluation, we compare different combinations of
these techniques. By considering oracle initialization, ora-
cle time annotations, and oracle permutation alignment
as baselines, we show that the proposed initial masks,
despite being relatively simple, are sufficient to avoid the
frequency permutation problem, and to cope with the
inherent sensitivity of the approach to the initialization.
This suggests that it may be unnecessary to resort to one
of the previously proposed more elaborate schemes, such
as the estimation of initial masks using a DNN. Only for
the case where the parameter estimation is performed on
very short signal segments, the performance is observed
to degrade significantly due to the lack of sufficient data
to improve upon the initialization.
In Section 2, we first introduce the source separation

problem, and outline how it can be addressed with the
help of TF masks. The GSS, which the proposed approach
is an extension of, is reviewed in Section 3. Subsequently,
Section 4 describes the DOA-GSS in detail, including the
derivation of DOA-based initial masks, and the extrac-
tion of speaker or direction specific time annotations.
Based on the experiments in Section 5, we then evaluate
which setup is the best to make use of the DOA estimates.
Section 6 concludes the paper.

2 Problem statement
The vector Y(f , t) = [

Y1(f , t), . . . ,YN (f , t)
]T contains the

STFT domain signals captured by an array of N
microphones. The length of the discrete Fourier trans-
form (DFT) and the number of frames are denoted
by F and T , respectively, so that the frequency
index is f ∈ {0, . . . , F − 1} and the frame index is
t ∈ {0, . . . ,T − 1}. We assume that the microphone sig-
nals are an additive mixture

Y(f , t) =
∑

j
Sj(f , t) + V(f , t), (1)

which is composed of the contributions Sj(f , t) of sound
sources j ∈ {1, . . . , J} and noise V(f , t). The focus of this
work is on speech, which implies that each of the J sources
is one talker. Further, the microphone signal contribution
of the j-th source is composed of a direct-path component
S′
j(f , t) and a reverberation component S′′

j (f , t) i.e.,

Sj(f , t) = S′
j(f , t) + S′′

j (f , t)

= Aj(f , t) S′
j(f , t) + S′′

j (f , t),
(2)

where Aj(f , t) is the direct-path propagation vector. Our
aim is to extract the anechoic (dry) source signals at the
reference microphone

S′
j(f , t) = uTnrS

′
j(f , t) (3)

for all j from the microphone signal mixture. In Eq. 3, unr
is a unit vector where only the element corresponding to
the reference microphone is 1, and all other entries are 0.
In the following, the reference is arbitrarily set to nr = 1.
For a source with DOA vector

n = [
cos(ϕ) cos(ϑ) sin(ϕ) cos(ϑ) sin(ϑ)

]T , (4)

which is located in the far field, the propagation vector is
given by

A(f ) =
[
1 ejκ(f )rT21n · · · ejκ(f )rTN1n

]T
. (5)

In the above, κ(f ) = 2π
c fs fF is the wavenumber, c is the

speed of sound, fs is the sampling rate, and rmn = rm − rn
is the difference between the positions of two micro-
phones, where rn = (xn, yn, zn)T are the coordinates of the
nth microphone. Further, ϕ and ϑ denote the azimuth and
elevation angles of arrival, respectively. This definition of
the DOA vector is illustrated in Fig. 1.

Fig. 1 Definition of the azimuth and elevation angles of arrival, ϕj and
ϑj , as well as the corresponding DOA vector nj
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Since speech may be considered sparse in the STFT
domain, the sources can be separated by attenuating TF
bins that are dominated by unwanted components. This
can be realized by multiplying the microphone signals
with a TF maskMj(f , t) ∈[ 0, 1]. This yields

Ŝ′
j(f , t) = Mj(f , t)Y(f , t), (6)

which serves as an estimate of S′
j(f , t). Consequently,

Ŝ′
j(f , t) = uTnr Ŝ

′
j(f , t), (7)

represents the corresponding target signal estimate. Alter-
natively, as proposed in [24, 25], the masks can be used in
the estimation of the power spectral density (PSD) matri-
ces �̂S′

j
(f , t) = E

{
S′
j(f , t)(S′

j(f , t))H
}
required for beam-

forming. For this purpose, Eq. 6 is inserted for the
unknown S′

j(f , t), and the expectation E {·} can be replaced
by, e. g., recursive averaging [26]. This yields

�̂S′
j
(f , t) = α �̂S′

j
(f , t − 1)+

(1 − α)M2
j (f , t)Y(f , t)YH(f , t), (8)

where α is an averaging parameter. Additionally, we define

Vj(f , t) = Y(f , t) − S′
j(f , t) (9)

as the mixture of all unwanted components with respect
to the j-th source, and use �Vj(f , t) to denote the corre-
sponding PSD matrix. An estimate thereof is given by

�̂Vj(f , t) = α �̂Vj(f , t − 1)+
(1 − α) (1 − Mj(f , t))2 Y(f , t)YH(f , t). (10)

These PSD matrices can be used to cancel noise and
interference by an appropriate beamforming operation.
Here, we select the minimum variance distortionless
response (MVDR) beamformer [27]

Wj(f , t) =
�̂

−1
V (f , t)�̂S′

j
(f , t)

trace
{
�̂

−1
V (f , t)�̂S′

j
(f , t)

} unr . (11)

A target signal estimate is then obtained as

Ŝ′
j(f , t) = WH

j (f , t)Y(f , t). (12)

For both approaches, the direct application of Eq. 7 and
the mask-based beamforming of Eq. 12, the source sepa-
ration problem reduces to the estimation of TF masks.

3 Guided source separation
This section presents a summary of the guided source
separation (GSS) proposed in [15]. The approach makes
use of cACGMM-based TF masking [11], but additionally
incorporates time annotations to constrain the mixture
components.
The normalized vector of microphone signals defines

the directional statistics

Z(f , t) = Y(f , t)
‖Y(f , t)‖�2

. (13)

As shown in [11], these can be modeled by a mixture
of K complex angular central Gaussian (cACG) compo-
nents. For the source separation problem formulated in
Section 2, we have K = J in the simplest case, i.e., each
component is used to describe one speaker. The prob-
ability density function of the cACG distribution with
parameter matrix B is given by

P(Z;B) = (N − 1) !
2πN detB

1
(ZHB−1Z)N

. (14)

Consequently, we obtain the cACGMM

p
(
Z(f , t);	(f )

) =
∑

k
ψk(f )P

(
Z(f , t);Bk(f )

)
(15)

with mixture weights ψk(f ). The set 	(f ) contains
the parameters Bk(f ) and ψk(f ) for all components
k ∈ {1, . . . ,K}, which can be estimated using the EM algo-
rithm. As each frequency is considered independently,
however, the same index k may correspond to a different
source j at different frequencies.
To cope with the resulting frequency permutation prob-

lem, the GSS [15] takes advantage of time annotations
βk(t) ∈ {0, 1} that indicate whether the source that cor-
responds to the k-th component is active in frame t. To
integrate these into the cACGMM, the mixture weights
ψk(f ) in Eq. 15 are replaced by ψk(f )βk(t). With the
proper normalization, this leads to the mixture model

p
(
Z(f , t);	(f )

) =
∑

k ψk(f )βk(t)P
(
Z(f , t);Bk(f )

)

∑
k ψk(f )βk(t)

. (16)

The EM algorithm can be reformulated accordingly,
so that the permutation problem is inherently addressed
[15]. The E-step is

Nk(f , t) ← ψk (f )βk (t)P
(
Z(f , t);Bk (f )

)

∑
k′ ψk′(f )βk′(t)P

(
Z(f , t);Bk′(f )

) , (17)

where the posterior Nk(f , t) may be interpreted as a TF
mask for the k-th component. The M-step is given by

ψk(f ) ← 1
T

∑

t
Nk(f , t) (18a)

Bk(f ) ← N

∑
t Nk(f , t) Z(f ,t)ZH (f ,t)

ZH (f ,t)B−1
k (f )Z(f ,t)

∑
t Nk(f , t)

. (18b)

To obtain the masks Mj(f , t) from the posteriors
Nk(f , t) after the algorithm has converged, it is only
necessary to determine the frequency dependent map-
ping between the K cACGMM components and the J
sources. Using the time annotations βk(t), a fixed (fre-
quency independent) mapping can be enforced. Then,
additional measures to resolve the permutation problem
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are not required. To achieve this, the following must be
ensured: (i) the annotations must correlate well with the
true source activity, and (ii) they must be unique in the
sense that the annotations for any pair of two compo-
nents k1 and k2 must not be too similar (in particular, the
annotations are not useful when βk1 ≡ βk2 ).
As [15] proposes, an additional component, which is

assumed to be active at all times (βK (t) = 1 for all t), can
be used to account for noise. Then, the total number of
components is K = J + 1.

4 DOA-guided source separation
Two fundamental limitations of the GSS approach are
that (i) the cACGMM parameter estimation is sensitive
to the initialization, and (ii) time annotations first have to
be estimated when they are not available in advance. To
address these, despite spatial clustering being an unsuper-
vised approach, it can be advantageous to incorporate a
priori knowledge.
In this work, we propose a direction of arrival-guided

source separation (DOA-GSS). It is assumed that the
broadband source DOAs, or equivalently the DOA vec-
tors nj(t), have been estimated in advance. Numerous
estimators that can be used for this purpose are avail-
able. An overview of statistical model-based methods can
be found, e. g., in [28]. In order to estimate the DOAs
of multiple concurrent sources, typically, a narrowband
approach is applied first, followed by a clustering of the
estimates across all frequencies. Among the most widely
used methods are narrowband realizations of steered
response power (SRP) [29, 30], where the direction is
determined by maximizing the output power of a beam-
former, as well as subspace decomposition-basedmethods
like MUSIC [31]. Alternatively, a deep learning approach
can also be used [32].
A block diagram of the resulting DOA-GSS system,

which consists of DOA estimation, the derivation of
DOA-based prior information, the cACGMM method,
and the mask-based source separation, is shown in Fig. 2.
We consider three different techniques to take advan-

tage of DOA estimates. Section 4.1 discusses DOA-based
masks, which can be used to initialize the EM algorithm.
Secondly, to replace the oracle time annotations, we pro-
pose to extract source time annotations (STAs) from the
initial masks in Section 4.2. Thirdly, instead of using one
cACG component for each speaker, an approach with
DOA specific components could be adopted as described
in Section 4.3, whereby DOA time annotations (DTAs) are
obtained.

4.1 DOA-based initial masks
In the following, we introduce DOA-based masks for
the initialization of the model parameter estimation. We
would like to stress that it is unnecessary for these ini-

Fig. 2 DOA-GSS block diagram. We consider three different ways to
make use of DOA knowledge: a DOA-based initialization of the
cACGMM parameter estimation (see Section 4.1), extracting time
annotations from the initial masks (Section 4.2), or using one mixture
component for each discrete DOA (Section 4.3). These can be used
independently or jointly

tial masks to already separate the components perfectly.
Rather, they should be simple to compute, but should
already distinguish sufficiently well between the signal
components to improve the separation realized by the
resulting cACGMM-based masks. In this work, we first
perform a separation which focuses on the target (direct-
path) components, and disregards all other signal contri-
butions. Then, residual unwanted components are sup-
pressed under the assumption of their spatial diffuseness.
Specifically, for each of the J sources, we consider a cas-
cade of two single-channel Wiener filters [26]. For both,
we require an estimate of the auto-PSD�S′

j
(f , t) of the tar-

get signal S′
j(f , t) defined in Eq. 3. To realize the source

separation and noise suppression, the PSD estimates for
the first and the second step are, however, obtained
under different assumptions. This will be discussed in
Sections 4.1.1 and 4.1.2, respectively.
The initial source separation and the residual noise sup-

pression can both be expressed in terms of TF masks that
will be denoted byMsep

j (f , t) andMnoi
j (f , t). Because the

two steps are applied sequentially, the initial mask for the
j-th source is given by the multiplicative combination

Minit
j (f , t) = Msep

j (f , t)Mnoi
j (f , t). (19)

Rather than separating the sources directly, we use
Minit

j (f , t) only to initialize the cACGMM parameter esti-
mation. Thus, we set

N init
j (f , t) = Minit

j (f , t) ∀ j ∈ {1, . . . ,K − 1}, (20)

for the J = K − 1 components that correspond to the tar-
get sources. For the noise, which is represented by the
K-th component, the initialization is given by

N init
K (f , t) = 1 −

∑

j
Minit

j (f , t). (21)
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After the initialization, the model parameter estimation
can be performed, starting with the M-step given by
Eqs. 18a and 18b. The unprocessed microphone signals
Y(f , t) are still used to define the directional statistics
(Eq. 13), and to perform the final separation with the
masks obtained from the cACGMM.
The initial mask estimation is performed indepen-

dently for each frequency and frame. In the remainder of
Section 4.1, the corresponding indices will therefore be
omitted to simplify the notation.

4.1.1 Source separation
First, we focus on the separation of the direct-path signals.
For this purpose, the strongly simplified signal model

Y =
∑

j
S′
j =

∑

j
Aj S′

j (22)

is considered, where the j-th propagation vector Aj is
given with the corresponding DOA vector nj according
to Eq. 5. With the propagation matrix A =[A1, . . . ,AJ ],
and the vector of direct-path components at the reference
microphone S =[ S′

1, . . . , S′
J ]T , we can reformulate Eq. 22

as a matrix-vector product

Y = AS . (23)

For the special case where the number of sources is
equal to the number of microphones (J = N), Eq. 23 can
straightforwardly be solved for S by left multiplying with
A−1. When J �= N , we can obtain an approximation by
using the Moore-Penrose pseudoinverse A† instead [33].
The resulting estimate is

Ŝ = A† Y. (24)

Whereas Eq. 24 could be used to separate the sources
directly, the usefulness of such an approach is limited due
to the strongly simplified signal model employed. Instead,
we use Eq. 24 to obtain a Wiener filter [26]. Under the
assumption of the source signals being mutually uncorre-
lated, it is given by

Msep
j =

�̂S′
j∑

j′ �̂S′
j′

=
{
A†�Y (A†)H

}
jj

trace
{
A†�Y (A†)H

} , (25)

where the PSD matrix �Y = E{YYH} can be estimated
from the microphone signals, and {·}jj is the j-th diagonal
entry of this matrix.

4.1.2 Noise suppression
Thus far, only the direct-path contributions of the J
sources are accounted for. Based on the definition of
the source separation masks (Eq. 25), we note that∑

jM
sep
j = 1. If these were used for the initialization i.e.,

Minit
j = Msep

j , Eq. 21 would produce an all-zero initial-
ization for the noise component (N init

K = 0). Because this

would result in a 0 in the denominator of Eq. 18b, this is
not a valid choice. To obtain a suitable initialization for all
components, we require a second step that addresses late
reverberation, and additive noise that has no pronounced
directivity. The simplified signal model for this step is
therefore

Ỹj = S′
j + Ṽj, (26)

where Ỹj denotes the output of the initial source separa-
tion step for the j-th source, and Ṽj is the corresponding
residual of the unwanted components (Eq. 9), which will
simply be referred to as noise for conciseness. To com-
ply with this signal model, a time alignment with respect
to the target DOA is additionally required, such that the
same desired signal is present in each channel. Conse-
quently, we define

Ỹj =
(
Msep

j Y
)

	 A∗
j , (27)

where 	 is the Hadamard (elementwise) product, and (·)∗
is the complex conjugate.
Now, for the noise suppression, we make use of the

Wiener postfilter proposed in [34], which permits a spe-
cific noise field coherence to be incorporated. Here, we
consider a spherically isotropic (diffuse) noise field, such
that the coherence function for microphone pair (m, n) is
given by


mn = sinc
(
κ‖rmn‖�2

)
. (28)

It is assumed that target signal and residual noise are
mutually uncorrelated, and that the noise auto-PSD is the
same for all channels. As proposed in [34, 35], a target
signal PSD estimate

�̂
(mn)

S′
j

=
R{�̂Ỹj ,mn} − R{
mn}

�̂Ỹj ,mm+�̂Ỹj ,nn
2

1 − R{
mn} (29)

can then be extracted based on each microphone pair,
whereR{·} denotes the real part, and �̂Ỹj ,mn is the (m, n)th
entry of the estimated PSD matrix �̂Ỹj . Subsequently, an
improved estimate is obtained by averaging Eq. 29 over all
uniquemicrophone pairs. Similarly, instead of considering
only the reference channel, the same averaging technique
can be adopted to acquire an improved estimate of the
signal-plus-noise auto-PSD. The resulting Wiener filter

Mnoi
j =

2
N(N−1)

∑N−1
n=1

∑N
m=n+1 �̂

(mn)

S′
j

1
N

∑N
n=1 �̂Ỹj ,nn

(30)

then serves as the noise suppression mask. Note that, due
to the time alignment (Eq. 27), this mask is indirectly
dependent on the respective DOA as well. The estimation
of Mnoi

j for all j ∈ {1, . . . , J} based on the output of the
initial source separation is illustrated in Fig. 3.
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Fig. 3 The noise suppression masksMnoi
j (f , t) are determined based

on each of the J outputs of the initial source separation after time
aligning the channels for the respective target DOA. The combination
of these steps yields the initial masks

4.2 Source time annotations (STAs)
As observed in [16], additional measures to address the
permutation problemmay not be required if the employed
initial masks are already sufficiently reliable. With regard
to the proposed initialization, however, this is not always
the case. At low frequencies, in particular, it is difficult
to distinguish between different sources based on spa-
tial information, and the quality of the DOA-based masks
deteriorates. Time annotations may, therefore, still be
helpful.
To determine when each speaker is active, we propose

to derive STAs βsrc
j (t) from the (DOA-based) initial masks

according to

βsrc
j (t) =

{
1,

∑
f Minit

j (f , t) ≥ δj
0, else. (31)

Here, the activity thresholds δj are chosen as the P-th
percentile of

∑
f Minit

j (f , t) i.e., each source is assumed
to be inactive in a total of PT/100 frames. Note that the
STAs are used only in the cACGMM parameter estima-
tion. After convergence, they are omitted in Eq. 17, so that
the final masks can be non-zero for all frames t.
As opposed to a voice activity detection-based

approach, the STAs given by Eq. 31 could also be used
e. g., to explicitly take into account (localized) back-
ground noise sources, although this is not considered in
this work. Further, by defining a fixed percentile P, it is
ensured that the STAs remain distinctive, even when a
speaker is active during the entire sequence. It may then
still be appropriate to consider the corresponding mixture
component to be inactive during brief speech pauses,
such as between two words.
The extraction of STAs from an initial mask is illus-

trated in Fig. 4, where a scenario with J = 1 speaker in the
presence of noise (SNR = 5 dB) is considered. The DOA-
based masks are sufficient to identify frames with low
speech activity.

Fig. 4 Extraction of source time annotations (STAs) βsrc
j (t) for J = 1

static source from the corresponding initial mask (P = 10). The mask
only captures the rough outline of the target speech, but this is
sufficient to detect silent segments

4.3 DOA time annotations (DTAs)
Alternatively, the DOAs can be used to obtain time annota-
tions directly. This is achieved by using different components
to represent the samemoving speaker at different times, de-
pendingon their current location. Given that the cACGMM
(Eq. 15) models spatial information, using multiple com-
ponents for the same source could be beneficial since the
spatial signal properties are also time dependent.
Let D ≥ J be the total number of unique DOAs for

which there is an active source at least once across the
considered T frames. To acquire DTAs, the number of
cACG components can then be set to K = D + 1 i.e., one
component is used for each direction rather than each
speaker. To limit the total number of components, and
ensure that a sufficient amount of data is available for
each, the DOAs are discretized with a finite resolution.
The DTAs βdir

k (t) are defined based on the DOA esti-
mates alone: a component is only active (βdir

k (t) = 1) while
there is a source in this direction, otherwise it is con-
sidered to be inactive (βdir

k (t) = 0). This is illustrated
in Fig. 5, where a gradual movement of J = 1 source
is assumed, starting from an azimuth angle of arrival
ϕ = 40◦ up to ϕ = 60◦. For a discretization of ϕ in 10◦
steps, this results in a total of K = 4 components, which
correspond to the angles ϕ ∈ {40◦, 50◦, 60◦} and noise,
respectively. As the figure shows, the DTAs are unique
in the described scenario for all k ∈ {1, 2, 3, 4}, so that no
additional information is required to distinguish between
the components.
For a static source, however, the DTAs are not helpful.

This problem is illustrated in Fig. 6, where there is J = 1
speaker with a constant DOA of ϕ = 50◦. Consequently,
the resulting DTAs coincide with the annotations for the
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Fig. 5 DOA time annotations (DTAs) βdir
k (t) for J = 1 speaker moving

from ϕ = 40◦ to 60◦ . This results in D = 3 discrete directions, and thus
K = 4 components. The functionFt(j) specifies, for each frame, which
component corresponds to the j-th speaker. Note that DTAs and
Ft(j) are determined solely by the DOA estimates. Nevertheless, the
DTAs are unique, and thereby enable to enforce a fixed permutation

noise component. In this case, only the STAs can resolve
the frequency permutation problem.
Therefore, we can also consider combined annotations.

Whereas the DTAs are specific to each of the K = D + 1
(DOA-based) components, the STAs are specific to each
of the J sources. With the function Ft : {1, . . . , J} →
{1, . . . ,K − 1}, that specifies which source index j corre-
sponds to which component index k = Ft(j) in frame t,
we define combined annotations that are 1 for component
k when there is at least one active source (βsrc

j (t) = 1) in
the associated direction (Ft(j) = k), i.e.,

βk(t) = βdir
k (t) max

j:Ft(j)=k
βsrc
j (t) ∀ k < K . (32)

The bottom plot of Fig. 5 showsFt(j) for the considered
example. Like the DTAs, this mapping between the source

Fig. 6 DTAs βdir
k (t) for J = 1 static speaker at ϕ = 50◦ . The resulting

DTAs are not unique in this case

and component indices is only dependent on the current
DOA estimates.
Note that since the computed initial masks are source-

based as well,

N init
Ft(j)(f , t) = Minit

j (f , t) (33)

is used instead of Eq. 20 to initialize N init
k (f , t) when the

components are specific to each DOA rather than each
speaker.
In summary, we have proposed three ways to take

advantage of the availability of DOA estimates. To enable a
good performance despite the approach being sensitive to
the initialization, we can make use of DOA-based masks,
like the ones presented in Section 4.1, to initialize the EM
algorithm. Time annotations can be integrated into the
model to avoid the frequency permutation problem. On
the one hand, STAs can be derived directly from the ini-
tial masks. Alternatively, or in combination with the STAs,
the mapping between the components and the sources
can be defined based on the DOA estimates in order
to generate DTAs. We will refer to this as the approach
with DOA-based components to distinguish it from the
speaker-based approach (K = J + 1), where DTAs are not
available. Equivalently, we will specify that the DTAs are
used or omitted to indicate that the DOA-based or the
speaker-based approach are used, respectively.

5 Results and discussion
To establish how DOA information can best be incorpo-
rated in the GSS, taking into account all of the introduced
methods, we conduct a series of experiments. First, in
Section 5.1, we focus on scenarios where the DOAs are
static while the respective speaker is active. In this con-
text, we aim to (i) determine how the parameter P can be
chosen, (ii) verify that the proposed initialization and time
annotations are effective, and (iii) assess the robustness of
the DOA-GSS to DOA estimation errors. Subsequently,
in Section 5.2, we evaluate the approach based on a grad-
ually moving speaker. The goal of this experiment is to
individually examine the usefulness of both types of anno-
tations, STAs and DTAs. Additionally, we address the
question whether the time annotations can be omitted
entirely, and review the need for a manual permutation
alignment. Finally, we use our findings to select one suit-
able DOA-GSS setup, based on which the performance for
conditions of varying difficulty is evaluated in Section 5.3.
An overview of the different GSS setups that will be con-

sidered in the following is presented in Table 1. These will
be explained in more detail in Sections 5.1.1 and 5.2.1.
Figure 2 illustrates how the different components tie into
the complete system.
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Table 1 Overview of different options for various components of
the system considered throughout the experiments. If nothing
else is explicitly stated, the underlined default is used

DOA estimates Oracle, or estimated using the DNN
approach from [43]

Initial masks (proposed) DOA-based (Eq. 19), or oracle
(Eq. 34), or random

STAs (Eq. 31) Extracted from (proposed) DOA-based initial
masks (Eq. 19), or extracted from oracle
initial masks (Eq. 34), or none

DTAs One mixture component for each direction
(K = D + 1: DTAs are available, see Sec. 4.3),
or one mixture component for each speaker
(K = J + 1: DTAs are not available)

Permutation alignment No manual alignment, or oracle alignment
(as explained in Section 5.2.1)

Speaker separation Mask-based MVDR beamforming (Eq. 12), or
direct application of the masks (Eq. 7)

5.1 Static speakers
For the experiments conducted in this section, the loca-
tions of the talkers are fixed during each utterance.
Between two utterances, however, a new angle is selected
with a probability of 50%. To cope with these sudden
DOA changes, the approach introduced in Section 4.3 is
employed, where each component corresponds to one dis-
crete DOA (K = D + 1). The setup is explained in detail
in Section 5.1.1, followed by the discussion of the results
in Sections 5.1.2, 5.1.3, 5.1.4, and 5.1.5.

5.1.1 Experimental setup
Microphone signals are generated by additively mixing
J = 2 speech signals and additive noise. We make use of
the TSP speech database [36], which consists of anechoic
recordings of the Harvard sentences [37] for 24 different
speakers (a total of 1 444 utterances with an average dura-
tion of 2.4 s). The source signals are assembled by concate-
nating 5 utterances of the same speaker. For the first utter-
ance, and for every instance where the DOA is changed
at the end of an utterance, an azimuth angle of arrival
is selected at random, under the constraint that different
speakers are never at the same location at the same time.
Consequently, to obtain the corresponding microphone
signal component, the dry signal is convolved with one of
the room impulse response that we recorded for azimuth
angles ϕ ∈ {0◦, 20◦, . . . , 180◦} with the miniDSP UMA-16
array [38] (ϑ ≈ 0◦). The recordings were made in a meet-
ing roomwith a reverberation time of about T60 = 660ms
(approximate dimensions: 7.50m × 5.00m × 2.65m), for
a source-array distance of 2m. A relatively diffuse record-
ing of the pub noise signal from the ETSI background
noise database [39], that serves as the additive noise, was
obtained with the same array in a room with T60 ≈ 1 s.

Out of the available microphones, we consider a subar-
ray of 9 microphones. As can be seen in Fig. 7, these form
a uniform rectangular array (URA) with an element spac-
ing of 4.2 cm. The sampling rate is fs = 16 kHz. For the
STFT, the frame length, as well as the transform size F ,
are set to 512 samples (32ms). With a frame shift of 160
samples, we obtain 100 frames per second. A square-root
Hann window is used in analysis and synthesis.
As in [15], we make use of the weighted prediction

error (WPE)-based dereverberation [40] implemented in
[41] prior to the (initial) mask estimation. To perform
the cACGMM parameter estimation, we use the Python-
based source code of [42]. In practice, to obtain locally
optimal parameters and limit the required number of
components, a new cACGMM may be computed peri-
odically, or the model can be updated adaptively. In this
work, for simplicity, we only compute a single model for
each mixture, based on the entire signal. Subsequently, to
perform the separation, we consider the direct applica-
tion of the masks (Eq. 7), as well as mask-based MVDR
beamforming (Eq. 12). To reduce artifacts such as musical
tones, which are introduced particularly when the masks
are applied directly, the final masks are lower bounded by
0.01. For the recursive averaging used in Eqs. 8 and 10 to
estimate the PSD matrices needed for the MVDR beam-
former, we set the averaging parameter to α = 0.90, which
corresponds to a time constant of 100ms.
For the DOAs, we first assume that the true (ora-

cle) source locations are known. Later, starting in
Section 5.1.3, we also use realistic DOA estimates in order
to test the robustness of the approach to DOA inaccura-
cies. For this purpose, we make use of the CNN/LSTM
broadband DOA estimator from [43], which is an exten-
sion of the CNN proposed in [44]. The network is trained
to return, for each discrete DOA (resolution 5◦), a frame-
wise probability that indicates when there is an active
source in this direction. The phases of the microphone
signals are the input to the network. Training data are
generated using simulated RIRs, and datasets that do not
overlap with our experimental setup. In practice, a simpler
DOA estimation method may be preferred given that the
aim is only to generate a priori information. Since source
localization is not the focus of this work, however, the

Fig. 7 A uniform rectangular array (URA) comprising 9 microphones is
considered
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selection of the algorithm is arbitrary. Note that DOA esti-
mation errors have an impact on the initial masks and the
annotations. Additionally, they are relevant in the selec-
tion of the number of components K when the approach
with DOA-based components is used, for which the reso-
lution is set to 20◦. Then, no additional cACG components
are introduced for errors �ϕ < 10◦.
In contrast to the mask-based adaptation of the MVDR

beamformer, the signal components are not yet (well) sep-
arated when estimating the PSD matrices �Y (f , t) and
�Ỹj(f , t) required for the initial masks. In this case, it is
therefore beneficial to use a shorter averaging duration to
take advantage of the signal components being (relatively)
sparse in the time-frequency domain. Here, we use recur-
sive averaging with an empirically chosen time constant of
40ms (α = 0.78) for the estimation of the PSD matrices
that are needed for the initial mask computation only.
As an upper bound for the performance, we consider the

initialization with an oracle mask

Mj(f , t) = min

⎧
⎪⎨

⎪⎩

∣
∣
∣γjS′

j,1(f , t)
∣
∣
∣
2

∣
∣
∣Y1(f , t)

∣
∣
∣
2 ; 1

⎫
⎪⎬

⎪⎭
, (34)

and STAs extracted therefrom with Eq. 31. For the direct-
path component in Eq. 34, we use a delayed version of
the dry source signal. In order to prevent a reverberation
dependent attenuation of the signal, the scaling factor γj is
set such that γjS′

j(f , t) has the same energy as the reverber-
ant signal Sj(f , t). As lower bounds, we consider random
initialization, and the omission of the STAs. The DTAs,
however, are used for all configurations. Since the speaker
locations only change between two utterances, the DTAs
mainly distinguish different utterances here. Note that the
GSS is also applied on an utterance-level in [15], although
only a limited context around each considered utterance
is taken into consideration in the cACGMM computa-
tion. Therefore, the configuration where only the DTAs
are used (omission of the STAs) may be seen as represen-
tative of the GSS baseline for the particular experimental
setup considered throughout Section 5.1, disregarding the
effect of DOA errors.
As the instrumental metrics on which the approach is

benchmarked, we use STOI [45], wideband PESQ [46] on
a MOS-LQO scale, as well as the segmental SDR, SIR, and
SNR [47]. For the latter metrics, Ŝ′

j(f , t) is decomposed, in
the time domain, into components that represent filtered
target s(i, t), residual interference εi(i, t), noise εn(i, t), and
artifacts εa(i, t), respectively, where i indexes the samples
within one frame. For all performance metrics, we report
the improvement (�) compared to the noisy reference
microphone signal. The clean target for the computation
of all metrics is again the delayed source signal that is also
used for the oracle masks (Eq. 34). We average the results

for 25 independently generated sets of microphone signals
for low-noise (mixing SNR of 30 dB), and for noisy (5 dB)
conditions.

5.1.2 Selection of the percentile parameter
In Fig. 8, the results are displayed as a function of the per-
centile P that is used to set the thresholds δj for the STAs
(Eq. 31). First, we note that even when the STAs are dis-
abled (P = 0) and the masks are initialized randomly, the
signal components are separated relatively well (e. g., for
SNR = 5 dB and the MVDR beamformer: �STOI = 0.15
and �PESQ = 0.13). This is because the speakers can
be distinguished based on the DTAs alone when different
utterances come from different directions.
Nevertheless, it remains beneficial to also incorporate

STAs in this case: a maximum of �STOI (0.17 for the
same conditions as above) and �PESQ (0.17) is achieved
around P = 10 for the random initialization, before these
metrics start to deteriorate. This behavior for P > 0 may
be explained with a larger portion of the signal being
attributed to the additive noise, and thus being sup-
pressed, when the speakers are assumed to be inactive part
of the time. Although this assumption is plausible in light
of the presence of speech pauses, the target signal might
not be entirely absent during these defined periods of
inactivity. Consequently, while the �SNR score increases
monotonically with P, the speech distortion also becomes
more considerable.
Regardless of the choice of P, the proposed initialization

with the DOA-based masks boosts the achieved perfor-
mance significantly. Moreover, these initial masks can
guide the EM algorithm towards a solution with a permu-
tation that is consistent across frequency, so that the STAs
are no longer needed: �STOI and �PESQ, in particular,
are relatively stable for P ≤ 10 (a maximum of 0.21 is
obtained for bothmetrics usingmask-based beamforming
in noisy conditions), and start to degrade for P > 10. For
a high input SNR, the degradation is more pronounced
since there is then little benefit in increasing P.
For the considered setup, we conclude that the STAs

are not needed when the permutation problem can be
addressed with the initial masks alone. Here, this is the
case for the DOA-based, but not for the random initial-
ization. On the other hand, P can still be a useful trade-off
parameter, in order to control how aggressively noise is
suppressed. Note that the question whether time anno-
tations may be dropped entirely (STAs and DTAs) was
not addressed here. We empirically found that it is not
reasonable to use the same mixture component for utter-
ances impinging from completely different directions, and
that the corresponding results are therefore not mean-
ingful. Instead, a dedicated evaluation of the need for
STAs and DTA will be performed with a different setup in
Section 5.2.
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Fig. 8 Evaluation results as a function of the parameter P that is used in the computation of the STAs. When the masks are initialized randomly, the
performance peaks around P = 10, whereas the proposed initialization permits the STAs to be omitted (P = 0) for the considered evaluation setup

Based on the above findings, we set P = 10 in the follow-
ing, since this choice leads to a near-optimal performance
for all considered configurations.

5.1.3 Impact of initialization and STAs
Next, we examine the influence of the initialization and
the STAs more closely. The results obtained with the
ground truth DOAs can be found in Table 2. The first two
rows (labeled “0D” and “0B”) correspond to the initializa-
tion according to Eq. 33 and STAs according to Eq. 31
using the proposed DOA-based masks. These are given
by Eq. 19 with Eqs. 25 and 30. In the row labels, “D”
indicates direct application of the masks (Eq. 7), and “B”
mask-basedMVDR beamforming (Eq. 12). The remaining
rows (1 to 8) show the results for all other combinations of
initialization and STAs (see Table 1 for an overview of all op-
tions).Groupsof threedifferent rows, where either the STAs
or the initialization are fixed (e. g., rows 2, 5, and 8), can be
considered to understand their effect on the performance.
Generally, the direct masking tends to yield higher

�SDR and �STOI scores, whereas the beamformer is
superior regarding �SIR and �PESQ. This is because

the direct masking permits an effective suppression of
unwanted components regardless of their spatial prop-
erties. In the process, however, artifacts such as musical
tones are introduced, which are detrimental to the speech
quality. By inherently steering spatial nulls in the right
directions, the beamformer, in contrast, can remove local-
ized interferers effectively without distorting the target
signal, but does not suppress diffuse components such as
background noise and reverberation equally well. Since it
is application dependent which method is preferred, we
will compare the results based on the best scores obtained
with either, direct masking or mask-based beamforming.
Even when the STAs are omitted and the initializa-

tion is random (row 8), the performance is still decent
(for noisy conditions:�STOI = 0.15 and�PESQ = 0.13).
This is because the DTAs are still available given that the
approach with DOA-based components is used. With the
STAs derived from the proposed initial masks (row 2), the
scores increase by an additional 0.03 in terms of �STOI
and 0.04 in terms of �PESQ. The difference regarding
�PESQ is more significant (0.08) under low-noise con-
ditions. Furthermore, we can compare row 2 with row 5
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Table 2 Results with oracle DOAs for low-noise (left) and noisy (right) conditions. Each row corresponds to a fixed combination of STAs
(Eq. 31), initialization (proposed DOA-based (Eq. 19), oracle (Eq. 34), or random), and mask application (“D” for direct (Eq. 7), “B” for
beamforming (Eq. 12)). The rows are numbered from 0 to 8 for ease of reference. Boldface is used to indicate the highest scores for
each metric. We note that the STAs are helpful on their own, but not needed if the proposed initialization is used. The difference
between the results for proposed and oracle initialization is mainly due to the respective behavior at low frequencies

row STAs init
mixture SNR = 30dB mixture SNR = 5dB

�SDR �SIR �STOI �PESQ �SDR �SIR �SNR �STOI �PESQ

0D)
prop. prop.

8.6 dB 17.1 dB 0.21 0.22 11.1 dB 16.9 dB 10.5 dB 0.22 0.10

0B) 8.0 dB 18.9 dB 0.21 0.35 9.4 dB 17.2 dB 10.0 dB 0.21 0.20

1D)
prop. oracle

8.7 dB 16.9 dB 0.19 0.22 11.5 dB 18.1 dB 10.7 dB 0.18 0.17

1B) 8.2 dB 18.6 dB 0.19 0.34 10.0 dB 18.6dB 11.0dB 0.17 0.29

2D)
prop. rand.

8.0 dB 15.2 dB 0.16 0.16 10.4 dB 14.9 dB 10.4 dB 0.18 0.08

2B) 7.5 dB 16.7 dB 0.16 0.26 8.9 dB 15.4 dB 10.2 dB 0.17 0.17

3D)
oracle prop.

8.7 dB 17.5 dB 0.21 0.24 11.3 dB 17.3 dB 10.3 dB 0.23 0.11

3B) 8.1 dB 19.3dB 0.21 0.36 9.5 dB 17.7 dB 9.9 dB 0.21 0.21

4D)
oracle oracle

8.8dB 17.2 dB 0.20 0.23 11.6dB 18.1 dB 10.7 dB 0.19 0.18

4B) 8.3 dB 19.0 dB 0.20 0.35 10.0 dB 18.6dB 11.0dB 0.17 0.29

5D)
oracle rand.

8.2 dB 15.5 dB 0.16 0.16 10.7 dB 15.6 dB 10.3 dB 0.19 0.09

5B) 7.7 dB 17.1 dB 0.17 0.26 9.1 dB 16.0 dB 10.1 dB 0.18 0.18

6D)
none prop.

8.3 dB 17.0 dB 0.21 0.23 10.6 dB 16.5 dB 9.8 dB 0.22 0.11

6B) 7.9 dB 18.8 dB 0.21 0.36 9.3 dB 17.2 dB 9.8 dB 0.21 0.21

7D)
none oracle

8.3 dB 16.7 dB 0.19 0.21 11.0 dB 17.7 dB 10.3 dB 0.18 0.17

7B) 8.1 dB 18.6 dB 0.19 0.34 9.8 dB 18.6dB 10.9 dB 0.17 0.29

8D)
none rand.

6.9 dB 13.5 dB 0.12 0.11 8.9 dB 13.2 dB 9.3 dB 0.15 0.06

8B) 6.7 dB 14.9 dB 0.13 0.18 8.1 dB 13.9 dB 9.6 dB 0.15 0.13

(oracle mask-based STAs). The results are similar, which
demonstrates that the proposedmask-based STAs are suf-
ficient to address the permutation problem, at least when
they are used in conjunction with the DTAs.
As already observed in Section 5.1.2, the need for STAs

is mitigated by the proposed initialization for the con-
sidered evaluation setup: the differences between rows 6
(omission of the STAs), 3 (oracle STAs), and 0 (proposed
DOA-based STAs) are minor. �SDR, �SIR, and �SNR
indicate that the inclusion of STAs enables a slightly
higher suppression of unwanted components (largest dif-
ference: 0.7 dB), but the �STOI and �PESQ metrics
barely reflect this. The same conclusions can be drawn
based on the results obtained with the oracle initial masks
(rows 7, 4, and 1).
The initialization has a greater impact on the results, but

the trends resemble those for the STAs: Comparing rows
8, 7, and 6 (all for the case where the STAs are omitted),
we observe that the proposed DOA-based initial masks
(row 6) improve the performance considerably (for noisy
conditions: an additional 0.07 and 0.08 in terms of �STOI
and �PESQ, respectively). The differences between the
proposed initialization and oracle initialization (row 7)

are inconsistent, however. Upon closer inspection, we find
that this is due to the different behavior at low frequen-
cies (particularly frequencies up to 400Hz). This is a result
of the poor quality of the DOA-based initial masks in
this frequency range, as can also be seen in the exam-
ple of Fig. 4. Whereas the oracle initialization enables a
more effective suppression, the resulting masks still do
not capture the target speech very well at low frequencies,
which can be explained with the difficulty of separating
components based on spatial signal characteristics when
the phase and level differences between the microphones
are small. Here, it seems that this dissimilarity in the
generated masks favors the oracle initialization (due to
more interference and noise suppression at the cost of an
increased target speech distortion) in terms of �PESQ,
and the DOA-based initialization in terms of �STOI. For
higher frequencies (above 400Hz), however, the produced
masks are very similar.

5.1.4 Robustness to DOA estimation errors
Table 3 shows the difference compared to the results in
Table 2 when estimated DOAs are used i.e., negative
numbers indicate a poorer performance due to erroneous
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Table 3 Results with estimated DOAs in terms of the difference compared to the oracle DOA results displayed in Table 2. Here, the
numbers printed in bold indicate when there is the most significant deterioration. Because K = D + 1 direction-based components are
used, DOA errors here have an impact on the results regardless of the choice of STAs and initialization. On the other hand, based on the
minor differences between the rows, we conclude that the incorporation of DOA-based a priori knowledge is quite robust to DOA errors

row STAs init
mixture SNR = 30dB mixture SNR = 5dB

�SDR �SIR �STOI �PESQ �SDR �SIR �SNR �STOI �PESQ

0D)
prop. prop.

−0.3 dB −0.7 dB −0.02 −0.04 −0.5dB −1.2 dB 0.1 dB −0.03 −0.02

0B) −0.3 dB −0.7 dB −0.02 −0.05 −0.5dB −1.2 dB −0.1dB −0.02 −0.03

1D)
prop. oracle

−0.3 dB −0.6 dB −0.02 −0.04 −0.3 dB −1.1 dB 0.2 dB −0.02 −0.03

1B) −0.3 dB −0.7 dB −0.02 −0.05 −0.4 dB −1.1 dB −0.1dB −0.02 −0.05

2D)
prop. rand.

−0.3 dB −0.7 dB −0.01 −0.03 −0.4 dB −1.1 dB 0.1 dB −0.02 −0.02

2B) −0.3 dB −0.8 dB −0.01 −0.04 −0.5dB −1.1 dB −0.1dB −0.02 −0.03

3D)
oracle prop.

−0.3 dB −0.8 dB −0.02 −0.04 −0.4 dB −1.3 dB 0.2 dB −0.03 −0.02

3B) −0.4dB −0.8 dB −0.02 −0.05 −0.5dB −1.3 dB 0.0 dB −0.02 −0.03

4D)
oracle oracle

−0.3 dB −0.6 dB −0.02 −0.04 −0.2 dB −1.0 dB 0.2 dB −0.02 −0.03

4B) −0.4dB −0.7 dB −0.02 −0.05 −0.4 dB −0.9 dB −0.1dB −0.02 −0.04

5D)
oracle rand.

−0.3 dB −0.8 dB −0.01 −0.03 −0.4 dB −1.5dB 0.3 dB −0.03 −0.03

5B) −0.4dB −0.8 dB −0.01 −0.03 −0.5dB −1.4 dB −0.0 dB −0.02 −0.04

6D)
none prop.

−0.4dB −0.7 dB −0.02 −0.04 −0.4 dB −1.2 dB 0.3 dB −0.03 −0.03

6B) −0.4dB −0.8 dB −0.02 −0.06 −0.5dB −1.2 dB −0.1dB −0.02 −0.04

7D)
none oracle

−0.3 dB −0.5 dB −0.02 −0.04 −0.2 dB −1.1 dB 0.3 dB −0.02 −0.03

7B) −0.4dB −0.5 dB −0.02 −0.05 −0.4 dB −1.1 dB −0.0 dB −0.02 −0.04

8D)
none rand.

−0.3 dB −1.0 dB −0.01 −0.02 −0.1 dB −0.8 dB 0.6 dB −0.02 −0.01

8B) −0.4dB −1.1dB −0.01 −0.02 −0.3 dB −0.8 dB 0.2 dB −0.01 −0.02

DOAs. For the considered conditions, the DOA error
statistics are visualized in Fig. 9. The angular error is
�ϕ ≥ 10◦ in about 6% of the frames at SNR = 30 dB, and
in about 9% of the frames at SNR = 5 dB.
The most considerable effect on the results comes

from using the DOAs to assign (for each frame) which
mixture component corresponds to which speaker. As a
result,�STOI deteriorates by−0.02 and�PESQ by−0.04
even when the oracle mask-based STAs and initialization
are used (row 4, noisy conditions). The sensitivity of

Fig. 9 Normalized cumulative histogram of the absolute DOA
estimation error. Integer multiples of 20◦ are more common because
of our setup, where only angles ϕ ∈ {0◦ , 20◦ , . . . , 180◦} are available
for the true source locations

the DOA-based components to DOA estimation errors
is controlled by the selected angular resolution (20◦ in
this experiment). A finer resolution theoretically enables
sources to be separated at a closer spacing, but increases
the reliance on accurate DOA estimates. The proposed
DOA-based STAs and initialization (row 0), in contrast,
are quite robust to DOA estimation errors: the impact on
the performance is only marginally higher than in row 4.
Generally, we observe that particularly the �SIR score

is affected by the imperfect source localization (with dif-
ferences of up to 1.5 dB). This is to be expected, given
that the DOAs essentially define target and interferers.
Based on the �SNR metric, on the other hand, we con-
clude that the suppression of additive noise is not affected.
The influence on the other metrics (�SDR, �STOI, and
�PESQ) is moderate because these account for all signal
components.

5.1.5 Audio example
Audio files for one particular example (mixture SNR =
5 dB) are available at (Additional file 1)1. The correspond-
ing azimuth angles of arrival (true and estimated) are

1https://users.ugent.be/~abohlend/DOA-GSS/

https://users.ugent.be/~abohlend/DOA-GSS/
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Fig. 10 Ground truth (solid lines) and estimated (dashed) azimuth
angles of arrival for the considered audio example. Major errors occur
especially after DOA changes and during speech pauses

shown in Fig. 10. At least for the first speaker, the out-
put signal does not change fundamentally depending on
the selected STAs and initialization. Rather, mask estima-
tion errors that can manifest in the form of clearly audible
artifacts occur in local time-frequency regions. Whereas
the outputs again differ chiefly at low frequencies, where
it is difficult to distinguish the signal components based
on spatial information, some deviations can be observed
across the entire spectrum. When (oracle or DOA-based)
STAs or initial masks are used, the described mask errors
become less common. However, as the comparison of ora-
cle and DOA-based a priori information based on Table 2
has demonstrated, the benefit of an increasing quality of
the incorporated prior knowledge saturates at some point.
Because the location of the second speaker is static in

this case, the corresponding DTAs are not very useful,
as in the example of Fig. 6. Consequently, due to fre-
quency permutation errors, the differences between the
output signals generated for various selections of STAs
and initialization are more pronounced than for the first
speaker. The proposed DOA-based initialization, in par-
ticular, remains sufficient to prevent the occurrence of
permutation errors.
For a setup which, due to sudden changes of otherwise

static DOAs, favors an approach with DOA specific com-
ponents, we conclude that an initialization using DOA-
based masks, combined with the DTAs, delivers the best
results. The STAs, in contrast, are then not needed. Addi-
tionally, the DOA-GSS proves to be relatively robust to
DOA inaccuracies, especially with regard to the use of
the DOAs to obtain initial masks and STAs. A relevant
deterioration is only observed because the DOA-based
components are assigned to each speaker based on the
respective DOA estimates.

5.2 Gradually moving speakers
5.2.1 Experimental setup
In the following, we consider a scenario where two speak-
ers are simultaneously active (2 concatenated utterances
per speaker, about 4.6 s in total), but one speaker moves

around the array such that the corresponding azimuth
angle of arrival changes linearly over time. For this setup,
it is less straightforward to define time annotations that
unambiguously identify each of the components. These
conditions are, therefore, also suitable for comparing
DTAs and STAs. Specifically, (a combination of) the fol-
lowing techniques can be used to address the frequency
permutation problem: (i) incorporating the initial mask-
based STAs, (ii) producing DTAs by using one cACG
component for each discrete direction rather than each
speaker, (iii) using appropriate initial masks, and (iv) per-
forming a manual permutation alignment after the EM
algorithm has converged.
We consider the moving and the static speaker to be

the target and the interferer, respectively. An important
parameter in the described scenario is the length of the
trajectory of the target speaker during the signal i.e., the
total movement in terms of the azimuth angle ϕ. On the
one hand, if the speaker is (almost) static for the entire
signal duration, no information can be gained from the
DTAs (see Fig. 6). On the other hand, a large move-
ment may be challenging for the speaker-based approach
(K = J + 1 components, DTAs are unavailable), because
the spatial signal characteristics change significantly over
the course of the signal, as well as for the DOA-based
approach (K = D + 1 components, DTAs are available),
because less data are available to determine the optimal
model parameters for each component.
Therefore, we consider the results as a function of

the total movement. For this purpose, we use simu-
lated microphone signals, where the contributions of
the 2 speakers have been obtained with the signal
generator [48], which makes use of the image source
method [49]. In the simulation, the room dimensions
are 6.0m × 5.0m × 2.7m, with a reverberation time of
T60 = 0.5 s. The microphone array, which is arranged
in a plane that is parallel to the ground, is positioned
near the center of the room, at a height of 1m. Ini-
tially, the speakers are located in a distance of ±1.5m
from the array in x-direction. The height of the sound
sources used to represent the speakers is 1.5m at all
times. Thus, the fixed azimuth angle of arrival of the
(static) interferer is ϕ = 180◦, whereas the target speaker
moves on an arc towards the interfering speaker start-
ing at ϕ = 0◦. Empirically, we choose a resolution of
30◦ for the DOA-based components (only relevant when
K = D + 1).
The setup is otherwise unchanged compared to

Section 5.1.1. For conciseness, we only consider noisy
conditions (SNR = 5 dB) with mask-based MVDR beam-
forming, and use the estimated DOAs. To obtain an
upper bound reference, the permutation alignment, when
enabled, is performed by selecting (for each frequency)
the permutation that minimizes the mean squared error
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(MSE) between the estimated masks and the ideal masks
(Eq. 34). The scaling factor γj is omitted in this case.
Its incorporation would attenuate the ideal mask for the
noise component, which leads to unexpected permuta-
tions where the MSE is minimized by using the noise
component for one of the speakers at some frequencies.

5.2.2 Evaluation
The achieved �STOI and �PESQ scores with regard
to the target speaker are displayed in Fig. 11. First, we
consider the case where no DTAs are available (only
K = J + 1 = 3 components that correspond to the two
speakers and the noise, respectively), and no manual per-
mutation alignment is performed (first row in the figure).
With the random initialization, the use of STAs again

leads to improved results. However, the improvement is
mostly below 0.10 in terms of both �STOI and �PESQ
even when the oracle STAs are used. The reason for the
comparatively poor performance is that the STAs alone
are insufficient to fully resolve the permutation prob-
lem for P = 10. Whereas it would be possible to further
increase P, a different approach for addressing the permu-
tation problem may be preferred to avoid adding to the
target speech distortion.
Combined with the proposed DOA-based initialization,

the STAs are again no longer useful. This suggests that
the considered initial masks alone are sufficient to address
the permutation problem, so that no time annotations
are needed in addition. Further, when a manual (oracle)
permutation alignment is performed (second row), we
observe that it is even detrimental to include STAs. This is
because they provide no added benefit when the permu-
tation can be resolved correctly anyway, but the increased
target speech distortion inherent to the incorporation of
these annotations can lead to a poorer speech quality.
As the results in Section 5.1 have already shown, the

DOA-based initialization improves the performance con-
siderably compared to random initialization, especially
when no manual permutation alignment is performed
(first row). The difference remains evident even after
the permutation alignment (second row) e. g., for a total
movement of 80◦, no time annotations: an additional 0.03
in terms of �STOI, 0.06 in terms of �PESQ.
Moreover, the results indicate that the DOA-based ini-

tial masks deliver a seemingly better performance than
the oracle masks in terms of �STOI. As previously noted
in the context of similar trends observed in Table 2, this
is primarily related to the different behavior at the lower
end of the spectrum (especially frequencies up to 400Hz).
The produced masks are otherwise similar except for
occasional permutation errors.
Regardless of the need for time annotations, it may

be reasonable to use direction-based (instead of speaker-

based) components e. g., when two different sources are
located in the same direction at different times. Since the
cACGMM itself is time-invariant, the resulting similarity
of the spatial signal characteristics could be problem-
atic for an approach with speaker specific components.
Although an evaluation of this scenario is beyond the
scope of this work, the evaluation setup considered here
still permits assessing the practicability of an approach
with direction specific components. The corresponding
results are shown in the third and fourth row of Fig. 11,
without and with manual permutation alignment, respec-
tively.
To ensure that the DTAs are meaningful, the speaker

must move sufficiently far to be covered by at least two
different components given the selected resolution of 30◦.
Even for random initialization and without permutation
alignment, the improvement under these conditions is
only marginal, however. Upon examining the results more
closely, we find that this is because, for a signal dura-
tion of no more than 2 utterances, the performance is
still strongly dependent on the amount of data available
to determine the optimal parameters for each mixture
component. However, the more components are needed
to encompass the entire trajectory of the speaker with
a fixed angular resolution, the further the signal is sub-
divided into short segments. As a result of the inherent
increase of the degrees of freedom in the mixture model
parameter estimation, the produced final masks increas-
ingly resemble the employed initial masks. This limits
the performance resulting from random initialization, in
particular, but also causes a degradation of the results
obtained with the proposed DOA-based initialization the
further the speaker moves.
The problem also becomes apparent when looking at

Fig. 12, which shows a different representation of the same
results, where the DOA-based initialization is used for
all configurations, but the STAs are omitted. Clearly, the
DOA-GSS performs best under the considered conditions
when the components are speaker-based (no DTAs). For
a moving speaker trajectory covering 120◦, without per-
mutation alignment, the difference is 0.07 in terms of
�STOI and 0.06 in terms of �PESQ. Thus, we find that
a DOA-based subdivision of the signal into multiple seg-
ments is only sensible when the cACGMM is used to
describe a longer signal, where each of the resulting seg-
ments retains a length of several seconds. In practice, this
can be achieved e. g., by adaptively selecting an appro-
priate resolution based on the considered signal and the
corresponding (estimated) DOAs.
Finally, based on Fig. 12, we can determine whether it is

still beneficial to apply an additional manual permutation
alignment when the proposed initialization is used. Again,
�PESQ and �STOI paint a contradicting picture. Similar
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Fig. 11 �STOI and �PESQ scores for a moving speaker as a function of the total movement over the entire signal duration in terms of the azimuth
angle ϕ. To obtain a clearer representation, a moving average was applied (averaging over all results that deviate by up to ±10◦ compared to the
values indicated on the x-axis), and negative results were replaced by 0. For this setup, too, the initialization remains the most effective way to
benefit from DOA information, rendering time annotations (STAs or DTAs) as well as manual permutation alignment unnecessary
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Fig. 12 Subset of the results from Fig. 11 (proposed initialization, omit
STAs). The performance of the approach with DTAs deteriorates with
an increasing length of the speaker trajectory due to the lack of data
to determine optimal parameters for all direction specific mixture
components

to the oracle initialization, the oracle permutation align-
ment leads to a stronger suppression at low frequencies,
which appears to be favorable in terms of �PESQ, but
deteriorates the �STOI score. When comparing the spec-
tra of the separated signals, we note that the differences at
higher frequencies, in contrast, are marginal.
To conclude, the availability of estimated source DOAs

can be exploited to derive initial masks which make time
annotations and permutation alignment unnecessary. An
approach with DOA specific components may be of inter-
est e. g., for sources with overlapping trajectories, or when
a greater number of sources intensifies the permuta-
tion problem. Additionally, it could be practical for the
purpose of only extracting sources in a specified target
direction. However, in the selection of the corresponding
angular resolution, it must be taken into account that the
performance clearly deteriorates when mixture compo-
nents are optimized based on signal segments that are not
at least a few seconds long. The STAs, on the other hand,
provided no added benefit compared to the initial masks
that they are derived from, but could be used to enforce a
stronger noise suppression.

5.3 Performance in different conditions
To conclude the experiments, it is evaluated in this section
how the performance of the DOA-GSS is dependent on
the experimental conditions. We consider the setup of
Section 5.1.1, where the speaker locations are static for the
duration of an utterance. That being the case, each of the
corresponding DOA-based mixture components is active
for a reasonably long time, so that we can make use of the
approach with DTAs. The angular resolution is again 20◦.
Given the findings from previous experiments, the pro-
posed DOA-based initialization is used, but the STAs are
omitted.
The Mix-mask estimator (Mix-MEst) approach pro-

posed in [6] is considered as a baseline. Using the spatial
information given by the microphone signal phases, the
employed CNN produces TF masks for each of 72 dis-
crete directions ϕ ∈ {0◦, 5◦, . . . , 355◦}, for the purpose
of extracting a hypothetical source from any one direc-
tion. The DOA estimates are then used to select the right
mask for each of the J sources. Thus, the approach is also
DOA-based, but the DOA information is not taken into
account in the mask estimation itself. This puts it at a dis-
advantage compared to e. g., the DOA-GSS, where DOA
estimates are available as prior information. Nevertheless,
it is interesting to consider Mix-MEst as a reference, since
the DOAs are also used to define which part of the signal
to extract.
The �STOI and �PESQ scores are shown in Fig. 13

as a function of various parameters specifying the exper-
imental conditions. In the first row, the mixture SNR is
varied from −5 dB to 20 dB for an otherwise fixed setup.
We used estimated DOAs in the generation of all results,
which plays an important role particularly under the most
adverse of the considered conditions. In the presence of
strong noise, both approaches perform similarly. Mix-
MEst is trained to cope with adverse conditions and, as
the DOA estimates are only used to select the masks in the
end, a higher robustness to DOA estimation errors may be
expected. In contrast, when the mixture SNR is higher, we
obtain better results with DOA-GSS than with Mix-MEst
(e. g., at SNR = 10 dB: �STOI = 0.20 with the DOA-GSS,
compared to 0.16 with Mix-MEst when the sources are
separated by direct masking).
It is interesting to note that the masks obtained from

the DOA-GSS are particularly suitable for mask-based
beamforming (solid lines). With Mix-MEst, better �STOI
and �PESQ scores are typically obtained by applying
the masks directly (dotted lines), whereas the MVDR
beamforming approach significantly increases the�PESQ
scores when the DOA-GSS is used. This can also be seen
in the second row of the figure, where the mixture SIR
is varied from −15 dB to +15 dB, and in the third row,
where different source-array distances are considered. For
example, �PESQ increases from 0.13 to 0.24 when the
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Fig. 13 Performance of the DOA-GSS and the neural network-based Mix-MEst approach of [6] as a function of the mixture SNR (top), SIR (middle),
and the source-array distance (bottom). For the DOA-GSS, the DOA-based initialization and the DTAs are used, but the STAs are omitted

beamformer is used instead of direct masking for the
DOA-GSS at SIR = 0 dB and SNR = 10 dB, butMix-MEst
achieves around 0.15 in both cases. Note that for a dis-
tance of 3m, the size of the room restricted us to the
recording of RIRs for angles ϕ ∈ {40◦, 60◦, . . . , 140◦}, so
that the spacing between the sources is smaller on average.
Generally, we observe a favorable robustness of the

DOA-GSS to adverse conditions, provided that the DOA
estimation does not break down completely. Although the
improvement is no longer reflected in the �PESQ score
when the signal is dominated by unwanted components,
the results remain decent in terms of�STOI, which shows
that the speakers can still be separated. For a mixture SNR
of−5 dB, the improvement compared to the noisymixture
is still �STOI = 0.14 (SIR = 0 dB, 2m distance), 0.17 for
SIR = −15 dB (SNR = 10 dB, 2m distance), and 0.17 for a
source-array distance of 3m (SNR = 10 dB, SIR = 0 dB).

6 Conclusions
We compared various methods to take advantage of
DOA estimates in probabilistic mixture model-based TF
mask estimation for source separation. These clustering
approaches suffer from the sensitivity to the initialization
of the iterative model parameter estimation, and the need
to address the frequency permutation problem. Therefore,
incorporating additional information is helpful to fully
exploit the potential of the approach.
Specifically, we considered the previously proposed

GSS, which models the directional statistics of the micro-
phone array signals by a cACGMM. The need for a
permutation alignment is avoided bymeans of a tight inte-
gration of annotations that indicate when each speaker
is active. To this end, we proposed to derive suitable
STAs from simple DOA-based initial masks. Whereas
experiments verify that these limit the occurrence of
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permutation errors, an increased distortion of the target
signals is observed as well.
In contrast, the weak integration by means of an initial-

ization of the EM algorithm with the same DOA-based
masks was found to be sufficient to address both of the
described shortcomings. Compared to an ideal initializa-
tion and permutation alignment, significant deviations
were only observed at low frequencies, where the lack
of reliable spatial information, as given by the phase and
level differences between themicrophones, prevents high-
quality results.
Finally, we considered the use of DOA-based compo-

nents, where the correct component for each speaker is
selected depending on their current location. Whereas
this represents an alternative to acquire annotations,
increasing the number of mixture components also
implies that less data are available to determine the opti-
mal model parameters for each individual component. To
make better use of this approach, and to enable a realtime
application thereof, an adaptive strategy where DOA spe-
cific components are updated continuously may therefore
be considered in future work.
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