Teager HM, Teager SM: Evidence for nonlinear sound production mechanisms in the vocal tract. NATO Advanced Study Institute on Speech Production and Speech Modelling, Bonas, France; 1989.
Google Scholar
Maragos P, Kaiser JF, Quatieri TF: On amplitude and frequency demodulation using energy operators. IEEE Transactions on Signal Processing 1993,41(4):1532-1550. 10.1109/78.212729
Article
MATH
Google Scholar
Heckmann M: Call for papers, Special issue of Speech Communication on auditory inspired spectro temporal features. 2008.
Google Scholar
Képesi M, Weruaga L: High-resolution noise-robust spectral-based pitch estimation. Proceedings of the 9th European Conference on Speech Communication and Technology (INTERSPEECH '05), 2005, Lisbon, Portugal 313-316.
Dimitriadis D, Maragos P, Potamianos A: Robust AM-FM features for speech recognition. IEEE Signal Processing Letters 2005,12(9):621-624.
Article
Google Scholar
Tsiakoulis P, Potamianos A: Statistical analysis of amplitude modulation in speech signals using an AM-FM model. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '09), 2009, Taibei, China 3981-3984.
Gazor S, Rashidi Far R: Adaptive maximum windowed likelihood multicomponent AM-FM signal decomposition. IEEE Transactions on Audio, Speech and Language Processing 2006,14(2):479-491.
Article
Google Scholar
Kubo Y, Kurematsu A, Shirai K, Okawa S: Noisy speech recognition using temporal AM-FM combination. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '08), March-April 2008, Las Vegas, Nev, USA 4709-4712.
Google Scholar
Far RR, Gazor S: AM-FM decomposition of speech signal using MWL criterion. Proceedings of Canadian Conference on Electrical and Computer Engineering, 2004 3: 1769-1772.
Google Scholar
Gianfelici F, Biagetti G, Crippa P, Turchetti C: Multicomponent AM-FM representations: an asymptotically exact approach. IEEE Transactions on Audio, Speech, and Language Processing 2007,15(3):823-837.
Article
Google Scholar
Betser M, Collen P, Richard G, David B: Estimation of frequency for AM/FM models using the phase vocoder framework. IEEE Transactions on Signal Processing 2008,56(2):505-517.
Article
MathSciNet
Google Scholar
Ezzat T, Bouvrie J, Poggio T: AM-FM demodulation of spectrograms using localized 2D max-gabor analysis. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), 2007, Honolulu, Hawaii, USA 4: 1061-1064.
Google Scholar
Sekhar SC, Sreenivas TV: Novel approach to AM-FM decomposition with applications to speech and music analysis. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 2004, Montreal, Canada 2: 753-756.
Google Scholar
Namias V: The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics 1980,25(3):241-265. 10.1093/imamat/25.3.241
Article
MathSciNet
MATH
Google Scholar
Almeida LB: The fractional fourier transform and time-frequency representations. IEEE Transactions on Signal Processing 1994,42(11):3084-3091. 10.1109/78.330368
Article
Google Scholar
Qi L, Tao R, Zhou S, Wang Y: Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China, Series F 2004,47(2):184-198. 10.1360/02yf0456
Article
MathSciNet
MATH
Google Scholar
Dimitriadis D, Maragos P, Pitsikalis V, Potamianos A: Modulation and chaotic acoustic features for speech recognition. Control and Intelligent Systems 2002,30(1):19-26.
Google Scholar
Mondal B, Sreenivas TV: Mixture Gaussian envelope chirp model for speech and audio. Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '01), May 2001, Salt Lake City, Utah, USA 2: 857-860.
Google Scholar
Huang Y, Dony RD: Speech modelling by non-stationary partials with time varying amplitude and frequency. Proceedings of Canadian Conference on Electrical and Computer Engineering, May 2004, Niagara Falls, Canada 3: 1273-1276.
Google Scholar
Ainsleigh PL, Kehtarnavaz N: Characterization of transient wandering tones by dynamic modeling of fractional-Fourier features. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), 2000, Istanbul, Turkey 2: 665-668.
Google Scholar
Dunn R, Quatieri TF: Sinewave analysis/synthesis based on the Fan-Chirp tranform. Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA '07), October 2007, New Paltz, NY, USA 247-250.
Google Scholar
Képesi M, Weruaga L: Adaptive chirp-based time-frequency analysis of speech signals. Speech Communication 2006,48(5):474-492. 10.1016/j.specom.2005.08.004
Article
Google Scholar
Weruaga L, Képesi M: Self-organizing chirp-sensitive artificial auditory cortical model. Proceedings of the 9th European Conference on Speech Communication and Technology, 2005, Lisbon, Portugal 705-708.
Google Scholar
Mercado E III, Myers CE, Gluck MA: Modeling auditory cortical processing as an adaptive chirplet transform. Neurocomputing 2000, 32-33: 913-919. 10.1016/S0925-2312(00)00260-5
Article
Google Scholar
Jones DL, Parks TW: A high resolution data-adaptive time-frequency representation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1990,38(12):2127-2135. 10.1109/29.61539
Article
Google Scholar
Vargas-Rubio JG, Santhanam B: An improved spectrogram using the multiangle centered discrete fractional fourier transform. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), 2005, Philadelphia, Pa, USA 4: 505-508.
Google Scholar
Zhang F, Chen YQ, Bi G: Adaptive harmonic fractional Fourier transform. Proceedings of IEEE International Symposium on Circuits and Systems, May 2000, Geneva, Switzerland 5: 45-48.
Google Scholar
Weruaga L, Képesi M: Speech analysis with the fast chirp transform. Proceedings of the 12th European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 1011-1014.
Google Scholar
Sluijter RJ, Janssen AJEM: A time warper for speech signals. Proceedings of IEEE Workshop on Speech Coding Proceedings, 1999, Porvoo, Finland 150-152.
Google Scholar
Ramalho MA, Mammone RJ: New speech enhancement techniques using the pitch mode modulation model. Proceedings of the 36th Midwest Symposium on Circuits and Systems, August 1993, Detroit, Mich, USA 2: 1531-1534.
Article
Google Scholar
Wang Z, Zhang X: On the application of fractional Fourier transform for enhancing noisy speech. Proceedings of IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE '05), August 2005, Beijing, China 1: 289-292.
Google Scholar
Sarikaya R, Gao Y, Saon G: Fractional Fourier transform features for speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), 2004, Montreal, Canada 1: 529-532.
Google Scholar
Jinfang W, Jinbao W: Speaker recognition using features derived from fractional fourier transform. Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies (AUTO '05), October 2005, New York, NY, USA 95-100.
Chapter
Google Scholar
Zhao P, Zhang Z, Wu X: Monaural speech separation based on multi-scale Fan-Chirp Transform. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '08), March-April 2008, Las Vegas, Nev, USA 161-164.
Google Scholar
Alieva T, Bastiaans MJ: On fractional Fourier transform moments. IEEE Signal Processing Letters 2000,7(11):320-323. 10.1109/97.873570
Article
Google Scholar
Tao R, Deng B, Wang Y: Research progress of the fractional Fourier transform in signal processing. Science in China, Series F 2006,49(1):1-25.
Article
MathSciNet
MATH
Google Scholar
Barbarossa S: Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing 1995,43(6):1511-1515. 10.1109/78.388866
Article
Google Scholar
Zhao XH, Tao R, Zhou SY, Wang Y: Chirp signal detection and multiple parameter estimation using Radon-ambiguity and fractional Fourier transform. Transactions of Beijing Institute of Technology 2003,23(3):371-377.
Google Scholar
Chao YR (Ed): A Grammar of Spoken Chinese. University of California Press, Berkeley, Calif, USA; 1968.
Google Scholar
Yin H, Xie X, Kuang JM: Adaptive-order fractional Fourier transform features for speech recognition. Proceedings of the 9th Annual Conference of the International Speech Communication Association (INTERSPEECH '08), September 2008, Brisbane, Australia
Google Scholar
Talkin D: A robust algorithm for pitch tracking (RAPT). In Speech Coding & Synthesis. Edited by: Kleijn WB, Paliwal KK. Elsevier, Amsterdam, The Netherlands; 1995.
Google Scholar
The website of consonant challenge in Interspeech, 2008, http://www.odettes.dds.nl/challenge_IS08/material.html
Hidden Markov Model Toolkit (HTK) 2008, http://htk.eng.cam.ac.uk/
Cooke M, Scharenborg O: The interspeech 2008 consonant challenge. Proceedings of the 9th Annual Conference of the International Speech Communication Association (INTERSPEECH '08), 2008, Brisbane, Australia
Google Scholar
Zhou J-L, Tian Y, Shi Y, Huang C, Chang E: Tone articulation modeling for Mandarin spontaneous speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), May 2004, Montreal, Canada 1: 997-1000.
Google Scholar