Skip to content


  • Research Article
  • Open Access

Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

  • 1Email author,
  • 2, 3,
  • 1, 4,
  • 1, 5,
  • 2,
  • 2 and
  • 1
EURASIP Journal on Audio, Speech, and Music Processing20072007:030194

  • Received: 1 October 2006
  • Accepted: 28 June 2007
  • Published:


This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.


  • Signal Processing
  • Acoustics
  • Automatic Processing
  • Electrophysiological Study
  • Algorithmically Process


Authors’ Affiliations

Laboratoire de Mécanique et d'Acoustique, CNRS, Marseille, France
Institut de Neurosciences Cognitives de la Méditerranée, CNRS, Marseille Cadex, 13402, France
Psychology Department, Middle Tennessee State University, Murfreesboro, TN 37127, USA
IRCAM, 1 Place Igor Stravinsky, Paris, 75004, France
France Télécom, Lannion Cedex, 22307, France


  1. Friberg A, Sundberg J: Time discrimination in a monotonic, isochronous sequence. Journal of the Acoustical Society of America 1995,98(5):2524-2531. 10.1121/1.413218View ArticleGoogle Scholar
  2. Drake C, Botte MC: Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Perception and Psychophysics 1993, 54: 277-286. 10.3758/BF03205262View ArticleGoogle Scholar
  3. Hirsh IJ, Monahan CB, Grant KW, Singh PG: Studies in auditory timing : I, simple patterns. Perception and Psychophysics 1990,74(3):215-226.View ArticleGoogle Scholar
  4. ten Hoopen G, Boelaarts L, Gruisen A, Apon I, Donders K, Mul N, Aker-boom S: The detection of anisochrony in monaural and interaural sound sequences. Perception and Psychophysics 1994,56(1):210-220.View ArticleGoogle Scholar
  5. Barthet M, Kronland-Martinet R, Ystad S, Depalle Ph: The effect of timbre in clarinet interpretation. Proceedings of the International Computer Music Conference (ICMC '07), August 2007, Copenhagen, DenmarkGoogle Scholar
  6. Besson M, Faïta F, Czternasty C, Kutas M: What's in a pause: event-related potential analysis of temporal disruptions in written and spoken sentences. Biological Psychology 1997,46(1):3-23. 10.1016/S0301-0511(96)05215-5View ArticleGoogle Scholar
  7. Patel AD, Daniele JR: An empirical comparison of rhythm in language and music. Cognition 2003,87(1):B35-B45. 10.1016/S0010-0277(02)00187-7View ArticleGoogle Scholar
  8. Magne C, Schön D, Besson M: Prosodic and melodic processing in adults and children: behavioral and electrophysiologic approaches. Annals of the New York Academy of Sciences 2003, 999: 461-476. 10.1196/annals.1284.056View ArticleGoogle Scholar
  9. Schön D, Magne C, Besson M: The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology 2004,41(3):341-349. 10.1111/1469-8986.00172.xView ArticleGoogle Scholar
  10. Besson M, Macar F: An event-related potential analysis of incongruity in music and other non-linguistic contexts. Psychophysiology 1987,24(1):14-25. 10.1111/j.1469-8986.1987.tb01853.xView ArticleGoogle Scholar
  11. Koelsch S, Kasper E, Sammler D, Schulze K, Gunter T, Friederici AD: Music, language and meaning: brain signatures of semantic processing. Nature Neuroscience 2004,7(3):302-307. 10.1038/nn1197View ArticleGoogle Scholar
  12. Patel AD, Gibson E, Ratner J, Besson M, Holcomb PJ: Processing syntactic relations in language and music: an event-related potential study. Journal of Cognitive Neuroscience 1998,10(6):717-733. 10.1162/089892998563121View ArticleGoogle Scholar
  13. Koelsch S, Gunter T, Friederici AD, Schröger E: Brain indices of music processing: "nonmusicians" are musical. Journal of Cognitive Neuroscience 2000,12(3):520-541. 10.1162/089892900562183View ArticleGoogle Scholar
  14. Regnault P, Bigand E, Besson M: Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. Journal of Cognitive Neuroscience 2001,13(2):241-255. 10.1162/089892901564298View ArticleGoogle Scholar
  15. Magne C, Astésano C, Aramaki M, Ystad S, Kronland-Martinet R, Besson M: Influence of syllabic lengthening on semantic processing in spoken French: behavioral and electrophysiological evidence. Cerebral Cortex 2007. Oxford University Press, January 2007Google Scholar
  16. Astésano C: Rythme et accentuation en français: Invariance et variabilité stylistique, Collection Langue & Parole. L'Harmattan, Paris, France; 2001.Google Scholar
  17. Di Cristo A: Le cadre accentuel du français contemporain: essai de modélisation: premiére partie. Langues 1999,2(3):184-205.Google Scholar
  18. Pallone G: Dilatation et transposition sous contraintes perceptives des signaux audio: application au transfert cinéma-vidéo, Ph.D. thesis. University of Aix-Marseille II, Marseilles, France; 2003.Google Scholar
  19. Dolson M: The phase vocoder: a tutorial. Computer Music Journal 1986,10(4):14-27. 10.2307/3680093View ArticleGoogle Scholar
  20. Pallone G, Boussard P, Daudet L, Guillemain P, Kronland-Martinet R: A wavelet based method for audio-video synchronization in broadcasting applications. Proceedings of the 2nd COST-G6 Workshop on Digital Audio Effects (DAFx '99), December 1999, Trondheim, Norway 59-62.Google Scholar
  21. Puckette M: Phase-locked vocoder. Proceedings of IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, October 1995, New Paltz, NY, USA 222-225.Google Scholar
  22. Laroche J, Dolson M: Improved phase vocoder time-scale modification of audio. IEEE Transactions on Speech and Audio Processing 1999,7(3):323-332. 10.1109/89.759041View ArticleGoogle Scholar
  23. French NR, Zinn MK: Method of an apparatus for reducing width of trans-mission bands. 1928.Google Scholar
  24. Roucos S, Wilgus A: High quality time-scale modification for speech. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '85), April 1985, Tampa, Fla, USA 10: 493-496.View ArticleGoogle Scholar
  25. Verhelst W, Roelands M: An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '93), April 1993, Minneapolis, Minn, USA 2: 554-557.Google Scholar
  26. Hejna DJ, Musicus BT, Crowe AS: Method for time-scale modification of signals. 1992.Google Scholar
  27. Laroche J: Time and pitch scale modification of audio signals. In Applications of Digital Signal Processing to Audio and Acoustics. Edited by: Kahrs M, Brandenburg K. Kluwer Academic Publishers, Norwell, Mass, USA; 1998:279-309.Google Scholar
  28. Repp B: Probing the cognitive representation of musical time: structural constraints on the perception of timing perturbations. Haskins Laboratories Status Report on Speech Research 1992, 111-112: 293-320.Google Scholar
  29. Moog B: MIDI: musical instrument digital interface. Journal of Audio Engineering Society 1986,34(5):394-404.Google Scholar
  30. Puckette MS, Appel T, Zicarelli D: Real-time audio analysis tools for Pd and MSP. In Proceedings of the International Computer Music Conference, October 1998, Ann Arbor, Mich, USA. International Computer Music Association; 109-112.Google Scholar
  31. Jasper HH: The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 1958, 10: 371-375.Google Scholar
  32. Kutas M, Hillyard SA: Reading senseless sentences: brain potentials reflect semantic incongruity. Science 1980,207(4427):203-205. 10.1126/science.7350657View ArticleGoogle Scholar
  33. Besson M, Magne C, Regnault P: Le traitement du langage. In L'imagerie fonctionnelle électrique (EEG) et magnétique (MEG): Ses applications en sciences cognitives. Edited by: Renault B. Hermés, Paris, France; 2004:185-216.Google Scholar
  34. Astésano C, Besson M, Alter K: Brain potentials during semantic and prosodic processing in French. Cognitive Brain Research 2004,18(2):172-184. 10.1016/j.cogbrainres.2003.10.002View ArticleGoogle Scholar
  35. Magne C, Astésano C, Lacheret-Dujour A, Morel M, Alter K, Besson M: On-line processing of "pop-out" words in spoken French dialogues. Journal of Cognitive Neuroscience 2005,17(5):740-756. 10.1162/0898929053747667View ArticleGoogle Scholar
  36. Besson M, Faïta F: An event-related potential (ERP) study of musical expectancy: comparison of musicians with non-musicians. Journal of Experimental Psychology: Human Perception and Performance 1995,21(6):1278-1296.Google Scholar
  37. Koelsch S, Gunter T, Schröger E, Friederici AD: Processing tonal modulations: an ERP study. Journal of Cognitive Neuroscience 2003,15(8):1149-1159. 10.1162/089892903322598111View ArticleGoogle Scholar
  38. Luks TL, Nusbaum HC, Levy J: Hemispheric involvement in the perception of syntactic prosody is dynamically dependent on task demands. Brain and Language 1998,65(2):313-332. 10.1006/brln.1998.1993View ArticleGoogle Scholar
  39. Zatorre RJ: Neural specializations for tonal processing. In The Biological Foundations of Music, Annals of the New York Academy of Sciences. Volume 930. Edited by: Zatorre RJ, Peretz I. New York Academy of Sciences, New York, NY, USA; 2001:193-210.Google Scholar


© Sølvi Ystad et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.