- Research Article
- Open access
- Published:
Analysis of Transient and Steady-State Behavior of a Multichannel Filtered-x Partial-Error Affine Projection Algorithm
EURASIP Journal on Audio, Speech, and Music Processing volume 2007, Article number: 031314 (2007)
Abstract
The paper provides an analysis of the transient and the steady-state behavior of a filtered-x partial-error affine projection algorithm suitable for multichannel active noise control. The analysis relies on energy conservation arguments, it does not apply the independence theory nor does it impose any restriction to the signal distributions. The paper shows that the partial-error filtered-x affine projection algorithm in presence of stationary input signals converges to a cyclostationary process, that is, the mean value of the coefficient vector, the mean-square error and the mean-square deviation tend to periodic functions of the sample time.
References
Nelson PA, Elliott SJ: Active Control of Sound. Academic Press, London, UK; 1995.
Douglas SC: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Transactions on Speech and Audio Processing 1999,7(4):454-465. 10.1109/89.771315
Bouchard M: Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems. IEEE Transactions on Speech and Audio Processing 2003,11(1):54-60. 10.1109/TSA.2002.805642
Carini A, Sicuranza GL: Transient and steady-state analysis of filtered- x affine projection algorithms. IEEE Transactions on Signal Processing 2006,54(2):665-678.
Neuvo Y, Dong C-Y, Mitra SK: Interpolated finite impulse response filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984,32(3):563-570. 10.1109/TASSP.1984.1164348
Werner S, Diniz PSR: Set-membership affine projection algorithm. IEEE Signal Processing Letters 2001,8(8):231-235. 10.1109/97.935739
Douglas SC: Adaptive filters employing partial updates. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1997,44(3):209-216. 10.1109/82.558455
Doğançay K, Tanrikulu O: Adaptive filtering algorithms with selective partial updates. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 2001,48(8):762-769. 10.1109/82.959866
Sicuranza GL, Carini A: Nonlinear multichannel active noise control using partial updates. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3: 109-112.
Bjarnason E: Analysis of the filtered-X LMS algorithm. IEEE Transactions on Speech and Audio Processing 1995,3(6):504-514. 10.1109/89.482218
Tobias OJ, Bermudez JCM, Bershad NJ: Mean weight behavior of the filtered-X LMS algorithm. IEEE Transactions on Signal Processing 2000,48(4):1061-1075. 10.1109/78.827540
Shin H-C, Sayed AH: Mean-square performance of a family of affine projection algorithms. IEEE Transactions on Signal Processing 2004,52(1):90-102. 10.1109/TSP.2003.820077
Bouchard M, Quednau S: Multichannel recursive-least-squares algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems. IEEE Transactions on Speech and Audio Processing 2000,8(5):606-618. 10.1109/89.861382
Mathews VJ, Sicuranza GL: Polynomial Signal Processing. John Wiley & Sons, New York, NY, USA; 2000.
Strauch P, Mulgrew B: Active control of nonlinear noise processes in a linear duct. IEEE Transactions on Signal Processing 1998,46(9):2404-2412. 10.1109/78.709529
Das DP, Panda G: Active mitigation of nonlinear noise processes using a novel filtered-s LMS algorithm. IEEE Transactions on Speech and Audio Processing 2004,12(3):313-322. 10.1109/TSA.2003.822741
Elliott SJ, Stothers I, Nelson PA: A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987,35(10):1423-1434. 10.1109/TASSP.1987.1165044
Sayed AH: Fundamentals of Adaptive Filtering. John Wiley & Sons, New York, NY, USA; 2003.
Al-Naffouri TY, Sayed AH: Transient analysis of data-normalized adaptive filters. IEEE Transactions on Signal Processing 2003,51(3):639-652. 10.1109/TSP.2002.808106
Haykin S: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.
Tan L, Jiang J: Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Transactions on Signal Processing 2001,49(8):1667-1676. 10.1109/78.934136
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Carini, A., Sicuranza, G.L. Analysis of Transient and Steady-State Behavior of a Multichannel Filtered-x Partial-Error Affine Projection Algorithm. J AUDIO SPEECH MUSIC PROC. 2007, 031314 (2007). https://doi.org/10.1155/2007/31314
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/31314