Mead C: Neuromorphic electronic systems. Proceedings of the IEEE 1990,78(10):1629-1636. 10.1109/5.58356
Article
Google Scholar
Lyon RF, Mead CA: A CMOS VLSI cochlea. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '88), April 1988, New York, NY, USA 2172-2175.
Google Scholar
Sarpeshkar R, Lyon RF, Mead CA: An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '96), May 1996, Atlanta, Ga, USA 3: 292-295.
Google Scholar
Watts L, Kerns DA, Lyon RF, Mead CA: Improved implementation of the silicon cochlea. IEEE Journal of Solid-State Circuits 1992,27(5):692-700. 10.1109/4.133156
Article
Google Scholar
Georgiou J, Toumazou C: A 126-μW cochlear chip for a totally implantable system. IEEE Journal of Solid-State Circuits 2005,40(2):430-443.
Article
Google Scholar
Kuraishi Y, Nakayama K, Miyadera K, Okamura T: A single-chip 20-channel speech spectrum analyzer using a multiplexed switched-capacitor filter bank. IEEE Journal of Solid-State Circuits 1984,19(6):964-970. 10.1109/JSSC.1984.1052252
Article
Google Scholar
Lyon RF: Cost, power, and parallelism in speech signal processing. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC '93), May 1993, San Diego, Calif, USA 1-10.
Google Scholar
Sarpeshkar R: Brain power: borrowing from biology makes for low-power computing. IEEE Spectrum 2006,43(5):24-29. 10.1109/MSPEC.2006.1628504
Article
Google Scholar
Lin L, Ambikairajah E, Holmes WH: Log-magnitude modelling of auditory tuning curves. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01), May 2001, Salt Lake, Utah, USA 5: 3293-3296.
Google Scholar
Drakakis EM, Payne AJ: On the exact realization of LC ladder finite transmission zeros in log-domain: a theoretical study. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '00), May 2000, Geneva, Switzerland 1: 188-191.
Google Scholar
Gold T: Hearing. II. The physical basis of the action of the cochlea. Proceedings of the Royal Society of London. Series B 1948,135(881):492-498. 10.1098/rspb.1948.0025
Article
Google Scholar
Gold T, Pumphrey RJ: Hearing. I. The cochlea as a frequency analyzer. Proceedings of the Royal Society of London. Series B 1948,135(881):462-491. 10.1098/rspb.1948.0024
Article
Google Scholar
Helmholtz H: On the Sensations of Tone as a Physiological Basis for the Theory of Music. Longmans, London, UK; 1885.
Google Scholar
von Békésy G: Experiments in Hearing. McGraw-Hill, New York, NY, USA; 1960.
Google Scholar
Kemp DT: Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. European Archives of Oto-Rhino-Laryngology 1979,224(1-2):37-45. 10.1007/BF00455222
Article
Google Scholar
Steinberg JC, Gardner MB: The dependence of hearing impairment on sound intensity. Journal of the Acoustical Society of America 1937,9(1):11-23. 10.1121/1.1915905
Article
Google Scholar
Rhode WS: Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. Journal of the Acoustical Society of America 1971,49(4):1218-1231. 10.1121/1.1912485
Article
Google Scholar
Rhode WS, Recio A: Study of mechanical motions in the basal region of the chinchilla cochlea. Journal of the Acoustical Society of America 2000,107(6):3317-3332. 10.1121/1.429404
Article
Google Scholar
Ruggero MA, Narayan SS, Temchin AN, Recio A: Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proceedings of the National Academy of Sciences of the United States of America 2000,97(22):11744-11750. 10.1073/pnas.97.22.11744
Article
Google Scholar
Rhode WS: Some observations on cochlear mechanics. Journal of the Acoustical Society of America 1978,64(1):158-176. 10.1121/1.381981
Article
Google Scholar
Allen J: Nonlinear cochlear signal processing. In Physiology of the Ear. 2nd edition. Singular Thompson, San Diego, Calif, USA; 2001:393-442.
Google Scholar
Narayan SS, Ruggero MA: Basilar-membrane mechanics at the hook region of the chinchilla cochlea. Mechanics of Hearing 2000.
Google Scholar
Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L: Basilar-membrane responses to tones at the base of the chinchilla cochlea. Journal of the Acoustical Society of America 1997,101(4):2151-2163. 10.1121/1.418265
Article
Google Scholar
Allen JB: Magnitude and phase-frequency response to single tones in the auditory nerve. Journal of the Acoustical Society of America 1983,73(6):2071-2092. 10.1121/1.389575
Article
Google Scholar
Johannesma PIM: The pre-response stimulus ensemble of neuron in the cochlear nucleus. Proceedings of the Symposium of Hearing Theory, 1972, Eindhoven, The Netherlands
Google Scholar
Carney LH, Yin TCT: Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. Journal of Neurophysiology 1988,60(5):1653-1677.
Google Scholar
de Boer E, de Jongh HR: On cochlear encoding: potentialities and limitations of the reverse-correlation technique. Journal of the Acoustical Society of America 1978,63(1):115-135. 10.1121/1.381704
Article
Google Scholar
Flanagan JL: Models for approximating basilar membrane displacement. Journal of the Acoustical Society of America 1960,32(7):937.
Article
Google Scholar
Aertsen AMHJ, Johannesma PIM: Spectro-temporal receptive fields of auditory neurons in the grassfrog—I: characterization of tonal and natural stimuli. Biological Cybernetics 1980,38(4):223-234. 10.1007/BF00337015
Article
Google Scholar
Flanagan JL: Models for approximating basilar membrane displacement—II: effects of middle-ear transmission. Journal of the Acoustical Society of America 1960,32(11):1494-1495.
Article
Google Scholar
Patterson RD: The sound of a sinusoid: spectral models. Journal of the Acoustical Society of America 1994,96(3):1409-1418. 10.1121/1.410285
Article
Google Scholar
Assmann PF, Summerfield Q: Modeling the perception of concurrent vowels: vowels with the same fundamental frequency. Journal of the Acoustical Society of America 1989,85(1):327-338. 10.1121/1.397684
Article
Google Scholar
Meddis R, Hewitt MJ: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: pitch identification. Journal of the Acoustical Society of America 1991,89(6):2866-2882. 10.1121/1.400725
Article
Google Scholar
Holmes M, Cole JD: Pseudoresonance in the cochlea. In Mechanics of Hearing. Edited by: deBoer E, Viergever MA. Martinus Nijhoff, Hague, The Netherlands; 1983.
Google Scholar
Lyon RF: The all-pole gammatone filter and auditory models. Acustica 1996, 82: S90.
Google Scholar
Slaney M: An efficient implementation of the Patterson-Holdsworth auditory filter bank. In Tech. Rep. #35. Apple Computer, Cupertino, Calif, USA; 1993.
Google Scholar
Recio A, Rich NC, Narayan SS, Ruggero MA: Basilar-membrane responses to clicks at the base of the chinchilla cochlea. Journal of the Acoustical Society of America 1998,103(4):1972-1989. 10.1121/1.421377
Article
Google Scholar
Ruggero MA, Rich NC: Timing of spike initiation in cochlear afferents: dependence on site of innervation. Journal of Neurophysiology 1987,58(2):379-403.
Google Scholar
Brugge JF, Anderson DJ, Hind JE, Rose JE: Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. Journal of Neurophysiology 1969,32(3):386-401.
Google Scholar
Ruggero MA, Robles L, Rich NC: Basilar membrane mechanics at the base of the chinchilla cochlea—II: response to low-frequency tones and relationship to microphonics and spike initiation in the VIII nerve. Journal of the Acoustical Society of America 1986,80(5):1375-1383. 10.1121/1.394390
Article
Google Scholar
Patterson RD, Nimmo-Smith I, Holdsworth J, Rice P: Spiral VOS final report—part A: the auditory filterbank. In Internal Report 2341. MRC Applied Psychology Unit, Cambridge, UK; 1988.
Google Scholar
Patterson RD, Nimmo-Smith I: Off-frequency listening and auditory-filter asymmetry. Journal of the Acoustical Society of America 1980,67(1):229-245. 10.1121/1.383732
Article
Google Scholar
Lopez-Poveda EA: A human nonlinear cochlear filterbank. Journal of the Acoustical Society of America 2001,110(6):3107-3118. 10.1121/1.1416197
Article
Google Scholar
van Immerseel L, Peeters S: Digital implementation of linear gammatone filters: comparison of design methods. Acoustic Research Letters Online 2003, 4: 59-64. 10.1121/1.1573131
Article
Google Scholar
Dorrell PR, Denbigh PN: Spectrograms of overlapping speech based upon instantaneous frequency. Proceedings of International Symposium on Speech, Image Processing and Neural Networks (ISSIPNN '94), April 1994, Hong Kong 607-610.
Chapter
Google Scholar
Lin L, Holmes WH, Ambikairajah E: Auditory filter bank inversion. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '01), May 2001, Sydney, Australia 2: 537-540.
Google Scholar
Robles L, Ruggero MA: Mechanics of the mammalian cochlea. Physiological Reviews 2001,81(3):1305-1352.
Google Scholar
Rosen S, Baker RJ, Darling A: Auditory filter nonlinearity at 2 kHz in normal hearing listeners. Journal of the Acoustical Society of America 1998,103(5 I):2539-2550.
Article
Google Scholar
Katsiamis AG, Drakakis E, Lyon RF: Introducing the differentiated all-pole and one-zero gammatone filter responses and their analogue VLSI log-domain implementation. Proceedings of the 49th International Midwest Symposium on Circuits and Systems (MWSCAS '06), August 2006, San Juan, Puerto Rico, USA 561-565.
Google Scholar