Skip to main content

Recognition of Noisy Speech: A Comparative Survey of Robust Model Architecture and Feature Enhancement


Performance of speech recognition systems strongly degrades in the presence of background noise, like the driving noise inside a car. In contrast to existing works, we aim to improve noise robustness focusing on all major levels of speech recognition: feature extraction, feature enhancement, speech modelling, and training. Thereby, we give an overview of promising auditory modelling concepts, speech enhancement techniques, training strategies, and model architecture, which are implemented in an in-car digit and spelling recognition task considering noises produced by various car types and driving conditions. We prove that joint speech and noise modelling with a Switching Linear Dynamic Model (SLDM) outperforms speech enhancement techniques like Histogram Equalisation (HEQ) with a mean relative error reduction of 52.7% over various noise types and levels. Embedding a Switching Linear Dynamical System (SLDS) into a Switching Autoregressive Hidden Markov Model (SAR-HMM) prevails for speech disturbed by additive white Gaussian noise.

Publisher note

To access the full article, please see PDF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Björn Schuller.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Schuller, B., Wöllmer, M., Moosmayr, T. et al. Recognition of Noisy Speech: A Comparative Survey of Robust Model Architecture and Feature Enhancement. J AUDIO SPEECH MUSIC PROC. 2009, 942617 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: